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A longstanding challenge in epilepsy research and practice is the need to classify

synchronization patterns hidden in multivariate electroencephalography (EEG) data that

is routinely superimposed with intensive noise. It is essential to select a suitable feature

extraction method to achieve high recognition performance. A typical approach is to

extract the mutual information (MI) between pairs of channels. This calculation, which

considers the differences between the sequence pairs to build a reasonable partition,

can improve the classification performance. On this basis, however, it is even more

difficult to adaptively classify the synchronization patterns hidden in multivariate EEG

data under circumstances of insufficient a priori knowledge of domain dependency,

such as denoising, feature extraction on a special patient, etc. To address these

problems by (1) effectively calculating the MI matrix (synchronization pattern) and (2)

accurately classifying the seizure or non-seizure state, this study first accurately measures

the synchronization between channel pairs in terms of affinity propagation clustering

partition MI (APCPMI). The global synchronization measurement is then obtained by

organizing APCPMIs of all channel pairs into a correlation matrix. Finally, a cross-layer

fully connected net is designed to characterize the synchronization dynamics correlation

matrices adaptively and identify seizure or non-seizure states automatically. Experiments

are performed using the CHB-MIT scalp EEG dataset to evaluate the proposed

approach. Seizure states are identified with an accuracy, sensitivity, and specificity of

0.9793 ± 0.002, 0.9942 ± 0.0005, and 0.9676 ± 0.003, respectively; the resulting

performance is superior to those achieved by most existing methods over the same

dataset. Furthermore, the approach alleviates the necessity for strictly preprocessing

(denoising, removing interferences and artifacts) the EEG data using prior knowledge,

which is usually required by existing approaches.
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1. INTRODUCTION

To understand the intrinsic mechanisms of brain functions

or disorders, researchers often classify synchronization

patterns from multivariate electroencephalography (EEG)
data and depict the interactions between different brain

regions (Gysels, 2005). It is therefore unsurprising that
understanding brain synchronization patterns has long been
a central goal of neuroscience (Kandel et al., 2013), with
respect to conditions such as epilepsy. The many applications
of synchronization patterns in multivariate EEG include
feature extraction (Mirowski et al., 2009), complex oscillator
networks, neural computing (Cui et al., 2016), and brain disorder
detection (Chen et al., 2014). Synchronization measurement
of EEG represents an effective means of characterizing the
underlying brain dynamics, e.g., identification and prediction of
brain states. A typical example is the need to identify evolving
synchronization patterns from multivariate EEG data in epilepsy
research and clinical practice. The huge diversity of EEG data
from different patients makes this task even more challenging.

Early studies on EEG synchronization focused on bivariate
synchronous analysis, using measures such as the Pearson
correlation coefficient, Spearman rank correlation, and mutual
information (MI). MI is one of the most important information
independence metrics (Cui et al., 2016), and it performs better
than others in terms of anti-noise capability (Bonita et al., 2014).
A difficult and unresolved problem in MI calculation is the
determination of thresholds based on partitions. The traditional
MI between pairs of EEG signals (Kumar et al., 2017; Piho and
Tjahjadi, 2018) is calculated based on the probability distribution
of continuous random variables. The variables are divided into
partitions with the same probability, e.g., uniform distribution.
However, there is no clear evidence that multivariate EEG data
obey a certain probability distribution. Affinity propagation
(AP) (Frey and Dueck, 2007) is a readily extensible clustering
algorithm. It demonstrates significant improvements compared
with other approaches (K-means, spectral clustering, and super-
paramagnetic clustering) owing to the following advantages: (1)
it is not necessary to specify the number of exemplars before
applying the AP algorithm, and (2) comparable or better results
can be obtained in far less time for large datasets (Wei et al.,
2017). Thus, this paper first uses the AP algorithm to divide
the EEG channel signals, and then calculates the MI accurately.
In recent years, great progress has been made with respect to
multivariate synchronous analysis approaches, such as complex
networks, S-estimation (Carmeli et al., 2005), and correlation
matrix analysis (Cui et al., 2010). Among these, S-estimation can
effectively measure global synchronization, but cannot measure
the synchronization details between bivariate. Complex networks
can be used to obtain topological details of different variables, but
has notable deficiencies in global synchronizationmeasurements,
while correlation matrix analysis has the advantages of both
the former methods. In summary, the approach presented
in this work first measures the synchronization using AP
clustering partition MI (APCPMI) between pairs of channels.
It then organizes all APCPMI values into a correlation
matrix.

