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Ongoing, slowly fluctuating brain activity is organized in resting-state networks (RSNs)
of spatially coherent fluctuations. Beyond spatial coherence, RSN activity is governed
in a frequency-specific manner. The more detailed architecture of frequency spectra
across RSNs is, however, poorly understood. Here we propose a novel measure–
the Spectral Centroid (SC)–which represents the center of gravity of the full power
spectrum of RSN signal fluctuations. We examine whether spectral underpinnings of
network fluctuations are distinct across RSNs. We hypothesize that spectral content
differs across networks in a consistent way, thus, the aggregate representation–SC–
systematically differs across RSNs. We therefore test for a significant grading (i.e.,
ordering) of SC across RSNs in healthy subjects. Moreover, we hypothesize that such
grading is biologically significant by demonstrating its RSN-specific change through
brain disease, namely major depressive disorder. Our results yield a highly organized
grading of SC across RSNs in 820 healthy subjects. This ordering was largely replicated
in an independent dataset of 25 healthy subjects, pointing toward the validity and
consistency of found SC grading across RSNs. Furthermore, we demonstrated the
biological relevance of SC grading, as the SC of the salience network–a RSN well
known to be implicated in depression–was specifically increased in patients compared
to healthy controls. In summary, results provide evidence for a distinct grading of spectra
across RSNs, which is sensitive to major depression.

Keywords: resting-state, fMRI, resting-state networks, spectral centroid, frequency-based grading, major
depressive disorder, spectral analysis, resting-state functional connectivity

INTRODUCTION

The human brain is capable of complex functions which are supported by its distinct spatiotemporal
organization. Human cortical regions are arranged in a characteristic sensorimotor-to-transmodal
gradient, revealing gradual variation in structural features (Huntenburg et al., 2017), macroscopic
connectivity (Margulies et al., 2016) and functional specialization (Huth et al., 2016). This spatial
gradient is anchored in early sensory cortical areas such as the primary visual, somatomotor, and
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auditory cortices and evolves toward higher-order transmodal
areas in the parietal, temporal, and prefrontal cortex (for review
see Huntenburg et al., 2018).

The human brain also exhibits a hierarchy of timescales
of neural dynamics. Prior work revealed that during various
task demands information integration across spatially distinct
neural circuits evolves on different timescales (Hasson et al.,
2008, 2015; Lerner et al., 2011; Ding et al., 2016; Baldassano
et al., 2017). Primary sensory areas were found to encode
instantaneous, rapidly changing information whereas transmodal
association areas were shown to encode information accumulated
over a longer time. Such temporal hierarchy of information
integration during task relates to timescales of intrinsic (resting-
state) cortical dynamics (Honey et al., 2012; Stephens et al., 2013;
Murray et al., 2014). Correspondingly, early sensory areas that
accumulate information over shorter timescales were found to
exhibit faster resting-state fluctuations while transmodal areas
that accumulate information over longer timescales showed
slower resting-state fluctuations. Numerous other studies in
humans and primates further support the notion of a hierarchy of
resting-state timescales across individual cortical regions (Baria
et al., 2011; Chaudhuri et al., 2015; Cocchi et al., 2016).

Intrinsic, slowly fluctuating brain activity is organized in so
called resting-state networks (RSNs) of coherent activity (Biswal
et al., 1995; Greicius et al., 2003; Fox et al., 2005; Fox and Raichle,
2007). Analysis of RSN activity and their interactions–typically
by correlated resting-state fMRI signal fluctuations–constitute
a powerful tool to study large-scale functional integration of
the brain. Functional connectivity (FC) is a measure of signal
covariance and allows for the assessment of communication
between spatially distinct brain regions within (intra-FC) or
between (inter-FC) networks.

Consistently with the spatial organization of resting-state
dynamics of individual cortical regions, network activity at rest
is also largely shaped by the temporal domain. Both intra- and
inter-FC as well as the resulting network topologies–assessed
via fMRI blood oxygen level dependent (BOLD) signal–were
shown to be governed in a frequency specific manner (Salvador
et al., 2008; Wu et al., 2008; Zuo et al., 2010; Sasai et al.,
2014; Thompson and Fransson, 2015). More recently, Gollo
et al. (2017) suggested that a hierarchy of timescales organizes
activity between RSNs (with higher order networks showing a
slower regime of activity and sensory networks faster neural
dynamics) and within RSNs (with highly connected regions of
a network showing slower dynamics than less interconnected,
peripheral regions). Considering these findings, it is crucial
to investigate brain’s functional organization in a frequency-
resolved fashion.

Intact temporal organization of neural dynamics determine a
healthy regime of brain functioning. Deviations from this healthy
regime could be reflected in malfunctioning neural processes,
as is the case in several neurological disorders. Alterations
in power spectra of resting-state fluctuations in individual
brain regions or networks have been reported in schizophrenia
(Garrity et al., 2007; Calhoun et al., 2011), bipolar disorder
(Calhoun et al., 2011), and chronic pain (Malinen et al., 2010;
Baliki et al., 2011). Moreover, there are numerous reports of

altered FC in neurological disorders such as schizophrenia
(Garrity et al., 2007; Rotarska-Jagiela et al., 2010; Dong et al.,
2018), Alzheimer’s disease (Greicius et al., 2004; Sorg et al.,
2007; Wang et al., 2007; Sheline and Raichle, 2013; Badhwar
et al., 2017), obsessive-compulsive disorder (OCD) (Zhu et al.,
2016; Gürsel et al., 2018), and major depressive disorder (MDD)
(Greicius et al., 2007; Wang et al., 2012; Kaiser et al., 2015;
Zhong et al., 2016). Aberrant FC patterns could relate to
shifts in frequency distribution of regional and network BOLD
signal fluctuations. Nonetheless, spectral properties of BOLD
fluctuations in many of these disorders have not yet been
investigated or need to be investigated in more detail to better
understand the underlying causes of the breakdown in large-scale
brain communication.

As such, well-functioning interregional FC is viewed as
a prerequisite of large-scale communication of neuronal
assemblies, where the ongoing oscillatory processes of individual
brain areas as well as of widespread networks constitute
the groundwork of FC formation and should be investigated
in more detail. Contrary to the initial view on fluctuating
properties of RSNs–which narrows the investigatory interest to
peak frequencies below 0.1 Hz (Cordes et al., 2001; Fox and
Raichle, 2007)–it has been shown that the frequency spectrum
of intrinsic fluctuations is broad and includes frequencies up
to 0.25 Hz or even 0.75 Hz (Niazy et al., 2011; Boubela et al.,
2013; Gohel and Biswal, 2015). Thus, RSNs represent complex
processes that evolve through coherence on various temporal
scales within the broad term of low-frequency fluctuations.
Investigation of broadband processes is needed to preserve the
richness of RSNs’ operating regime, i.e., information content
across the broad frequency spectrum. The more detailed
architecture of frequency spectra across networks is, however,
poorly understood.

Identifying key features of broadband spectra of BOLD
network fluctuations–which might be also sensitive to
pathological change–however, bears a challenge, given the
relatively wide frequency span of meaningful resting-state BOLD
fluctuations (0.01–0.75 Hz) and the need for frequency-resolved
analysis (for example dividing the full frequency band into
3–10 sub-bands). Moreover, the vast amount of literature on
aberrant resting-state BOLD activity in various diseases–often
involving divergent results–points toward a vast number of
regions or networks that are implicated in specific diseases.
Thus, investigating group differences in spectral properties
of regions/networks-of-interest within several frequency sub-
bands would involve many statistical tests, possibly inflating
false-positive results; and if strictly corrected for multiple
comparisons–reduce the statistical power of the analysis. To
circumvent this problem, complex measures can be summarized
into meaningful aggregate measures, which may improve
detection of systematic patterns and emphasize major disease-
related alterations. These subsequently can be followed up
by post hoc tests and targeted investigations yielding detailed
information on the underlying changes in power spectra.

