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It is believed that unihemispheric concurrent dual-site transcranial direct current
stimulation (tDCSUHCDS) of the primary motor cortex (M1) and the dorsolateral prefrontal
cortex (DLPFC) causes an increase in motor cortex excitability. However, the clinical
effect of this type of stimulation on patients with neurological conditions is not yet
known. The aim of the present study was to assess the effect of anodal-tDCSUHCDS (a-
tDCSUHCDS) on upper limb motor function in subacute stroke patients. Fifteen patients
participated in this sham-controlled crossover study. The main outcome measures were
the reaction time (RT) to visual stimuli, completion time of a nine-pin pegboard (9-
PPB), and the scores from the Fugl–Meyer assessment (FMA) for the upper limb of
the involved side before and after three brain stimulation conditions. For a-tDCSUHCDS,
the anodal electrodes were placed on the M1 and the DLPFC, while for a-tDCS, the
anodal electrode was placed on the M1. For the sham stimulation, the tDCS was turned
off after 30 s. For brain stimulation, the selected current was 1 mA for 20 min. After
a-tDCSUHCDS, there was a significant reduction in the RT and completion time of the
9-PPB compared with the times after a-tDCS and the sham stimulation: p = 0.013 and
p = 0.022, respectively). However, there was no significant difference in the FMA scores
after the three types of stimulations (p = 0.085). Compared with a-tDCS, a-tDCSUHCDS

temporarily improved the RT and dexterity of the involved hand in subacute stroke
patients.

Clinical Trial Registration: Iranian Registry of Clinical Trials (IRCT), identifier
IRCT2015012520787N1.
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INTRODUCTION

Stroke is considered to be the second-leading cause of mortality
and the major reason for disability in adults all over the world
(Kuklina et al., 2012). Stroke causes motor, sensory, and cognitive
deficits (Mayo et al., 1999). Upper limb weakness, which is seen
in more than 40% of stroke patients, is one of the most important
symptoms in both acute and chronic conditions (Parker et al.,
1986). After a stroke, the recovery of motor function is very
important because it enables stroke survivors to independently
perform activities of daily living (Harris and Eng, 2007). Recently,
a number of studies have investigated the impact of non-invasive
brain stimulation (NIBS) on the enhancement of neuroplasticity
and the recovery of symptoms caused by brain lesions (Hummel
and Cohen, 2006; Summers et al., 2007; Kim et al., 2016; Satow
et al., 2016; Andrade et al., 2017). Transcranial direct current
stimulation (tDCS) is a NIBS technique that uses low-intensity
direct current to modulate the excitability of neurons in different
cortical sections and deep areas of the brain (Nitsche and Paulus,
2000; Liebetanz et al., 2002; Kim et al., 2012). Previous studies
have suggested that the application of tDCS to the primary
motor cortex (M1) can improve upper limb motor function.
For example, anodal tDCS (a-tDCS) of the M1 improved the
motor function of the hand in both healthy individuals and
stroke patients (Bastani and Jaberzadeh, 2012; Butler et al., 2013;
Lee and Lee, 2015; Fleming et al., 2017). A-tDCS may also
lead to a decrease in reaction time (RT) in patients performing
different motor tasks (Hummel and Cohen, 2005; Hummel
et al., 2005, 2006; Boggio et al., 2006). It has been observed
that separate a-tDCS of the M1 and the dorsolateral prefrontal
cortex (DLPFC) increases the excitability of the motor cortex
in healthy individuals (Vaseghi et al., 2015a). In addition, the
simultaneous stimulation of the M1 of both hemispheres (anodal
current over M1 and cathodal current over the contralateral
M1) had a greater improvement on motor learning compared
with a sham simulation or a unilateral a-tDCS of the M1
(Karok and Witney, 2013; Di Lazzaro et al., 2014). Stagg et al.
(2013) reported that a-tDCS of the DLPFC increased the blood
flow between the sensorimotor cortex and the DLPFC. Vaseghi
et al. (2015b) compared a single-site stimulation of the M1 or
DLPFC with the simultaneous unilateral stimulation of M1 and
DLPFC using a new protocol called unihemispheric concurrent
dual-site a-tDCS (a-tDCSUHCDS); they found that a-tDCSUHCDS
significantly increases the M1 corticospinal excitability (CSE) in
healthy individuals. However, in spite of the significance of this
finding in the enhancement of CSE, the clinical and functional
implications of a-tDCSUHCDS have not yet been studied. To the
best of the authors’ knowledge, a study of the effects of this novel
tDCS approach on the motor function of stroke patients has not
been conducted.

In the current research, we aimed to compare the effects of
conventional single-site stimulation of M1 with a-tDCSUHCDS on
upper limb motor function. We hypothesized that a-tDCSUHCDS
of the M1–DLPFC decreases the RT and completion time for
a nine-pin pegboard (9-PPB) and increases motor function as
evidenced by the Fugl–Meyer assessment (FMA) in subacute
stroke patients.