Classification of the patterns hidden in multivariate EEG has
long been an interesting area of research with respect to brain
diseases such as epilepsy. Traditional methods focus on time
frequency analysis and synchronization measurements. Recently,
machine learning methods have become popular. Myers et al.
proposed a seizure prediction and classification algorithm for
the CHB-MIT scalp EEG dataset, involving calculation of
phase/amplitude lock values. It achieved a sensitivity of 0.77,
a precision of 0.88, and 0.17 false positives per hour (Myers
et al., 2016). To find EEG segments indicating seizures and
their onset and offset points, Orosco et al. developed a patient
non-specific strategy for seizure detection based on stationary
wavelet transforms of EEG signals and achieved a specificity
of 0.999, sensitivity of 0.875, and a false positive rate per
hour of 0.9 (Orosco et al., 2016). Behnam et al. proposed
a density-based real-time seizure prediction algorithm based
on a trained offline seizure detection model. This method
achieved an accuracy rate of 0.8656, a precision rate of 0.8653,
and a recall rate of seizure prediction of 0.9727, and the
false prediction rate was 0.00215 per hour using their online
signal prediction algorithm (Behnam and Pourghassem, 2016).
Fergus et al. proposed a new method for generalizing seizure
detection across different subjects without a priori knowledge
about the focal point of seizures using the CHB-MIT scalp
EEG dataset (Fergus et al., 2016). Classification was enabled
by the k-NN algorithm and achieved a sensitivity of 0.88
and a specificity of 0.88. Mirowski et al. proposed a method
to classify patient-specific synchronization patterns to predict
seizure onset over the Freiburg dataset (Mirowski et al., 2009).
EEG synchronization was measured via cross-correlation, non-
linear interdependence, dynamical entrainment, and wavelet
synchrony. Spatial-temporal patterns were then extracted to
support seizure onset prediction, with a sensitivity of 0.71 and
zero false positives. EEG synchronization between the left and
right parasagittal, and between the frontal and parietal brain
regions was assessed with 4 different quantitative measures (delta
power asymmetry, cross-correlation, mutual information, and
transfer entropy). Their method achieved a specificity of 1.0, a
sensitivity of 0.54, and an accuracy 0.81 for seizure detection
with video-EEGs recordings (Zubler et al., 2017). Traditional
methods focus on classifying EEG synchronization patterns in
terms of linear [e.g., kappa statistics (Slooter et al., 2006) and
K-means (Quyen et al., 2005)] and non-linear classifiers [e.g.,
support vector machine (SVM) (Gysels et al., 2005)]. EEG
data are routinely non-linear and non-stationary in nature,
and the synchronization patterns (if any) embedded in them
are inevitably highly non-linear. This always results in poor
performance for linear classifiers (Quyen et al., 2005; Slooter
et al., 2006). In particular, kappa is incapable of revealing
synchronization patterns in detail, and K-means is often trapped
at local optima owing to its high sensitivity to noises and outliers.
The SVM is applicable to non-linear problems, but it cannot
find a general solution to EEG synchronization classification
as (1) selection of the kernel function is problem-specific and
(2) the space information among synchronization patterns is
discarded. To solve this problem, non-linear adaptive pattern
recognition technologies, such as deep neural network (NN)
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approaches, have a vital role in non-linear analysis, as they
are self-adaptive and have strong fault tolerance. In contrast
to previous work, this study aimed to find a solution capable
of adaptive classification of non-stationary synchronization
patterns to capture the intrinsic nature of seizure activities
represented by the EEG. Besides obtaining better classification
performance, the classifier presented here has the merits of (1)
fast training speed, and (2) alleviating overfitting and enhancing
generalization ability.

To tackle the challenges, we first extracted a global
synchronization feature that could effectively suppress strong
noise. Then we designed a cross-layer fully connected NN
(CLFCNN) classifier to classify the presence or absence of
an epileptic seizure. The experimental results presented in
this paper were evaluated on the CHB-MIT public authorized
dataset (Goldberger et al., 2010). Compared with most existing
methods, the classifier proposed in this paper achieves high
accuracy, sensitivity, and specificity. It can also be applied to
complex science and engineering applications effectively, because
not only does it not require a priori knowledge of subjects
dependent on the problem domain, but only a single time
window parameter needs to be set manually, which can greatly
reduce various errors caused by improper parameter settings. The
main contributions are as follows.

• For multivariate EEG data subjected to strong noise
and interference, a synchronous evolution pattern feature
extraction method, named APCPMI, was designed. Compared
with the traditional MI calculation method, APCPMI fully
considers the differences in the channel data themselves and
measures the MI between EEG data pairs more accurately.
• Without a priori knowledge, an adaptive classifier was

designed, which can effectively distinguish synchronization
patterns with diversity and uncertainty. It shows excellent
performance in epileptic seizure detection on the CHB-MIT
dataset.
• In order to make the model more robust (without overfitting)

and generalized, the proposed method was aimed at the whole
sample space without sufficient a priori knowledge to perform
the preprocessing (noise removal or interference removal) that
is widely used in existing methods.

The remainder of this paper is organized as follows. The second
section introduces the proposed method of CLFCNN based on
an APCPMI correlation matrix. The third section proposes the
case study, that is, epilepsy seizure classification. Finally, themain
highlights of this paper are emphasized.

2. METHODS

This section discusses in detail the main concepts and methods
used in this work. First, the materials used in the study are
described. Second, we summarize the overall design of our
solution. The global synchronization measure, a correlation
matrix based on APCPMI (CMAPCPMI), is discussed in detail.
Finally the implementation of the classifier (CLFCNN) is
discussed.

2.1. Materials
The CHB-MIT scalp EEG dataset, which is publicly authorized
for open access, was used for this study. The dataset consisted
of EEG recordings from 22 patients (5 males aged 3–22 and
17 females aged 1.5–19) with severe epilepsy caused by organic
lesions, which were recorded simultaneously through 23 different
channels (FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3,
P3-O1, FZ-CZ, CZ-PZ, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8,
F8-T8, T8-P8, P8-O2, P7-T7, T7-FT9, FT9-FT10, FT10-T8, and
T8-P8) at 256 Hz with 19 electrodes and a ground attached to the
surface of the scalp. Most recordings contained multiple seizure
occurrences.

This study investigated EEG recordings with the same
number of channels (from 18 patients). To avoid the
problems of imbalanced samples, Markov chain Monte
Carlo (MCMC) (Robert and Casella, 2004) sampling was used
to balance the seizure state and non-seizure state samples. The
details were as follows. (1) For each epileptic seizure stage
with size S(seizure), synchronization matrix counts for seizures
were denoted as count(seizure) = ⌊S(seizure)/S(window)⌋,
where S(window) is the size of the time window. (2)
Synchronization matrix counts for non-seizure stage prior
to epileptic seizure stage were denoted as count(prior) =
⌊ 12 × S(seizure)/S(window)⌋. (3) Synchronization matrix counts
for non-seizure stage posterior to epileptic seizure stage were
denoted as count(posterior) = count(seizure) − count(prior).
Cases containing the same channel numbers were used,
corresponding to 18 patients, as shown in Table 1. All EEG data
with epileptic seizures were divided into 753 non-overlapping
time windows (segments), each of which contained 2,048 points
(8 s). The non-seizure state segments (753) were then obtained
by MCMC sampling.