To validate the usefulness of the proposed approach, we
investigate activity fluctuations within RSNs with special focus
on the broad range of dominant frequencies involved in their
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time courses–assessed via an aggregate measure of BOLD spectral
properties within a network. To carry out such analysis, we
propose a novel measure for RSN activity analysis–the Spectral
Centroid (SC). The SC of BOLD network fluctuations represents
the “center of gravity” of the full power spectrum. Pictorially,
it can be understood as a midpoint within the spectral density
function at which the distribution is divided into two equal parts
so that, figuratively speaking, if put on the tip of a pin at this
midpoint–the spectral distribution would be perfectly balanced.
In mathematical terms it represents a weighted mean, as explicitly
given in the methods section below. In practice, the SC is a
compact measure for statistical analysis. The SC has been applied
in a recent study–paralelly to our investigations–to examine the
slowing of neural dynamics during graded sedation with propofol
(Huang et al., 2018; in this study, the SC is referred to as the
“mean frequency”).

We hypothesize that each RSN exhibits a distinct SC value,
therefore, each RSN takes a distinct position in an ordering
of all SC values–which is referred to as grading of SC across
RSNs. We also aim to explore whether the grading of SCs
across networks fits the prior observations of sensorimotor-
to-transmodal gradient of neural timescales. Furthermore, we
hypothesize that a given brain disease would alter specifically
such graded organization across networks. To test our hypothesis
of distinct SC value in healthy subjects, we calculate the SC
using high-quality and large sample size (N = 820) rs-fMRI
data of the Human Connectome Project (HCP1) (Smith et al.,
2013; Van Essen et al., 2013). To validate the reliability and
replicability of results on SC obtained from the HCP dataset–
along with general concerns about replicability in neuroimaging
studies (Poldrack et al., 2017)–we further examine the SC based
on an independent dataset of 25 healthy subjects, acquired at our
research facility. Furthermore, to examine the potential biological
relevance of SC we investigate the SC grading in a major brain
disease, namely MDD, in which impairments in communication
(expressed through FC) between and within networks have been
widely reported (for review see Kaiser et al., 2015); in particular,
the major body of evidence shows abnormalities for MDD in
the salience network (SN) (Seeley et al., 2007; Menon and
Uddin, 2010), default mode network (DMN) (Raichle et al., 2001;
Buckner et al., 2008) and central executive network (CEN) (Seeley
et al., 2007; Vincent et al., 2008). Since the frequency content
of a network’s signal is crucial to the formation of FC with
other networks, we hypothesize that aberrant FC in depression
relates to possible shifts in spectral power of infra-slow BOLD
fluctuations of these RSNs.

MATERIALS AND METHODS

Two separate datasets were used for this work: Dataset 1
comprises rs-fMRI images from 820 healthy subjects of the HCP,
Dataset 2 comprises structural MRI and rs-fMRI data of 25
healthy controls (HCs) and 25 MDD patients–acquired at our
research facility.

1https://www.humanconnectome.org

Dataset 1: Human Connectome Project
Data Specification
We calculated the SC on a large sample size dataset of HCP
from the 900 Subjects Release (S900) to present the applicability
and meaningfulness of the SC as an aggregate measure of
underlying oscillatory features of a network. Among other
imaging modalities (task-based MEG and fMRI, structural scans),
the S900 release contains rs-fMRI scans of healthy subjects, with
four rs-fMRI runs collected per subject. Out of 900 subjects, the
full acquisition of all four runs with 100% of collected timepoints
was completed only in 820 subjects. Our analysis is based on the
rs-fMRI data of those 820 subjects. Specifically, we analyze the
SC on network time courses of independent components (ICs),
which are freely provided for download.

Detailed information about the HCP acquisition protocols
are described elsewhere (Smith et al., 2013; Uğurbil et al., 2013;
Van Essen et al., 20132). In summary, participants’ functional
images in Dataset 1 were acquired in four runs of approximately
15 min each. Two runs were acquired in one session and two in
another session. Participants were asked to keep their eyes open
with relaxed fixation on a projected bright cross-hair on a dark
background, presented in a dimmed room. Within each session,
oblique axial acquisition alternated between phase encoding in
right-to-left (RL) direction in one run and phase encoding in a
left-to-right (LR) direction in the other run. Resting-state images
were collected with the following parameters: gradient-echo EPI
sequence, TR = 720 ms, TE = 33.1 ms, flip angle = 52◦, field of
view = 208 × 180 (RO × PE), matrix 104 × 90 (RO × PE),
slice thickness = 2 mm, 72 slices, 2.0 mm isotropic voxels,
multiband factor = 8, echo spacing 0.58 ms, and bandwitdth
= 2290 Hz/Px.

Within the HCP framework, fMRI data were preprocessed
using the minimal preprocessing pipeline (MPP) (Glasser et al.,
2013). Afterward, rs-fMRI data were denoised using FMRIB’s
ICA-based Xnoiseifier (FIX) (Griffanti et al., 2014; Salimi-
Khorshidi et al., 2014). FIX is used to auto-classify ICA
components into “good” vs. “bad” ICs, and bad components are
subsequently removed from the fMRI data.

Next, ICA on preprocessed and denoised (MPP + FIX) data
was performed by HCP using FSL MELODIC software3. Different
ICA parcellation scenarios were used with varying number of
ICs (15, 25, 50, 100, and 300). For each scenario, averaged time
courses per IC and subjects are publicly available for download4.

Data Analysis
We based our analysis on the 50 ICs scenario. From the 50 ICs, we
identified 24 RSNs in an automated way using fslcc–a FSL based
function–by calculating cross-correlations (threshold r > 0.2)
between 50 ICs from Dataset 1 and the established RSN templates
from Allen et al. (2011) (freely available for download5).

2https://www.humanconnectome.org/study/hcp-young-adult/document/900-
subjects-data-release
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
4https://db.humanconnectome.org
5http://mialab.mrn.org/data/hcp/RSN_HC_unthresholded_tmaps.nii
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Spectral centroid
Power spectra of BOLD network fluctuations were estimated
using Welch’s averaged periodogram method. Welch-
periodograms were calculated on time courses of each RSN
per participant and run–using the built-in Matlab function
pwelch, with a Hamming window of 50% overlap of successive
windows–to obtain power estimates for each spectral bin. With
a TR of 720 ms the full spectrum of accessible frequencies
spans up to 0.69 Hz (Nyquist frequency). Results of Welch’s
method were restricted to the frequency range of 0.01–0.69 Hz,
omitting the very low frequencies (<0.01 Hz) as these are largely
affected by slow drifts due to scanner hardware and cannot
fully be separated from neuronal drifts. Spectral properties of
the infra-slow BOLD network fluctuations were examined at
the individual level by means of the SC. The SC is an integral
measure obtained by evaluating the “center of gravity” of the
spectrum based on frequency and magnitude information from
the Welch-periodogram. The SC is calculated as the weighted
mean of the frequencies present in the signal with their power as
the weight, see formula below:

SC =
∑N/2+1

i=1 i × f × P (i)∑N/2+1
i=1 P (i)

(1)

where f is the width of each spectral bin in Hz, P(i) is the power
at the ith spectral bin given in Hz, and N is the number of points
in the network’s BOLD time series. In Dataset 1 the respective
parameters are: f = 0.0012 Hz, and N = 1200.

We calculated the SC of the power spectrum of BOLD network
fluctuations–within the frequency range of 0.01–0.69 Hz–for each
of the 24 RSNs per participant and run. Thus, we obtain four SC
values per subject and per RSN. For each RSN and subject, the
mean SC of all four runs was calculated and is later referred to as
the SC. In the end, we obtain one mean SC value per subject and
per RSN.

In Matlab, Lilliefors tests were carried out on the set of SC
values for each RSN to determine whether they follow a normal
distribution (p < 0.05, Bonferroni-corrected for 24 RSNs). SC
values in some of the RSNs were found to deviate from normal
distribution, thus, further analysis was performed applying
non-parametric tests. The Friedman’s test–a non-parametric
alternative to repeated measures ANOVA–was performed on the
SC values with RSN as main factor. Post hoc tests were performed
as Wilcoxon signed rank test for investigating significant pairwise
differences in SCs between RSNs in Dataset 1 (p < 0.05,
Bonferroni-corrected for 24 RSNs).