TABLE 1 | Details of the EEG records.

No. Gender Age (years) Seizure count

1 F 11 7

3 F 14 7

5 F 7 5

7 F 14.5 1

8 M 3.5 5

9 F 10 1

11 F 12 3

12 F 2 27

13 F 3 10

14 F 9 4

16 F 7 7

17 F 12 2

18 F 18 6

19 F 19 2

20 F 6 8

21 F 13 4

22 F 9 3

23 F 9 2
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2.2. Overall Design
In view of the time requirements of clinical applications, this
approach was intended to avoid the conventional and heavy
data preprocessing tasks (denoising, removing interference and
artifacts). Another obstacle to clinical applications is that existing
methods rely heavily on a priori knowledge and require a large
number of hyper-parameter settings. Figure 1 shows the whole
procedure of this method in three stages: (1) synchronous feature
extraction, (2) pattern classification based on CLFCNN, and (3)
evaluation of performance.

2.3. Global Synchronization Measurement
2.3.1. Mutual Information
MI is a natural measure for selecting useful features because it
expresses the uncertainty between bivariate data (Shannon, 1948;
Ullman and Bart, 2004). It does not need any hypothesis or a
priori knowledge to measure the correlation between bivariate
data. Let X and Y be discrete variables, and let the corresponding
probability distributions and the joint probability distribution
be represented by p(X), p(Y), and p(X, Y), respectively. The
entropies (H(X) and H(Y)) and the joint entropy (H(X, Y)) are
defined as follows:

H(X) = −
∑

x∈X

p(x)log2p(x),

H(Y) = −
∑

y∈Y

p(y)log2p(y),

H(X,Y) = −
∑

x∈X,y∈Y

p(xy)log2p(xy)

(1)

The MI is calculated as below:

I(X,Y) = H(X)+H(Y)−H(X,Y) (2)

MI computation is strongly dependent on data partitioning.
In this method, for each segment of a seizure or non-seizure
state, the MI matrix (23 × 23) was calculated in terms of
different partition numbers, which are divided according to

the uniform distribution. Figure 2 illustrates the traditional
method of computing MI. Amplitude values belonging to the
same partition will fall into the corresponding partition; self-
entropy and joint entropy are then calculated using Equation 1
(denoted as arrows in Figure 2). Finally, the MI is calculated
using Equation 2. The average standard deviation values of
all MI matrices for different partition numbers are illustrated
in Figure 3. This shows that the MI calculation is strongly
dependent on data partitioning. In view of this partitioning
problem, an adaptive partitioning algorithm is essential; such an
algorithm is briefly introduced in the following sections 2.3.2
and 2.3.3.

FIGURE 2 | The conventional computation of MI. X(X ⊆ [0,6]) and Y (Y ⊆ [1,

5.5]) are the bivariate signals that denote the pairs of channels. Different colors

indicate different signals X and Y. See text for details.

FIGURE 1 | Overview of the proposed approach and its operation process. First, the raw EEG data is segmented with the same time window. Then all APCPMIs

between pairs of channels are calculated and organized into a correlation matrix based on APCPMI (CMAPCPMI). Finally, the feature matrices are trained by CLFCNN

and predicted as seizure or non-seizure states.
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FIGURE 3 | The relation between MI calculation and partition number. (A) is the average MI matrix for all seizure states, and (B) is the average MI matrix for

non-seizure states. See text for details.

As shown in Figure 3, the standard deviations of the non-
seizure stateMImatrix were greater than those of the seizure state
MI matrix.

2.3.2. AP Clustering Algorithm
AP clustering is an algorithm based on information transferred
between data points. Compared with classical clustering analysis
algorithms, it does not need to determine the number of clusters
before running, and it iterates through competitive clustering
centers for each sample point to achieve the best clustering
performance.

The input of the AP algorithm is the similarity between
the sample data s[i, j](i, j = 1, 2, ...,N), e.g., Euclidean distance,
Kullback-Leibler divergence, or cosine distance. This paper uses
the Euclidean distance to represent the element values in the
similarity matrix S. The element on the diagonal line of S is
a reference matrix P, which indicates the probability that each
sample point is selected as a partition center. The AP algorithm
iterates through the sample data to construct the responsibilities
matrix R(i, k) and the availability matrix A(i, k) until the
appropriate partition center xk is found. The iterative formulas
are as follows.

R(i, k)← S(i, k)− max
k′ s.t. k′ 6=k

{

A(i, k′)+ S(i, k′)
}

,

A(i, k)← min







0,R(k, k)+
∑

i′ s.t. i′ /∈{i,k}

max
{

0,R(i′, k)
}







(3)

AP clustering uses the two equations in Equation 3 alternately.
For a detailed implementation, refer to Frey and Dueck (2007).
Compared with the K-means approach, the main advantages are

as follows: (1) no manual initial partition center is required;
(2) the partition center is a real existing data sample instead of
a virtual new one; (3) it is insensitive to the initial value; and
(4) the squared error of the result is smaller (Frey and Dueck,
2007).

2.3.3. AP Cluster Partition Mutual Information
The calculation of APCPMI involves three stages. First, the
bivariate signals X and Y are ordered (ascending) to speed
up the convergence of AP clustering. Second, the variables are
partitioned, respectively, with the AP clustering algorithm to
obtain the coordinates of the maximum (Zi

max) and minimum
values (Zi

min) for each partition i. The partition center Ci

and corresponding partition radius Ri can be calculated as
follows:

Ci =
Zi
max + Zi

min

2
,Ri =

|Zi
max − Zi

min|

2
, s.t. Z ∈ X,Y . (4)

where Z denotes the coordinates of point in one partition.
The partition center and corresponding partition radius are

from the partition Pi. Given two partitions Pi and Pj, the dividing
point should be the following:

D(i, j) =
(Cj − Rj)− (Ci + Ri)

2
, s.t.j > i (5)

It is very likely that different partition numbers (N(X) and N(Y),
N(X) 6= N(Y)) between the bivariate signals can be generated. In
view of this, this study merges those closer partitions with larger
partition numbers until the bivariate signals contain the same
partition number.

Frontiers in Human Neuroscience | www.frontiersin.org 5 October 2018 | Volume 12 | Article 396

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Wang and Ke AP Cluster Partition Mutual Information

Finally, the APCPMI is calculated in terms of the
partitions. The calculation details are summarized in
algorithm 1.

APCPMI can be used to measure the linear and non-linear
synchronization between pairs of channels. In contrast to the
traditional approach, it considers the differences in signal data
themselves to build reasonable partitions to accurately calculate
the MI.

2.3.4. Correlation Matrix Based on APCPMI
To quantify the global synchronization of multivariate EEG,
the APCPMIs are extended to form a correlation matrix
based on APCPMI, named CMAPCPMI. Each element
of the matrix (APCPMI) represents the synchronization
measurement between the corresponding channels. The

Algorithm 1 APCPMI calculation

Input:

1: Random variable X;
2: Random variable Y;
3: Reference degree of X px, the default value should be the

median of X;
4: Reference degree of Y py, the default value should be the

median of Y;
Output: APCPMI;
5: Order the bivariate signals X and Y in ascending order;
6: Apply AP clustering algorithm (see sklearn.cluster.

AffinityPropagation is a Python implementation using the
sklearn package) on bivariate signals X and Y corresponding
to the reference degrees of px and py, respectively, and
obtain the initial partition points for each channel.
Dx = {D1

x,D
2
x, ...,D

m
x }, Dy = {D1

y ,D
2
y , ...,D

n
y }, where

each partition follows Equation. 5, and m and n denote the
corresponding partition numbers of X and Y .

7: maxCounter = max(m, n).
8: minCounter = min(m, n)
9: Obtain the channel with larger partition number as: Z =

(maxCounter == m?X :Y).
10: for (i = maxCount; i < minCount; i−−) do
11: find nearest neighbor partition pairs and merge them.
12: update the partitions with new partition center and

radius.
13: end for

14: Dx = (maxCounter == m)?Dz :Dx

15: Dy = (maxCounter == n)?Dz :Dy

16: X is divided intoDx in terms of Sx, and the numberNx among
each partition and its probability Px are calculated. Then the
entropy Hx of X is calculated as in Equation 1.

17: The entropy Hy of Y is also calculated with respect to Dy

and Sy.
18: Calculate the common number falling into the same

partition of X and Y and its joint probability density
distribution p(xy). Then the joint entropy H(x, y) can be
obtained.

19: Return APCPMI by Equation 2.

definition is as follows (MI is used in the equation for
simplicity):

CMAPCPMI =











MI11 MI12 · · · MI1n
MI21 MI22 · · · MI2n
...

...
. . .

...
MIn1 MIn2 · · · MInn











(6)

where the index at each element denotes the channel index. The
max index n in this study is 23.

2.4. Cross-Layer Fully Connected Neural
Network
The classifier is used to identify the EEG synchronization pattern
(CMAPCPMI) for identification of epileptic seizure states. In this
section, the design principle of the classifier is discussed. The
overall architecture is then given. Finally, implementation details
including training and test processes are proposed.

2.4.1. Design Principle
The goal of this classifier was to achieve a level of performance
similar to that of a deep NN with minimal hidden layers to
substantially reduce training time. Figure 4 illustrates the overall
design architecture of a cross-layer fully connected NN. It starts
with a dropout layer, followed by four layers of dense blocks
forward-connected with each other (the front layer is connected
to all the subsequent layers), and a final Rectified linear unit
(ReLU) activation output of the seizure states. The main design
principles are as follows.

• Dropout: In deep NN, dropout is used to overcome the
overfitting problem. The main idea is to discard some neurons
at random. When the dropout technology was proposed,
Srivastava gave the ideal dropout rates as 0.2 for the input layer
and 0.5 for the hidden layer (Srivastava et al., 2014). After fine-
tuning this parameter, the dropout rate of the input layer was
set to 0.1, while the hidden layer did not require a dropout ratio
at all.
• No need for a convolution layer or pooling layer: The

convolutional and pooling layer have been very successful in
reducing model parameters. However, they cause significant
information loss when dealing with global synchronization
patterns, since the latter have low spatial resolution. Unlike
images or videos, the data elements in the feature matrix
exhibit little continuity.
• Merge layer: The merge layer accepts connections from all

front layers and merges them in sequence with respect to the
layer number. Then, each layer is mapped to the next fully
connected layer, whose connection weight is fixed at 1, while
bias is fixed at 0.
• Dense block: To ensure that the network stays feed-forward,

the features of an earlier layer are fed as inputs into a later
layer, so that the dense blockers are arranged as a forward
dense net. If there are L layers of fully connected layers, except
between two adjacent layers from the front, all layers have
connections to all subsequent layers, leading to a total of
L(L+1)