Assessment of SC dependence on RSN size
Additionally, we investigated the relation between RSN size and
its corresponding SC value. This was motivated by the possibility
that, despite the high quality of provided data and careful artifact
removal, spatially smaller RSNs could be differentially affected
by local high-frequency motion artifacts compared to more
distributed networks. The size of a given RSN was computed
from group-averaged IC spatial maps provided by HCP. These
spatial maps were first binarized (at a threshold of z > 10, which
corresponds to p < 0.001 with FWE correction), next non-zero

voxels were counted, and the sum of these voxels indicated the
size of a network. Pearson’s correlation was computed between
RSN size and SC value. The results and interpretation of this
analysis are presented in Supplementary Material.

Dataset 2: Healthy Controls and MDD
Patients
Subjects
This dataset comprised anatomical and functional MRI
images from 25 healthy individuals and 25 patients who
suffered from recurrent MDD (see Table 1 for detailed
information on demographical and clinical characteristics).
Participants’ data have also been used in previous studies
(Manoliu et al., 2013; Meng et al., 2014). Patients with
MDD were recruited from the Department of Psychiatry
of the Klinikum rechts der Isar, Technische Universität
München by psychiatrists. HC individuals were recruited via
advertising. All participants provided informed consent in
accordance with the Human Research Committee guidelines
of the Klinikum rechts der Isar, Technische Universität
München. All participants were examined for their medical
history, underwent psychiatric interviews and psychometric
assessments. Psychiatric diagnoses were based on Diagnostic
and Statistical Manual of Mental Disorder–IV (DSM–IV)
(American Psychiatric Association, 2000). The Structured
Clinical Interview (SCID) for DSM–IV was used to assess
the presence of psychiatric diagnoses (First et al., 1996). The
severity of depression symptoms was measured with the
Hamilton Rating Scale for Depression (HAM-D) (Hamilton,
1960), as well as the Beck Depression Inventory (BDI) (Beck
et al., 1961). The global level of social, occupational, and
psychological functioning was measured with the Global
Assessment of Functioning Scale (GAF) (Spitzer et al., 1992).
The clinical-psychometric assessment was performed by
psychiatrists who have been professionally trained for SCID
interviews with inter-rater reliability for diagnoses and scores
of >95%. Recurrent MDD was the primary diagnosis for
all patients. More detailed patient description including
disease history, co-morbidity, and current medication may be
found in Meng et al. (2014) as well as in the Supplementary
Material.

Data Acquisition and Preprocessing
10 min of resting-state functional MRI was acquired from all
participants who were instructed to keep their eyes closed, not
to think of anything particular, and not to fall asleep. We
obtained subjective verification that participants stayed in a
state of alertness during the rs-fMRI scan by interrogating them
via intercom immediately afterward. The scanning session was
successfully completed in all subjects, and all subjects reportedly
stayed awake during the scan.

Data acquisition
MRI data were collected on a 3-Tesla Philips Achieva scanner
with an 8-channel phased-array head coil. T1-weighted structural
images were acquired with a MPRAGE sequence (echo
time = 4 ms, repetition time = 9 ms, inversion time = 100 ms, flip
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TABLE 1 | Demographic and clinical characteristics.

Measure MDD (n = 25) HC (n = 25) MDD vs. HCa,b

Mean (SD) Mean (SD) p-value

Age [years] 48.76 (14.38) 44.08 (14.78) >0.05a

Gender (m/f) 12/13 11/14 >0.05b

Duration of MDD [years] 16.72 (10.20) NA

Number of episodes 5.56 (2.47) NA

Duration of current episode [weeks] 16.56 (6.62) NA

GAF 49.80 (10.53) 99.50 (1.10) <0.001a∗

HAM-D 22.12 (7.06) 0 <0.001a∗

BDI 24.08 (6.31) 0 <0.001a∗

aTwo-sample t-test. bχ2-test. ∗p < 0.05, Bonferroni-corrected for multiple comparisons. MDD, major depressive disorder; HC, healthy controls; SD, standard deviation;
GAF, Global Assessment of Functioning Scale; HAM-D, Hamilton Depression Rating Scale; BDI, Beck Depression Inventory.

angle = 5◦, field of view = 240 × 240 mm, matrix = 240 × 240,
170 slices, slice thickness = 1 mm, and 0 mm interslice gap,
voxel size = 1mm × 1mm × 1 mm). Functional MRI data
were obtained by using a gradient echo EPI sequence (echo
time = 35 ms, repetition time = 2000 ms, flip angle = 82◦,
field of view = 220mm × 220 mm, matrix = 80 × 80, 32
slices, slice thickness = 4 mm, and 0 mm interslice gap, voxel
size = 2.75 mm× 2.75 mm× 4 mm; 300 volumes).

Preprocessing
The first three volumes of rs-fMRI data were discarded due to
magnetization effects. The remaining data were preprocessed
with statistical parametric mapping software SPM126, including
head motion correction, spatial normalization into the Montreal
Neurological Institute (MNI) standard space, and spatial
smoothing with a 6-mm full width at half maximum (FWHM)
Gaussian filter. No slice-timing correction was performed as prior
studies have shown minimal effects of slice-timing correction
on fMRI data acquired at a TR of 2s (Wu et al., 2011).
Several parameters relating to head motion were investigated and
compared between patients and healthy individuals to control
for potential differences in motion between groups and potential
bias on the results. This included the estimation of temporal
signal-to-noise ratio and point-to-point head motion for each
subject (Murphy et al., 2007; Van Dijk et al., 2012). Excessive head
motion (cumulative motion translation or rotation>3 mm or 3◦
and mean point-to-point translation or rotation >0.15 mm or
0.1◦) was applied as an exclusion criterion. Point-to-point motion
was defined as the absolute displacement of each brain volume
compared with its previous volume. None of the participants
had to be excluded. Moreover, two-sample t-tests showed no
significant differences between groups regarding mean point-to-
point translation or rotation of any direction (p > 0.1), as well as
temporal signal-to-noise ratio (p> 0.5).

Nuisance covariates regression
When investigating between-group differences in SC of network
BOLD fluctuations, we control for the overall percent signal
change (PSC), which provides information complementary to
that of SC and may help to elucidate observed differences in SC.

6http://www.fil.ion.ucl.ac.uk/spm/

PSC has been shown to differ between different RSNs (van den
Heuvel et al., 2016) and might be impacted by disease (Sanacora
et al., 2002; Brambilla et al., 2003; Tunnicliff and Malatynska,
2003).

Thus, throughout the analysis, we operate on two branched
datasets: (1) ICA-derived time courses of RSNs–used in the
examination of networks’ spectral properties; (2) preprocessed
whole-brain fMRI time courses–used for calculation of PSC. On
that account, it is important to maintain the signal properties
as consistent across the two datasets as possible. The data
obtained through ICA is largely cleaned from non-neuronal
variance sources, including respiratory and cardiac signals, head-
movement distortions, as well as signals from white matter
(WM) and cerebrospinal fluid (CSF). During ICA procedure,
fluctuations of such origin are captured as ICs and are, to a great
extent, separated from the remaining components characterized
as RSNs.

The pre-processed whole-brain fMRI data is corrected for
head movement, yet its variance may still be influenced by other
sources of artifacts. To reduce the impact of these sources on
the BOLD signal, regression of nuisance covariates including
WM and CSF was performed. For the calculation of PSC of
BOLD network fluctuations, it is highly important to exclude the
variance resulting from non-neuronal factors.

Nuisance regression was performed as follows: for each
participant, binarized region of interest (ROI) masks of the WM
and CSF were created from T1 segmentation compartments
(binarized at a threshold of 0.9). Averaged CSF and WM signals
were extracted separately from individual participant data and
served as covariable signals. Nuisance covariates regression was
performed on the previously realigned and normalized, but not
smoothed data using REST toolbox v1.87. Subsequently, data was
spatially smoothed in SPM12 using a 6-mm FWHM Gaussian
kernel.