2 connections. The network structure is borrowed from
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FIGURE 4 | The architecture of the CLFCNN. The merge layer is ignored because there is no special parameter for this type of layer. The final activation layer with

different color outputs the classification result (seizure or non-seizure). See text for details.

the DenseNet (Huang et al., 2017), which can (1) alleviate the
gradient vanishing problem, (2) enhance feature propagation,
(3) be more conducive to feature reuse, and (4) further reduce
the parameters. The main differences between the method of
Huang et al. (2017) and that used here are as follows. (1) We
removed the conventional and pooling layers because of non-
stationary synchronous patterns. This was mainly because
different channels have various synchronization patterns that
can be strengthened or weakened, and convolution or pooling
is likely to lose this kind of change and lead to loss of
classification performance. (2)We set themerge layer to accept
and merge all front layers to avoid the gradient vanishing of
the front layers, while enhancing the weight propagation of the
cross layer.

2.4.2. Design Structure of CLFCNN
The implementation details of CLFCNN are as follows: (1) the
optimization uses a random batch gradient descent algorithm
with batch size of 50; (2) the learning rate is set to 0.01; (3) the
objective function is the mean square error; and (4) the activation
function is the ReLU function. The global synchronization
patterns are fed into the CLFCNN as input and its training
process includes the following.

1. The forward propagation algorithm uses the outputs, weights,
and bias of the prior layer as the independent variables of the
current activation function. Assuming that the current layer
is L(i), besides the input from L(i − 1) level, there are input
connections from all the connected layers before L(i− 1). The
output of L(i) is as follows:

OL(i) = δL(i)







i−1
∑

j=1

δL(j)
(

ωL(j)x+ bL(j)
)







(7)

where δ is the activation function, ω is the weight, and b is the
bias.

2. The residuals of each iteration are calculated.
3. To calculate the residuals between the output and the target,

the Back Propagation (BP) algorithm is utilized to back-
propagate the residuals using the chain rule. This is successful

because for each weight connection, there is a unique path
from the output to the current connection weight.

4. After training the classifier, the trained classification model is
obtained. Then test data are fed into the model, which is used
to predict and classify the epileptic seizures.

2.4.3. Implementation Details for CLFCNN
This section describes the implementation details of the classifier.
The main process is to first shuffle the whole sample space
with a initial seed of 7, and divide the data into training set,
validation set, and test set, which account for 0.64, 0.16, and
0.2, respectively. The training performance of the classifier is
then evaluated using a five-fold cross-validation algorithm on
the training set and validation set, and the final performance is
reported by the test set.

2.4.3.1. Model summary
Table 2 summarizes the model parameters of the proposed
classifier (the last column in the table shows the number of
parameters of the current layer). Although the total number
of parameters (55252) of the classifier was less than that of the
current mainstream deep learning framework, the classification
performance of the classifier was very challenging (see
section 3).

2.4.3.2. Training process
In each training phase, a five-fold cross validation algorithm was
used to evaluate the performance. A small batch (batch size of
50) momentum (0.9) gradient descent method was utilized to
train the model, as described by Krizhevsky et al. (2012). The
training is regularized by weight decay (2e-4) and dropout (0.1).
The update rule for weight follows Equation 8 (Krizhevsky et al.,
2012):

vi+1 ← 0.9 · vi − 0.0002 · ǫ · ωi − ǫ〈
∂L

∂ω
|ωi〉Di ,

ωi+1 ← ωi + vi+1

(8)

where i is the iteration index, v is the momentum variable, ǫ is the
learning rate, and 〈 ∂L

∂ω
|ωi〉Di is the average over the ith batchDi of

the derivative of the objective with respect to ω, evaluated at ωi.
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TABLE 2 | The model parameter setting of the classifier.

Inputs Outputs Shapes Parameter

Dropout1 (Dropout) FC1(FC) [None 529] 0

FC1(FC) FC2(FC) 42,400

FC1(FC) FC3(FC) 10,600

FC1(FC) FC4(FC) 530

FC2(FC) FC3(FC) [None 80] 1620

FC2(FC) FC4(FC) 81

FC3(FC) FC4(FC) [None 20] 21

FC4(FC) Activation [None 1] 0

The output format of the current layer and next layer (output layer) and the number of

connection parameters. The merge layer and activation layer between the hidden layer

are omitted because of its zero parameter. In this work, there are two merge layers. The

first is before the third layer, which accepts the outputs of the first and the second. The

second is in front of the fourth layer.

2.4.3.3. Test process
In the test phase, given the trained classifier, the raw EEG data
were classified as follows. First, the EEG data were divided into
the same time window as 2048, and the feature matrix (see
section 2.3.3) of each window was computed. The CLFCNN
classifies all sequential global synchronization patterns. The
process does not need any intervention from doctors or experts.
In this way, the manpower and material and financial resources
required for clinical applications can be greatly reduced.

2.4.3.4. Avoidance of overfitting
We used “early stopping” and “dropout” strategies to avoid
overfitting of the model. In these approaches, the training
accuracy is monitored continuously until it stops ascending.
The iteration of training will then stop on completion of the
current epoch. Taking our experiments, for example, the number
of epochs was initially set to 300 while the iteration stopped at
the 91st epoch. The other strategy, dropout, temporarily drops
randomly selected units together with their connections from the
NNs during training. The central idea of dropout is to take a large
model that overfits easily and repeatedly sample and train smaller
sub-models from it. This prevents units from co-adapting too
much in training. At the test stage, it can approximate the effect
of averaging the predictions of all these sub-models by simply
using a single unthinned model that has smaller weights; thus,
overfitting can be prevented in a simple manner at the cost of
doubling the training time (Srivastava et al., 2014).

3. EXPERIMENTAL RESULTS AND
DISCUSSIONS

Experiments were performed to evaluate the performance of
the proposed method. The testbed was a desktop with Intel i7
CPU (3.33 GHz) and 24 GB memory running 64-bit Windows
7. The experiments involved both offline training and online
classification.

Off-ine Training: This procedure included (1) calculation
of all CMAPCPMIs (the default reference degree was used

to calculate APCPMI; see algorithm 1) and (2) training the
NN models. With a time window of 2,048, the 10 threads
simultaneously computed the AP clustering algorithm on each
channel, which could be reused (each channel needed only
one cluster calculation). It took about 50 seconds to calculate
one synchronization matrix in JDK1.8. In summary, it took
about 21.5 h to calculate all 1,406 of the global synchronization
measures (753 epileptic seizures, 753 epileptic non-seizure
states). The second step could output the model in 1 min.

Online Classification: This procedure included (1)
calculation of one global synchronization in 50 s and (2)
loading the trained model to perform classification, which took
less than 0.01 s.

3.1. Evaluation of Classification
Performance
To evaluate the performance of the classifier, 10 iterations were
fulfilled. Each iteration included one whole training stage (the
five-fold cross-validation method was adopted to evaluate the
training performance) and a test stage. At each iteration, the
feature matrices were shuffled and divided into five folds: four
folds were used as training data, the remaining fold was used
as validation data. The final result was the average performance
from the test set of all 10 iterations.

As for seizure state identification in this study, it can be
deemed as a classification problem in which the classifier is
aimed to classify different seizure states (seizure state for positive,
or non-seizure state for negative) presented by EEG segments
and so the essence of the classifier is to construct a mapping
from the feature space to class labels or seizure states here.
The classifier performance is evaluated by implementing the
trained classifier on the test set and comparing the predicted
and actual labels. In order to clearly understand the evaluation
criteria, we first introduce the confusion matrix. There are always
some instances correctly classified while others incorrectly. The
confusion matrix contains the most information for measuring
the association between prediction and reality. On the main
diagonal of the confusion matrix the number of positive cases
(TP) correctly classified and the number of negative cases (TN)
correctly classified and the minor diagonal reports the number of
negative cases (FN) wrongly classified and the number of positive
cased (FP) wrongly classified, respectively. Then, the actual
positive number and the actual negative number are (TP +FN)
and (FP+TN), respectively. In order to compare the performance
of different classifiers more conveniently, some commonly used
measures including accuracy (Equation 11), sensitivity (also
known as recall in Equation 9) and specificity (Equation 10)
et al., which are derived from the confusion matrix to capture
information in a single scalar metric. Classification accuracy
is typically taken to mean the degree to which the derived
classification agrees with reality or conforms to the ‘truth.’ The
most common way to express the accuracy of classification is
by a statement of the percentage of the seizure/non-seizure state
that has been correctly classified when compared with reference
data or “ground truth” calibrated by experts. Sensitivity measures
the proportion of actual positives that are correctly identified
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as such (e.g., the percentage of seizure states who are correctly
identified as seizure states). Therefore, it quantifies the avoiding
of false negatives, and specificity does the same for false positives.
In this study, a perfect classifier would be described as 1.0
sensitivity, meaning all seizure states are correctly identified as
seizure states, and 1.0 specificity, meaning no non-seizure states
are incorrectly identified as seizure. The classifier is doing a
better job in correctly predicting the positives than predicting the
negatives when the greater sensitivity is obtained, vice versa. The
precision (also called positive predictive value in Equation 12) for
a class is the number of true positives (i.e., the number of items
correctly labeled as seizure state) divided by the total number of
elements labeled as belonging to the positive class (seizure state).
A precision score of 1.0 for seizure state means that every item
labeled as belonging to seizure state does indeed belong to seizure
state (but says nothing about the number of items from seizure
state that are not labeled correctly). Often, there is an inverse
relationship between precision and sensitivity (recall), where it
is possible to increase one at the cost of reducing the other.
Precision and sensitivity scores are not discussed in isolation.
Instead, either values for one measure are compared for a fixed
level at the other measure [e.g., precision (0.8) at a sensitivity
level of 0.75)] or both are combined into a single measure. An
example of measures that combine precision and sensitivity is
the F-measure (the weighted harmonic mean of precision and
sensitivity in Equation 14) and another example that combines
sensitivity and specificity is the G-mean (Equation 13).

Let NTP, NFP, NTN , and NFN , respectively, denote the number
of test dataset that the classifier has determined as true positive
(TP), false positive (FP), true negative (TN), and false negative

(FN) cases. A 2 × 2 confusion matrix

[

TP FP
TN FN

]

can be formed

from the above values (Fatourechi et al., 2008; Elyasigomari
et al., 2015). In order to quantify classification performance, we
used sensitivity, specificity , accuracy , precision, G-mean and
F-Measure to report classification performance (Fatourechi et al.,
2008; He and Garcia, 2009; Jamal et al., 2014; Mumtaz et al.,
2017)1:

sensitivity =
TP

TP + FN
(9)

specificity =
TN

TN + FP
(10)

accuracy =
TP + TN

TP + FN + TN + FP
(11)

precision =
TP

TP + FP
(12)

where the sensitivity and specificity indicate the ratios of
correctly identifying epileptic seizure and non-seizure states,
respectively, and the accuracy of a classification model illustrates
the percentage of correctly classified cases and non-cases among
all the samples in test set. The precision calculates the proportion

1These quantities are not those used in classical signal detection theory(Macmillan

and Creelman, 1991), despite the similarity in names.

of all correctly identified seizure states from all that were actually
classified.