Estimation of cardiac and respiratory rates
Physiologic Estimation by Temporal ICA (PESTICA8) (Beall and
Lowe, 2007) was applied on raw fMRI data to detect the pulse
and breathing cycles in individual subjects. In Matlab, fast Fourier

7http://restfmri.net/forum/REST
8https://www.nitrc.org/projects/pestica/
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transform (FFT) was used to calculate peak frequencies of cardiac
and respiratory rate time courses obtained from PESTICA (with
a temporal resolution of TR/slice number = 2s/32). Concretely, a
Gaussian fit in a search window was applied which corresponded
to expectation values for the physiological rhythms (cardiac 55–
70 bpm, beats per minute; respiratory 10–24 bpm). Visual check
of fit quality was performed. Group differences in cardiac and
respiratory rates were tested with two-sample t-tests. The tests
yielded no significant difference between the groups regarding
the cardiac rate (p > 0.5), as well as the respiratory rate
(p> 0.5).

Data Analysis
Determination of resting-state networks
Pursuing the established approach from Allen et al. (2011),
preprocessed whole-brain fMRI data were decomposed into 75
spatial ICs within a group-ICA framework (Calhoun et al., 2001)
based on the infomax-algorithm and implemented in the GIFT
software9. Data were concatenated and reduced by two-step
principal component analysis (PCA). Next, 75 ICs were estimated
by use of the Infomax algorithm, which was repeated 20 times
using ICASSO10 to reach an estimate of component reliability.
The resulting set of average group ICs was then back projected
into single subject space via GICA. Each back-reconstructed
component is described by a spatial map of z-scores reflecting
the FC pattern of the component across space, and an associated
time course reflecting the component’s BOLD activity across
time. Voxels exhibiting high FC within the component have high
z-scores and voxels that fall outside of the networks FC pattern
have z-scores of approximately 0. A threshold of 1 was set on
the z-values to omit negative FC patterns within a network.
The variance of component’s time course after back projection
is by default normalized to 1. For an automated identification
of networks-of-interest, multiple spatial regression analyses on
the 75 ICs were applied using established and online available
templates from Allen et al. (2011) reflecting canonical RSNs.
Components of highest correlation coefficient with the templates
(threshold r > 0.2) were selected for further analysis, resulting in
24 RSNs of interest.

Percent signal change
The spectral properties of fMRI time series would be impacted
by the relative balance of signal (BOLD contrast) and
noise present in the time series. The spectrum of BOLD
fluctuations at rest has an approximately 1/f β distribution with
frequency f and power-law exponent β (He, 2011), due in
part to the low-pass character of the hemodynamic response.
Therefore, assuming that low-frequency noise sources (e.g.,
aliased physiological noise, slow head motion, and instrumental
drifts) are adequately removed, areas with smaller BOLD signal
fluctuations may exhibit a distribution skewed toward higher
frequencies (i.e., a shallower 1/f slope) and reduced overall
variance. When examining between-group differences in SC,
it is important to control for the influence of PSC on the
SC, as there might be systematic differences in PSC related

9http://icatb.sourceforge.net
10http://research.ics.aalto.fi/ica/icasso

to pathology. Therefore, we also examined the impact of
controlling for fMRI signal variance (i.e., PSC) in the analysis of
SC.

To calculate the PSC, we first extracted the averaged time
course corresponding to a given RSN in each subject from
the preprocessed whole-brain fMRI data with and without
nuisance regression. For that, binary masks for each RSN and
each participant were created individually with a threshold
of z > 2.32, which corresponds to a p-value of 0.01. We
obtained two time courses for each network and participant (here
called network_EPI_nuisance and network_EPI, respectively, for
preprocessed fMRI time courses with and without nuisance
regression), the PSC was calculated using the standard deviation
(SD) of gray matter based signal (network_EPI_nuisance) and
the mean of network_EPI signal, adhering to the established
standard procedures for task-based fMRI (see e.g., Gläscher,
2009):

PSC =
SD

(
network_EPI_nuisance

)
mean

(
network_EPI

) × 100 (2)

In Matlab, Lilliefors tests were carried out on the set of PSC
values for each RSN in each group to determine whether they
follow a normal distribution (p < 0.05, Bonferroni-corrected for
24 RSNs). No significant deviations from normal distribution
were found. Differences in PSC between individual networks and
between groups were examined via a repeated-measures ANOVA
with main factors RSN and group. Post hoc tests were performed
as Wilcoxon ranksum test (p< 0.05).

Spectral density
Power spectra of the BOLD time series from each RSN and each
participant were computed in Matlab using Welch’s averaged
periodogram method (analogous to the procedure in Dataset 1).
These spectra were subsequently used for the calculation of the
SCs.

For direct comparisons of spectral power between groups,
the full power spectra were then split into 10 frequency
bands (freq1: 0.01–0.025; freq2: 0.025–0.05; freq3: 0.05–0.075;
freq4: 0.075–0.1; freq5: 0.1–0.125; freq6: 0.125–0.15; freq7: 0.15–
0.175; freq8: 0.175–0.2; freq9: 0.2–0.225; and freq10: 0.225–
0.25 Hz). The choice of frequency bands was exploratory;
it constitutes a compromise between averaging for better
power and sufficient spectral resolution. Mean power at each
frequency band was computed and rescaled by multiplication
with the corresponding PSC value. Wilcoxon ranksum tests
were performed on the power values at each frequency band
to test for differences between MDD and HC groups within
the original as well as the rescaled power spectrum of a given
network.

Spectral centroid
Spectral properties of the infra-slow BOLD network fluctuations
were examined at the individual level by means of the SC (as
described in eq. 1, with the following parameters: width of each
spectral bin f = 0.0017 Hz; number of points in the network’s
BOLD time series N = 300). Next, results of Welch-periodograms
were restricted to a frequency range of 0.01–0.25 Hz, omitting the
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very low frequencies <0.01 Hz. From these results, we calculated
the SC of the power spectrum of BOLD network fluctuations for
each participant and each of the 24 RSNs. Thus, we obtain one SC
value per subject and per RSN.

In Matlab, Lilliefors tests were carried out on the set of SC
values for each RSN in each group to determine whether they
follow a normal distribution (p < 0.05, Bonferroni-corrected for
24 RSNs). No significant deviations from normal distribution
were found. Repeated-measures ANOVA with main factors RSN
and group was performed on SC values. Post hoc tests were
performed as Wilcoxon ranksum tests (p< 0.05).

Correction of spectral centroids with PSC (SCcorr)
To rule out any differences in spectral properties related to
the absolute PSC, we performed a regression analysis on the
SC values and the PSC values. Separately in each group, a
global regression was performed, i.e., the SC values of all RSNs
in all participants within the group were pooled together and
regressed against the corresponding PSC values. Regression
residuals represented the “new” SC value corrected for PSC (later
referred to as corrected SC; SCcorr). Repeated-measures ANOVA
with RSN and group as main factors was performed on the SCcorr
values.

Post hoc tests were performed as Wilcoxon ranksum tests
(p< 0.05) to test for group differences in SCcorr of specific RSNs,
and as Wilcoxon signed rank tests for investigating significant
pairwise differences in SCcorr between RSNs in the control group
(p< 0.05, Bonferroni-corrected for 24 RSNs).

Assessment of SC dependence on RSN size
As in Dataset 1, we investigated the relation between RSN size and
its corresponding SC as well as SCcorr value. The size of a given
RSN was computed from group-averaged binarized RSN spatial
maps of HCs (obtained in an earlier step for PSC calculation).
Non-zero voxels within each RSN spatial map were counted and
indicated the network’s size. No significant correlation between
RSN size and SC or SCcorr was found (Pearson’s correlation SC:
r =−0.119, p = 0.58; SCcorr: r =−0.197, and p = 0.36).

Assesment of SC dependence on clinical scores
Pearson’s correlation was calculated between SCcorr values
of each RSN and measures of symptom severity (p < 0.05,
Bonferroni-corrected for 24 multiple comparisons as 24 RSNs
were investigated).