The above indicators could not measure the balance
performance of the classifier. For example, 100 samples,
including 99 positive and 1 negative, would be reported with
0.99 high performance even if all samples were classified as
positive. The G-mean and F-Measure were used to synthetically
consider different performance indicators to address this
problem(Fatourechi et al., 2008; He and Garcia, 2009). G-mean
evaluates the degree of inductive bias in terms of a ratio of
positive accuracy and negative accuracy:

G−mean =
√

(sensitivity × specificity) (13)

F-Measure metric combines precision and sensitivity as a
measure in terms of a ratio of the weighted importance on either
sensitivity or precision as determined by the β (β = 1 in this
study) coefficient:

F −Measure = (1+ β2)×
precision× sensitivity

β × precision+ sensitivity
(14)

The size of time window greatly affected the performance of the
classifier. Figure 5 illustrated the performance with different time
windows.With an increasing time window, the overall total trend
was one of growth, with the exception of the timewindow at 1,000
(all the performance indicators were almost the lowest). With a
time window of 2,048, the performance reached its peak. That
is, the classification performance was reported as 0.9793 ± 0.002
accuracy, 0.9942 ± 0.0005 sensitivity, 0.9676 ± 0.003 specificity,
0.9605 ± 0.0044 precision, 0.9808 ± 0.002 G-mean and
0.9807± 0.002 F-Measure, respectively. The first value is average
value and the second value is the corresponding standard
deviation. The small standard deviations indicated the stability
of the classifier.

Learning curve plot is widely used in machine learning
to check if the model is overfitting or not. It denotes the
performance (the error rate or accuracy of the learning system)
changing with the number of training examples used for learning
or the number of iterations used in optimizing the system model
parameters (Sammut and Webb, 2010). Figure 6 illustrates the
accuracy and loss metrics in the training and validation stages
of one iteration which is Here, The X-axis denotes epoch (An
epoch is an iteration over the entire training data provided (see
https://keras.io/models/model/)). The Y-axis denotes accuracy
and loss measure in one training iteration. acc and loss indicate
the accuracy and error in training, respectively; and val_acc
and val_loss indicate the accuracy and error in validation,
respectively. It is clear that overfitting did not occur in this case
as: (1) acc and val_acc reached high values at the same time;
(2) there was no significant difference between acc and val_acc
for any epoch; and (3) there was an excellent generalization
performance, as proved by the test set.

The area under the receiver operating characteristic
(ROC) curve, denoted as AUC, is widely used to measure
the performance of supervised classification rules. A good
performance is indicated by a convex ROC curve, which lies

Frontiers in Human Neuroscience | www.frontiersin.org 9 October 2018 | Volume 12 | Article 396

https://keras.io/models/model/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Wang and Ke AP Cluster Partition Mutual Information

FIGURE 5 | Relationship between performance (accuracy, sensitivity, specificity, precision, G-mean, and F-Measure) and window size. After ordering the data in

descending order, six points were then calculated: lower (first) quartile Q1, median (second quartile) Q2, upper (third) quartile Q3, interquartile range IQR = Q3 − Q1 ,

lower 1.5*IQR whisker, and upper 1.5*IQR whisker. Outliers outside the lower whisker and upper whisker were plotted as a circle (see https://en.wikipedia.org/wiki/

Box_plot).

in the upper left triangle of the square (luck line in Figure 7,
which is the diagonal reference line to represent the classification
performance of random guess with AUC of 0.5) (Hand and
Till, 2001). Figure 7 illustrates the classification performance
(five-fold cross-validation at the training stage) for this work.
The convex ROC curve indicated superior performance in
classifying epileptic seizure state and non-seizures. A very large
AUC with value 1 further confirmed the superior performance
of the classifier.

Table 3 presents a comparison between the proposed
approach and state-of-the-art methods, including those with
intelligent algorithms operating on the public dataset CHB-
MIT. The classifier achieved the best sensitivity and accuracy,
while its specificity was only slightly worse than those of the
Linear Discriminant Analysis (LDA) and NN reported in Orosco
et al. (2016). Nevertheless, sensitivity was a much more critical
indicator as it denoted whether seizures could be correctly
detected.

3.2. Discussion
3.2.1. A Priori Knowledge
Classifiers for seizure detector have generally relied on a
priori knowledge (Nasehi and Pourghassem, 2013; Behnam and
Pourghassem, 2016; Fergus et al., 2016; Orosco et al., 2016)
or patient-related data (Nasehi and Pourghassem, 2013). This

results in poor generalization ability of the classifier, since
researchers train and test on the same patient, or apply the
classifier to different patients with specific feature extraction
rules. Here, by contrast, based on all patients’ samples, a general
EEG classification model was established to detect epileptic
seizures in different subjects. Under high noise conditions, it was
important to find the synchronization pattern of multivariate
EEG data and accurately classify it without sufficient a priori
knowledge. This ability could greatly assist research into epileptic
brain dysfunction.

Furthermore, the traditional classifier mostly relied on the
time, frequency, and space analysis (Mirowski et al., 2009) of EEG
signals. The frequency bands of different patients were often quite
different. Obtaining appropriate frequency bands had become a
challenging research problem, which made it difficult to classify
different frequency bands from different patients.Methods aimed
at solving this problem included the extraction of frequency band
components based on a Bayesian framework (Suk and Lee, 2013).
However, the extraction of appropriate frequency bands required
complex analysis of a large number of epochs. Meanwhile, the
time window had to be long enough to avoid losing useful
frequency information. For example, Mirowski et al. had to apply
several minutes of EEG (12–60 frames) to obtain the appropriate
frequency band information, but the synchronization measure
needed only a 5-s time window (Mirowski et al., 2009).
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FIGURE 6 | The learning curve of classifier to log accuracy and loss rates in

the training stage (Video S1). acc and loss indicate the accuracy and error in

training, respectively; val_acc and val_loss indicate the accuracy and error in

validation, respectively. The X-axis denotes epoch [An epoch is an iteration

over the entire training data provided (see https://keras.io/models/model/)].