Network SC Correspondence Across
Datasets
Correlation analysis was run between SC values of corresponding
networks obtained from Dataset 1 and networks from HCs in
Dataset 2 [for a clear overview of network correspondence across
study sites, i.e., Allen et al. (2011), our study, and the HCP,
we refer to Supplementary Table 1]. 22 RSNs from Dataset
1 and Dataset 2 could be matched as representing the same
network from Allen et al. (2011) templates. SC depends on
the overall measurement length as well as on the sampling
frequency, as these two parameters determine which part of
the signal spectrum is accessible to analysis. E.g., with a higher
sampling rate, higher frequencies can be measured which shifts

SC to slightly higher values depending on the power within
these additional frequencies. Hence, SC may vary between
data acquired at different facilities with different acquisition
parameters. To enable the comparison of network SC values
between the two datasets, results of the Welch-periodograms
in Dataset 1 were restricted to the frequency range of 0.01–
0.25 Hz (as this is the frequency range accessible from Dataset
2) and–solely for comparison purposes–new SC per network was
calculated on this range, so that it corresponds to the frequency
range from Dataset 2. The Basal Ganglia network was excluded
from the correlation analysis, as in Dataset 1 its SC exceeded two
SDs. This resulted in a correlation analysis between SC values of
21 RSNs from Dataset 1 and 21 RSNs from Dataset 2.

RESULTS

Dataset 1: Human Connectome Project
The SC represents the center of gravity of the broad power
spectrum of BOLD network fluctuations. We calculated the
SC of 24 RSNs that corresponded to networks previously
reported by Allen et al. (2011). The selected components from
Dataset 1 were classified into the basal ganglia (BG; n = 1),
auditory (AUD; n = 1), sensorimotor (SM; n = 5), visual (VIS;
n = 5), default-mode (DMN; n = 4), attentional (ATT; n = 5),
and frontal (FRONT; n = 3) systems. Within the attentional
systems, the SN and the CEN were identified. Within the
DMN, four subsystems were categorized: the anterior DMN
(DMN_ant), anterior-medial DMN (DMN_antmed), posterior
DMN (DMN_post) and posterior-lateral DMN (DMN_postlat).
The correspondence between canonical RSN templates from
Allen et al. (2011) and networks identified from Dataset 1 is
described in Supplementary Table 1. Spatial maps of the 24 RSNs
from Dataset 1 are shown in Figure 1. Peak activations of RSNs
from Dataset 1 are summarized in Supplementary Table 2.

We assessed the SC values from ICA-derived time courses
(with a spectral range of 0.01–0.69 Hz) of each RSN and each
participant from the HCP data. Mean SC values for each RSN
are depicted in Figure 2A and summarized in Supplementary
Table 2. The Friedman’s test on SC values yielded a significant
effect of factor RSN (χ2(23) = 33554.1, p < 0.001). Figure 2B
displays a matrix of significant pairwise differences in SC between
RSNs. Columns and rows, respectively, are ordered according to
SC value.

Significant grading of SC values across RSNs is observed in
HCP data, implicating that SC values are characteristic for given
networks, and most of the networks can be distinguished based
on their SC.

Dataset 2: Healthy Controls and MDD
Patients
Resting-State Networks
Via ICA, we identified 24 RSNs that corresponded to networks
previously reported by Allen et al. (2011). The selected
components were classified into the basal ganglia (BG; n = 1),
auditory (AUD; n = 1), sensorimotor (SM; n = 6), visual (VIS;
n = 5), default-mode (DMN; n = 4), attentional (ATT; n = 5), and
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FIGURE 1 | Dataset 1: Spatial maps (SMs) of the 24 independent components (ICs) identified as RSNs, obtained from spatial group-ICA performed by Human
Connectome Project. SMs are plotted as z-scores and displayed at the three most informative slices (MNI-space). RSNs are categorized into groups according to
their anatomical and functional properties. Spatial maps of RSNs were visualized with the mricrogl software (https://www.nitrc.org/projects/mricrogl).

frontal (FRONT; n = 2) systems. Within the attentional systems,
the SN and the CEN were identified. Spatial maps of the 24 RSNs
of Dataset 2 are shown in Supplementary Figure 1 and their
peak activation sites are summarized in Supplementary Table 3.
Correspondence between network templates from Allen et al.
(2011) and names of RSNs identified from our data, as well as
from HCP data is shown in Supplementary Table 1.

Spectral Centroid
We calculated the SC value for each of the 24 RSNs in HC and
MDD patients (Dataset 2). The SC values of RSNs from healthy

individuals in Dataset 2 and the corresponding SC values of RSNs
in Dataset 1 (HCP data; obtained from power spectra restricted
to 0.01–0.25 Hz for comparison purposes) showed a significant
positive correlation (r = 0.59, p = 0.004; see Figure 3). From
Figure 3 it is also clearly visible that networks of Dataset 1 exhibit
smaller within-network variability in SC values (as measured with
the standard error of the mean) than networks of HCs from
Dataset 2.

Repeated-measures ANOVA on the SC values of Dataset 2,
assessed from the spectral range of 0.01–0.25 Hz, yielded a
significant main effect of factor RSN (F(1,23) = 20.64, p< 0.001),
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FIGURE 2 | Dataset 1: (A) Mean ± SEM spectral centroid (SC) values of each RSN from Human Connectome Project (HCP) data of 820 healthy subjects. RSNs are
ordered according to increasing SC magnitude. SCs were calculated based on power spectra of BOLD network fluctuations within the frequency range of
0.01–0.69 Hz. (B) Matrix representing p-values of pairwise differences in the SC between individual RSNs. The colors indicate the significance, where red stands for
lower p-value and higher significance, and blue for higher p-value thus lower significance. P-values were scaled with a –log10(p) transform, the colorbar value of 1.3
corresponds to p = 0.05 (as indicated by a vertical line across the colorbar and an asterisk which represent significance threshold).

and a significant interaction between factors RSN and group
(F(1,23) = 1.58, p < 0.05). What drives the interaction can be
deduced from Figure 4A, i.e., the bars representing SC values in
separate groups are apart for SN and VIS_2. A post hoc Wilcoxon
ranksum test yielded significant group differences in the SC of
the SN (p < 0.05; HC mean ± std: 0.079 ± 0.031 Hz, MDD
mean ± std: 0.095 ± 0.024 Hz), and a trend toward significance
in one of the visual networks (VIS_2; p = 0.06; HC mean ± std:
0.075 ± 0.028 Hz, MDD mean ± std: 0.061 ± 0.027 Hz).
Mean SC values for each RSN in both groups are depicted
in Figure 4A and summarized in Supplementary Table 4. To
control for a potential interaction between power spectra and
total power, PSC was calculated and regressed out from the SC
values.

Percent Signal Change
On PSC values, repeated-measures ANOVA yielded a significant
main effect of factor RSN (F(1,23) = 11.5, p < 0.001) as well
as a significant interaction between factors RSN and group
(F(1,23) = 2.74, p < 0.001). Wilcoxon ranksum test was
performed as part of post hoc analysis to define which RSNs show
significant alterations in PSC between the groups. This analysis
yielded a significant group difference in PSC in one of the visual
networks (VIS_2; p < 0.05). Within this network, increased PSC
was observed in MDD patients (mean ± std: 0.471 ± 0.162%)
compared to controls (mean ± std: 0.374 ± 0.119%). The
PSC in another visual network (VIS_4) showed a trend toward
significance (p = 0.065), with higher values in MDD patients
(mean ± std: 0.447 ± 0.198%) than in controls (mean ± std:
0,327 ± 0.078%). Mean PSC values for each RSN in both groups
are depicted in Figure 4C and summarized in Supplementary
Table 4.

Corrected Spectral Centroid
The original SC values were corrected for differences in PSC
at the level of each RSN and participant. A repeated-measures
ANOVA was performed on the corrected SC (SCcorr) values
with RSN and group as main factor. This analysis yielded a
significant main effect of factor RSN (F(1,23) = 17.84, p< 0.001).
No significant interaction between factors RSN and group was
observed (F(1,23) = 1.14, p > 0.05). The averaged SCcorr values
for each RSN, separately for controls and MDD patients, are
displayed in Figure 4B and summarized in Supplementary
Table 4.

Figure 4D displays a matrix of significant pairwise differences
in SCcorr between RSNs in HCs. Columns and rows, respectively,
are ordered according to SCcorr magnitude. The results of
Wilcoxon signed rank tests on the SCcorr values between each
pair of RSNs in HCs showed significant pairwise differences in all
networks with a minimum difference in SCcorr of 0.0001. At the
given statistical power, only differences between networks from
both ends of the SCcorr scale become statistically significant.

Since the analysis of SC before the correction for PSC showed
significant differences in the SC of the SN, and because we
hypothesized a disturbance in the oscillatory pattern of the SN
specifically–as it is widely implicated in depression–a post hoc
analysis was performed to investigate group differences in SCcorr
values of the SN. Moreover, since we observed a trend toward
significance in the SC of visual network VIS_2, in the post hoc
analysis we also investigated whether the SCcorr of this network
significantly differs between groups.

The Wilcoxon rank-sum test revealed a significant difference
in the SCcorr of the SN between groups (p < 0.05), where MDD
patients showed higher SCcorr value (mean± std: 0.023± 0.025)
than controls (mean ± std: 0.009 ± 0.03). After correction for
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FIGURE 3 | Correlation between SC values of 21 networks obtained from Dataset 1 from signal in frequency range of 0.01–0.25 Hz (x-axis) and the corresponding
networks obtained from healthy controls in Dataset 2 (y-axis). For each network, the horizontal line represents the SEM in Dataset 1, and the vertical line represents
the SEM in Dataset 2. A least-squares fit line was added to scatter plot. In the lower right box, correlation coefficient r and p-value are presented.

PSC, there was no more significant group difference in the SCcorr
of the visual network VIS_2 (p > 0.05). As such, the previously
observed shift in SC of visual network VIS_2 could be fully
attributed to differences in PSC of this network.

Salience Network: Spectral Differences Between
Groups
The SC serves as an aggregate measure which is highly
sensitive in detecting key changes in spectral properties of
BOLD network fluctuations, assessed uniformly from the
broad range of accessible frequencies–i.e., without division
into frequency sub-bands. As such, the SC initially indicates
network-specific spectral alterations, whereafter targeted post hoc
tests examining power changes at specific frequency sub-
bands can be performed. In that way, the drawback of
multiple comparisons can be circumvented–as further detailed
investigations of power changes at multiple sub-bands are
restricted to networks with significantly changed SC. Thus, the
SC measure is highly relevant for identifying key changes in

broadband BOLD network fluctuations and for driving targeted
post hoc analyses.

In Dataset 2, a significant change in SCcorr of the SN
was observed in MDD patients, compared to HCs. To further
investigate the causes of the shift in SCcorr value within the
SN, we examined the spectral power of SN fluctuations at each
of the 10 frequency bands in both groups. The original power
spectrum of the SN, as well as the power spectrum rescaled by
multiplication with PSC are shown in Figure 4E. Analysis of the
original power spectrum of the SN yielded a significant increase
in power in higher frequency bands (freq7 0.15–0.175 Hz; freq8
0.175–0.2 Hz; and freq10 0.225–0.25 Hz) in MDD patients
compared to HCs (p < 0.05). There was also a tendency of
decreased power in the lowest frequency band (freq1 0.01–
0.025 Hz) in MDD patients compared to HCs (p = 0.07). Within
the rescaled power spectrum of SN, we observed a significant
decrease in power of the lowest frequency band (freq1) in MDD
patients (p< 0.05), and a significant increase in frequency band 7
in MDD patients (p< 0.05). Additionally, a tendency of increased
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FIGURE 4 | Dataset 2: (A) Mean ± SEM SC values of each RSN in HCs and MDD patients. RSNs are ordered according to increasing SC magnitude in HC. SCs
were calculated based on the power spectra of BOLD network fluctuations within the frequency range of 0.01–0.25 Hz. (B) Mean ± SEM SC values corrected for
percent signal change (PSC) in HC and MDD, ordered according to increasing corrected SC magnitude in HC. (C) Mean ± SEM PSC values of each RSN in HC and
MDD patients. RSNs are ordered according to increasing PSC magnitude in HC. Ordering on the y-axis differs between plots. (D) Matrix representing p-values of
pairwise differences in the corrected SC between individual RSNs in HC. The colors indicate the significance, where red stands for lower p-value and higher
significance, and blue for higher p-value thus lower significance. P-values were scaled with a –log10(p) transform, the colorbar value of 1.3 corresponds to p = 0.05
(as indicated by a vertical line across the colorbar and an asterisk which represent significance threshold). (E) Mean and SEM spectral power of SN at 10 frequency
bins in HC (blue) and MDD patients (red). Left panel represents the original power spectrum. Right panel represents the power spectrum rescaled by PSC, where
spectral power values for each frequency bin and each subject were multiplied by the corresponding PSC value of SN BOLD fluctuations. (∗∗) and (∗) indicate
significant difference and a tendency toward significance, respectively, in a given measure between groups–tested with corresponding statistic. ATT, attention; AUD,
auditory; BG, basal ganglia; CEN, central executive network; DMN, default-mode network; FRONT, frontal; SM, sensorimotor; SN, salience network; VIS, visual; L,
left; R, right; ant, anterior; antmed, anterior-medial; post, posterior; postlat, posterior-lateral.

power in frequency band 10 was observed in MDD patients
(p = 0.07). Attenuated power in lower frequency band on the
one hand, and increased power in higher frequency bands on the
other, result in a shift of the SC in SN toward higher frequencies.

SCcorr and Symptoms Severity
Pearson’s correlation was calculated between the SCcorr values
of each RSN and the symptom severity scores. We found a
significant correlation between BDI scores and the SCcorr of
the anterior subdivision of the DMN (DMN_ant: r = 0.62,
p = 0.001) and of the posterior subdivisions of the DMN
(DMN_postlat: r = 0.65, p = 0.0006; DMN_post: r = 0.58,
p = 0.002). There was also a trend toward significance in the
correlation between BDI scores and the SCcorr of one of the
visual networks (VIS_4: r = 0.53, p = 0.008). No significant
correlation between symptom severity scores and the SCcorr of
the SN was observed.

However, an indirect influence of altered SN dynamics on
depression severity could be drawn based on findings from a
subsequent whole-brain seed-based FC analysis of the SN (for
methods and results see Supplementary Material). Reduced FC
of the SN toward the anterior DMN and one of the visual networks
(VIS_4)–two networks which showed significant correlation
between their SCcorr and BDI–was found in MDD patients
(Supplementary Figure 2). This observation and its putative
consequences are further reviewed in the Discussion part.

DISCUSSION

Spectral analysis of BOLD fluctuations performed on high-
quality large sample dataset of Human Connectome Project–
including 820 healthy subjects–revealed a significant grading
of SC across networks. This observation could successfully be
replicated through an independent dataset of 25 healthy subjects.
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Network orderings in both datasets under investigation proved to
be highly correlated. Thus, the grading of SC proves to be highly
reliable across two independent datasets.

The biological relevance of SC as a meaningful representative
of networks’ spectral properties was validated via disorder effect.
In a dataset of 25 patients suffering from MDD the grading of SC
was found to be altered. Specifically, the SC of the SN showed a
significant shift toward higher frequencies.

Additionally, a grading of PSC across RSNs was observed
in the data of 25 healthy subjects–implicating significantly
distinct levels of absolute BOLD activity within specific neuronal
ensembles. The grading of PSC was also affected by major
depression, where significant increase in PSC of secondary visual-
occipital network was found.

Grading of Spectral Centroid across
RSNs
The first striking finding of our study is the occurrence of
a highly organized grading of the SCs of BOLD network
fluctuations at infra-slow (i.e., <1 Hz) frequencies in healthy
subjects. The SC was introduced as a novel measure describing
the center of gravity of the full power spectrum of resting-
state BOLD network fluctuations. Our investigations on HCP
dataset revealed that different RSNs involve and operate on
distinct broadband frequency patterns, via which information
can selectively be exchanged between targeted systems. To
validate the generalizability and replicability of the finding of
SC characteristic for RSNs, we repeated the analysis on an
independent dataset of 25 HCs acquired at our research facility.
In line with main findings on HCP rs-fMRI data, spectral
analysis on our dataset also provided a significant grading
of the SCs of the BOLD network fluctuations at infra-slow
frequencies. Correlation analysis between the SCs of individual
RSNs from Dataset 1 and the corresponding RSNs from Dataset
2 confirms the reproducibility of SC as network property,
given the different acquisition sites, parameters and analysis
pipeline characteristics. The findings on HCs in Dataset 2
further highlight and support the meaningfulness of SC measure
as a representative of underlying neuronal features of RSNs,
by means of which a general organization–i.e., grading–of
neuronal systems according to their spectral properties can be
described.