The Y-axis denotes accuracy and loss measure in one training iteration.

FIGURE 7 | ROC curve on lightweight CLFCNN. The curve was generated

from every fold of five-fold cross-validation for the CLFCNN model. See text for

details.

3.2.2. Advantages of the Proposed Classifier
The latest NNs are highly suited to EEG classification as they
have the following properties. (1) Non-linearity: a NN consisting
of interacting neurons (linear or non-linear) exhibits intensive
non-linearity. (2) Adaptivity: a NN has the inherent ability to
adjust the synaptic weights to adapt to the dynamics of the
external environment, such as arbitrary pattern change. (3)
Fault tolerance: when a part of a NN encounters a problem,
the rest of the network can function, e.g., handling a segment
contaminated with intensive interference. Our proposed design
differs from that of Huang et al. (2017) in the following
ways. (1) We removed the conventional and pooling layers
because of non-stationary synchronous patterns, that is, different
channels had various synchronization patterns that could be
stronger or weaker. Convolution or pooling was likely to lose
this kind of difference and could lead to loss of classification
performance. (2) We set the merge layer to accept and merge
all front layers to avoid the gradient vanishing of the front
layers, while enhancing the weight propagation of the cross
layers.

3.2.3. Comparison With Mutual Information
To evaluate the improved MI based on AP clustering, we
compared the classification performance between APCPMI and
MI. The APCPMI between pairs of channels was calculated in
terms of the default reference degree (see algorithm 1). After the
EEG data of each channel was divided into five non-overlapping
partitions with uniform distribution, the MI between bivariate
signals was calculated. The reason for choosing five partition
numbers was that a relatively higher standard deviation (enabling
synchronization patterns to be more easily distinguished) was
achieved when the signals were divided into five partitions (see
Figure 3).

A comparison between the proposed approach and MI is
provided in Figure 8. Straightforward classification accuracies
were improved from 0.9335 to 0.9793, sensitivities from 0.8951
to 0.9676, and specificities from 0.9704 to 0.9942. Furthermore,
a traditional NN, which was designed to remove connections
between the cross layers, was also utilized to classify the
APCPMIs. Straightforward performance was slightly improved,
with an accuracy of 0.0065, sensitivity of 0.0108, and specificity of
0.006. In summary, we can conclude that the main improvement
in classification was due to the APCPMI.

TABLE 3 | Performance Comparison.

Author year Classifier Sensitivity Specificity Accuracy PK

Fergus et al. (2016) k-NN 0.88 0.88 0.93 Y

Nasehi and Pourghassem (2013) IPSONN 0.98 – – Y

Behnam and Pourghassem (2016) MLP, Bayesian 0.8653 0.9727 0.8656 Y

Orosco et al. (2016) LDA, NN 0.875 0.999 – Y

Our approach CLFCNN 0.9942 0.9676 0.9793 N

sensitivity and specificity describe the rates of correctly detecting seizure and non-seizures states, respectively. Accuracy denotes the accuracy of classification. PK (a priori knowledge)

indicates whether the corresponding approach depends on a priori knowledge. The bold values present the best performance index corresponding to the column.
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FIGURE 8 | Comparison of the classification performance of APCPMI and MI.

The Y-axis presents the accuracy (Equation 11). See text for details.

3.2.4. Future Work
It is believed that there exist global optimum reference degrees
in the AP algorithm for special partitions. A suitable way to find
the optimum reference degrees would be the deep reinforcement
learning technique, which is a tree search algorithm based
solely on reinforcement learning (Silver et al., 2017). This
could improve the strength of the tree search, resulting in
higher-quality performance in the next iteration, with potential
applications in the field of game theory. These aspects were
beyond the scope of the current study, but they could be further
investigated in the future.

Epilepsy prediction aims to forecast seizures by differentiating
between pre-seizure and post-seizure states in a dataset of
intracranial EEG recordings. Seizure prediction is one of themost
important areas of epilepsy research, and our work could be
further developed in this direction.

The use of a single dataset means that the results should not
be generalized to a wider population. In future work, multiple
datasets will be created and used for validation of the method.

4. CONCLUSIONS

A lightweight cross-layer fully connected network was designed
to adaptively describe the non-stationary synchronization
pattern of epileptic seizures and to classify them effectively.
In contrast to previous classifiers, we designed a merge layer

to accept outputs from all previous connected layers and
map them to the next layer one by one, so as to form
feed-forward full connection blocks. This design could reduce
gradient vanishing and enhance the transmission of cross-layer
parameters.

Experimental results using scalp EEG data from the public
dataset CHB-MIT showed that the proposed approach improved
classification performance and achieved superior accuracy,
specificity, sensitivity, Gmean, and FScore without losing
the generalization capability of the classifier. Furthermore,
the small standard deviations indicated the stability of the
classifier.

Unlike other methods, this approach does not require
any intentional preprocessing (removing noise, interference,
and artifacts) to obtain higher classification performance. In
addition, it only requires a hyper-parameter (time window),
thereby avoiding the potential errors of the existing methods
due to excessive parameter settings. In the case of a lack of
a priori knowledge, this study has the potential to classify
the complex synchronization patterns hidden in raw EEG
data.
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