Such grading is–in electrophysiology–believed to be
characteristic for a highly interactive system of network
oscillators (Buzsáki, 2006) and enables a degree of
communication between oscillators, for only networks with
overlapping oscillatory profiles are preferentially able to
synchronize with each other and form FC. Respectively, any
deviation from a network’s healthy oscillation profile would
result in a desynchronization between its own signal and the
signal of networks it communicates to, thus, in a breakdown
of the brain’s large-scale communication structure. Likewise, in
BOLD signal–which relates rather to fluctuations in broadband
power of electrical oscillation–FC between any two brain areas
can only arise with overlapping frequency spectra. Alterations of
the spectra are therefore indicative of lack of communication.

Several studies reported that resting-state BOLD fluctuations
show frequency-dependent anatomically restricted spatial
structure in the human brain (Salvador et al., 2008; Wu et al.,
2008; Zuo et al., 2010; Baria et al., 2011; Kalcher et al., 2014).
Salvador et al. (2008) examined frequency-dependent FC
profiles and found that limbic and temporal regions display
highest level of oscillation coherence in high (0.17–0.25 Hz)
and middle (0.08–0.17 Hz) frequency bands, while at low
frequencies (<0.08 Hz) greatest connectivity is observed in
frontal structures. Convergently, Baria et al. (2011) provided
evidence of whole-brain organization of BOLD oscillatory
activity within the full spectrum of frequencies available from
rs-fMRI. They showed that the power of BOLD fluctuations
within high-frequency band (0.15–0.20 Hz) is most prominent
in the temporal and sub-cortical regions as well as in the insula;
whereas power of BOLD oscillation in low-frequency band
(0.01–0.05 Hz) was most accentuated in the prefrontal, occipital,
and parietal lobes. Kalcher et al. (2014) showed that cortical
regions exhibit highest contribution of low-frequency signals
(<0.25 Hz), while time courses in subcortical regions as well as
the insula are strongly influenced by high-frequency fluctuations
(0.25–1.4 Hz). More recently, a hierarchical organization of
timescales of intrinsic dynamics has been suggested, highlighting
the sensorimotor-to-transmodal temporal gradient (Honey et al.,
2012; Stephens et al., 2013; Gollo et al., 2015, 2017; Cocchi et al.,
2016; for review see Huntenburg et al., 2018). According to this
gradient, early sensory cortical areas such as the primary visual,
somatomotor and auditory cortices operate on faster intrinsic
dynamics, while the frequency content becomes dominated by
lower frequencies as the gradient shifts toward higher-order
transmodal areas in the parietal, temporal and prefrontal cortex.
Such organization was also observed in context of large-scale
brain networks (Gollo et al., 2015, 2017); early sensory RSNs
showed faster dynamics than high-order RSNs; and within RSNs,
highly interconnected brain regions exhibited a slower dynamic
regime than less interconnected peripheral regions.

In partial accordance to the aforementioned findings, our
analysis on HCP data revealed the following networks as
showing highest SC values, thus, the strongest influence of
high-frequency power on the network fluctuations profile: basal
ganglia network (main hubs in putamen, caudate nucleus,
and pallidum), early sensorimotor networks (SM_R, SM_4,
SM_L; main hubs in precentral gyrus and paracentral lobule),
auditory network (main hubs in superior temporal gyrus). On
the other end of the power distribution, with relatively low
SC values, the following networks were situated: posterior-
lateral DMN (main hubs in the posterior cingulate cortex
(PCC), precuneus, cuneus, angular gyrus, and IPL) and posterior
DMN (main hubs in PCC, precuneus, cuneus, and IPL);
sensorimotor network (SM_1, main hubs in the supramarginal
gyrus and IPL); bilateral attention networks (ATT_L, ATT_R;
main hubs in inferior and middle frontal gyri, IPL, and
angular gyrus). Some of the visual networks (VIS_4, VIS_6, and
VIS_3) were also observed at the lower end of the spectrum,
however, these networks represent higher-order systems, which
fall toward the end of a modality’s hierarchy of processing
complexity.
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FIGURE 5 | Networks of the visual system ordered accordingly to their decreasing SC magnitude; displayed at the three most informative slices (MNI space).

When ordered accordingly to decreasing SC magnitude,
the spatial distribution of brain areas constituting individual
visual networks exhibits a rather characteristic pattern (see
Figure 5). Networks encompassing predominantly early sensory
areas in the striate cortex (primary visual area V1, calcarine
sulcus) exhibit a higher SC (VIS_2, VIS_3), thus, their BOLD
signal is strongly influenced by high-frequencies. Networks
that encompass higher-order cortical areas along the visual
stream, i.e., the extrastriate cortex (visual areas V2, V3, V4,
and V5/MT) show comparably lower SC (VIS_6, VIS_4), thus,
lower-frequencies dominate their BOLD signal. However, there
is one exception; VIS_1 shows the highest SC among the
visual networks, although it comprises higher-order visual area
V5/MT in the middle temporal gyrus. This could be due
to the extensive connections between area V5/MT and area
V1 (Pascual-Leone and Walsh, 2001; Silvanto et al., 2005),
and facilitate direct communication between these two visual
areas. Importantly, the finding that networks comprising the
same V5/MT area are located both at higher and lower
end of the SC gradient could relate to multiple parallel
processes being asynchronously undertaken by area V5/MT
(for a review see Zeki, 2015). Overall, areas of the visual
cortex are highly functionally specialized (Zeki et al., 1991);
our results yield that different functional units within the
visual system operate on distinct intrinsic dynamics regimes–
congruent with the sensorimotor-to-transmodal gradient of
timescales.

Interestingly, the subsystems of the DMN (anterior and
posterior) were localized at different ends of the power spectrum
range, with the anterior and anterior-medial DMN showing
relatively higher SC, and the posterior and posterior-lateral DMN
showing relatively lower SC. This is indicative of differential
contributions of spectral power to different subparts of the DMN,
potentially reflecting different processes facilitated via different
frequencies. The heterogeneity of the DMN architecture i.e., the
subdivision into smaller anatomical-functional subsystems has
been shown previously (Andrews-Hanna et al., 2010), and their
interplay has been shown to be implicated in the psychopathology
of various neuropsychiatric disorders including schizophrenia
(Du et al., 2016), Alzheimer’s disease (Damoiseaux et al., 2012),
OCD (Beucke et al., 2014) and MDD (Zhu et al., 2012, 2017;
Sambataro et al., 2014).

In summary, the grading of SC across RSNs points toward
frequency-dependent functional specificity which is indicative of
differentiated information integration processes being executed
at different frequency scales, in different brain regions. It is
in accordance with the results of Neufang et al. (2014) and
Cocchi et al. (2016) which hint toward the frequency-driven
directionality of information flow in the brain. Differences in
spectra of BOLD signals across distinct brain networks have
been reported before, via measures of scale-free properties (He
et al., 2010; He, 2011). However, measures of scale-free properties
alone are not well-suited for explaining findings of network-
characteristic processes restricted to limited frequency bands.
The SC, on the other hand, both reflects scale-free properties of
BOLD signal and carries information about frequency-content–
as is it affected by frequency-specific processes.

Biological Relevance of Spectral Centroid Grading
Power shifts of BOLD network fluctuations at rest within various
frequency bands have been reported in several diseased states.
A common tendency of increased power in high frequencies of
the BOLD signal and decreased power in low frequencies has
been observed in the ACC and insula (Malinen et al., 2010), as
well as in the DMN (Baliki et al., 2011) in chronic pain patients;
the same tendency was present across many RSNs–including
the DMN–in bipolar disorder and schizophrenia (Garrity et al.,
2007; Calhoun et al., 2011). The observations of our study are
in line with these reports. The grading of SC of BOLD network
fluctuations in MDD patients was found to deviate from the
healthy orchestration pattern. Specifically, there was a shift of the
SC of SN toward higher frequencies, which could be attributed to
a relatively decreased power in low frequencies (0.01–0.025 Hz)
and increased power in a broad range of higher frequencies
(0.15–0.25 Hz) in patients, implying increased activity with
characteristic times corresponding to this frequency range within
the salience system.

Since the grading of the SC of BOLD network fluctuations
is believed to be key to successful communication, we further
investigated how shifts in BOLD fluctuations of the SN impact
on its communication structure. A subsequent whole-brain
seed-based FC analysis of SN enabled us to gain insight into
the consequences of its altered dynamic and to specify brain
regions toward which SN exhibited decreased FC in patients.
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In depression, a decreased FC of the SN toward the anterior
DMN and one of the visual networks (VIS_4) was observed.
Although there was no direct correlation between the SC of SN
and depression severity scores, the SCcorr values of the networks
to which SN connectivity was disrupted, exhibited a significant
correlation with BDI scores. Inasmuch, we suspect an indirect
influence that the shift in power spectrum of SN exerts on
the severity of experienced symptoms. One possible mechanism
underlying such a reaction chain could be that the decoupling
of the SN from the anterior DMN and the visual network forces
these networks to regain the lost oscillations synchronicity, and
that such compensatory attempts would be mirrored through
depression severity. We are, however, aware of the speculative
character of this interpretation. Further investigations would be
needed to support our point of view; this however, is beyond the
scope of the current report.

Grading of Activity Levels Across RSNs
Different RSNs exhibit significantly distinct levels of BOLD
activity, as quantified by PSC. Previously, both in the human
and macaque cortex, widely distributed brain regions were found
to show distinct ratios of excitatory and inhibitory receptor
density (ExIn ratio) (van den Heuvel et al., 2016). In humans,
regions displaying high ExIn ratios spanned across the precentral,
superior frontal, orbitofrontal, supramarginal, superiotemporal,
and angular gyri, and the IPL; while regions with relatively
low ExIn ratios spanned across the parstriangularis, inferior
frontal gyrus and the occipital lobe. Such distribution is to a
high extent consistent with the spatial variation in network
PSC observed in our study in Dataset 2, where the posterior-
lateral DMN (main hubs in superiotemporal, supramarginal,
and angular gyri) exhibited by far the highest PSC. It was
followed by the sensorimotor network (SM_1; main hubs in
the precentral and superior temporal gyri, IPL); the auditory
network (main hubs in the superior- and middle temporal,
and precentral gyri); and the anterior-medial DMN (main hubs
in superior- and middle frontal gyri, and ACC). The lowest
PSC was observed in one of the visual networks (VIS_5; main
hubs in the lingual, fusiform and middle occipital gyri, and
cuneus). We therefore speculate that network PSC is a measure
which largely relates to the excitation loading and magnitude of
neuronal activity within an ensemble of brain regions, and that
the activity profile of a network can be broadly influenced by
balanced impact of excitatory and inhibitory neurotransmitters
and receptors.

However, in parallel to the coupling between neuronal activity
and changes in absolute BOLD signal, it is important to note that
differences in BOLD PSC may also be driven by differences in
cerebral vascular reactivity (CVR) (Bandettini and Wong, 1997;
Handwerker et al., 2007; Thomason et al., 2007), baseline venous
oxygenation (Lu et al., 2008), as well as baseline cerebral blood
flow (CBF) (Liau and Liu, 2009).

Biological Relevance of Activity Level Grading
In addition to our finding of RSNs being characterized by
specific PSC values, there was also a deviation in PSC values
within networks spanning the occipital cortex in patient group.

Specifically, MDD patients showed significantly increased PSC in
one of the visual networks (VIS_2; main hubs in the lingual gyrus,
cuneus, fusiform gyrus, and occipital gyrus). Our observation
of increased PSC in patients’ visual networks can be interpreted
in the context of Sanacora et al.’s (2004) reports where, relative
to HCs, MDD patients showed altered excitatory and inhibitory
neurotransmitter levels in the occipital cortex. Precisely, patients
exhibited reduced GABA and increased glutamate concentrations
in the occipital cortex, along with decreased GABA/glutamate
ratio. These findings, alongside with previous reports of MDD
being associated with GABA dysfunction (Sanacora et al., 2000;
Brambilla et al., 2003; Tunnicliff and Malatynska, 2003) as
well as converging reports of normalization of occipital cortex
GABA concentrations after targeted therapy (Sanacora et al.,
2002, 2003), further support the notion that GABA function
highly contributes to the pathophysiology and treatment of
depression. Along the same lines, increased PSC of the visual
networks, as revealed by our study, putatively reflects the
twofold mechanism underlying the overall changes in cortical
excitability: (1) deficits in inhibitory processes governed by
reduced GABA concentration, accompanied by (2) excessive
excitatory stimulation due to increased glutamate concentration.

Studies in FC analysis have established a link between activity
of ventral tegmental area (VTA) of the SN with occipital regions.
Seed-based analysis shows an anti-correlated relation between
VTA and the visual areas (Tomasi and Volkow, 2014; Zhang et al.,
2016). Interpreted as inhibitory influence of SN on these areas, SN
malfunctioning could relate to less inhibition.

LIMITATIONS

In this study, we applied the SC as an informative summary
measure reflecting spectral properties of RSNs. However, it is
important to note that the SC is an averaged representative of
the center of gravity of a network’s full power spectrum over
time. Recent studies have, however, shown that the frequency
content of RSN fluctuations is dynamic in time (Yaesoubi et al.,
2015, 2017). Another concern that could be expressed over
our findings, is the undermined neural information content
of high-frequency fMRI signal. It has been suggested that the
higher band BOLD signal is primarily driven by confounding
factors, such as physiological noise, and that information
specific to RSNs is limited to lowest frequency range of 0.01–
0.1 Hz (Cordes et al., 2001). However, there is convincing
evidence that this assumption might be wrong, as studies report
meaningful neural content and resting-state connectivity patterns
at frequencies up to 0.25 Hz or even 0.75 Hz (Niazy et al.,
2011; Boubela et al., 2013; Lewis et al., 2016). Furthermore,
here we operate on ICA-derived time courses, which are likely
to contain fewer artifacts than the raw fMRI time courses.
Moreover, the caveat that relates to potential non-neural effects
in the low-frequency fMRI signal (<0.15 Hz) should also be
considered. In addition to scanner drifts, low frequencies can
also reflect aliased high-frequency cardiac pulsations (Lowe et al.,
1998; Bhattacharyya and Lowe, 2004) and slow physiological
changes such as end-tidal CO2 fluctuations (Wise et al., 2004).
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The effects of cardiac pulsations on group differences in SC were
minimal, since the pulsation rates did not differ between groups.
However, CO2 effects can be quite strong and are unlikely to be
separated by ICA, as they constitute a global confound distributed
across all ICs in the brain.

CONCLUSION

In this work, we propose a new aggregate measure–the Spectral
Centroid–which represents the “center of gravity” of the full
power spectrum of individual RSN time courses. Based on a
high-quality and large sample dataset of the Human Connectome
Project, we show that there is a highly organized grading
of SC across RSNs. This indicates a characteristic balance
between specific frequencies involved in the power spectrum of
each RSN. The occurrence of grading of SC across RSNs was
replicated in an independent dataset, which further supports
the validity of the proposed approach. Moreover, SC was
shown to be a measure sensitive to power changes in BOLD
network fluctuations in disease. In MDD, significantly increased
SC was observed in the SN–a system well-known to be
implicated in depression. Following the preliminary indication
of altered spectral properties of SN in depression, we selectively
investigated the spectral power of BOLD network fluctuations
within distinct frequency bands. Compared to HCs, increased
contributions of high-frequencies and reduced contributions
of low-frequencies to the BOLD signal of SN were revealed
in depression. In summary, SC is a compact and reliable
measure that allows to determine characteristics of power
distribution of BOLD network fluctuations and spot key changes
in disease.
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