MATERIALS AND METHODS

Design
This study had a sham-controlled crossover design. The
current study was registered as a clinical trial study in
the Iranian Registry of Clinical Trials1 with the registration
number: IRCT2015012520787N1. All experimental procedures
were approved by the Human Ethics Committee of the University
of Social Welfare and Rehabilitation Science, Tehran, Iran.
This study followed the CONSORT checklist, which is included
as a Supplementary File. All participants read and signed
a written informed consent form before taking part in the
study.

Participants
Fifteen subacute stroke patients with subcortical lesions
voluntarily participated in this study; there were six females
and nine males with the average age of 66.17 ± 6.36 years
and 63.33 ± 7.14 years, respectively. The participants were
selected from a pool of patients undergoing rehabilitation
at regional clinics and hospitals. All participants sustained
ischemic stroke diagnosed by a neurologist using magnetic
resonance imaging. Patients were included in the study if it
was their first stroke, they were 40–80 years old, and they had
a Brunnstrom score of 3 (marked spasticity, but voluntary
synergistic finger movement could be observed). Patients were
excluded from the study if they had any other neurological
disease except stroke, they had a metal implant in the brain,
they had musculoskeletal disorders that affected the upper
limbs, they had aphasia, they were taking neuropsychiatric
drugs, such as benzodiazepines or antidepressants, and they
had scored less than 25 in the Mini-Mental State Examination
(MMSE). Table 1 shows the demographic characteristics
of the patients and Figure 1 shows the trial procedure
flow.

Transcranial Direct Current Stimulation
Three experimental conditions (stimulation type) included
a-tDCSUHCDS, conventional single-site a-tDCS, and sham
a-tDCS. Each participant randomly received all three
types of stimulation. A-tDCSUHCDS was applied using two
active electrodes (2 cm × 3 cm) placed over the M1 and
DLPFC of involved hemisphere and two reference electrodes
(2 cm × 6 cm) placed over the contralateral supraorbital
area. For the conventional single-site a-tDCS, one active
electrode (2 cm × 3 cm) was located over M1 of involved
hemisphere and a reference electrode (2 cm × 6 cm) was
placed over the contralateral supraorbital area. For the
sham stimulation, the electrodes were placed in the same
positions used for the stimulation of M1 or M1–DLPFC,
but the device was turned off after 30 s of stimulation. The
a-tDCS devices were set to deliver 1 mA direct current for
20 min. The current density under the active electrode was
0.016 mA/cm2, which was comparable with the current density
used in previous studies (Furubayashi et al., 2008; Kwon et al.,
2008). Small active electrodes were used in all conditions
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TABLE 1 | Patients demographic characteristics.

Patient no. Age (year) Time aafter stroke (month) Lesion site (ischemic site) Dominant hand MMSE Brunnstrom

1 68 15 R putamen R 25 4

2 53 8 L pontine R 27 4

3 76 8 R corona radiata R 29 4

4 62 9 L putamen thalamus R 26 3

5 74 20 R internal capsule R 28 3

6 69 12 L putamen L 28 3

7 71 10 R putamen R 29 3

8 55 16 R corona radiata R 27 4

9 63 24 R corona radiata R 28 4

10 61 19 L basal ganglia L 25 4

11 62 20 L putamen L 29 4

12 70 22 R internal capsule R 25 3

13 60 17 R basal ganglia R 29 4

14 65 13 R putamen R 28 3

15 58 11 L corona radiata L 28 4

R, right; L, left.

to increase the focality of the stimulation over the target
areas (Nitsche et al., 2007; Kwon et al., 2008; Bastani and
Jaberzadeh, 2013). The stimulation sites were based on the
international 10–20 electroencephalography standard (Figure 2).
Depending on the side of the pathology, active electrodes
were located over the right or left M1 (C3 or C4) and right
or left DLPFC (F3 or F4). The wash-out period between the

different experimental conditions was 72 h (Fujimoto et al.,
2016).

Outcome Measures
Reaction Time
Deary–Liewald reaction time software (RT, version 3.10, Centre
for Cognitive Ageing and Cognitive Epidemiology, University

FIGURE 1 | The study procedure flow chart.
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FIGURE 2 | Schematic representation of the experimental protocol with measures taken before and after a-tDCS. a-tDCS, anodal-tDCS; a-tDCSUHCDS, anodal
unihemispheric concurrent dual-site transcranial direct current stimulation; M1, primary motor cortex; DLPFC, dorsolateral prefrontal cortex.

of Edinburgh, Scotland) was used to assess the hand RT to
visual stimuli (Deary et al., 2011). At the start of the test, a
number of colored stimuli appeared at random intervals on a
laptop screen, which was placed in front of the participant. The
participant was asked to press the red slash key on the keyboard
as quickly as possible after seeing the stimuli. Participants were in
a comfortable position while performing the test; the table height
was adjusted such that the person could see the screen and had
easy access to the keyboard. Before beginning the study protocol,
all participants performed a test trial involving eight stimuli to
become familiar with the test. During the study, the program was
set to display 20 stimuli. A reduced RT in response to the visual
stimuli indicated an improvement in performance. The software
has been shown to have good reliability (Deary et al., 2011).

Nine-Pin Pegboard Test
The 9-PPB test was developed to investigate the hand dexterity in
stroke patients (Oxford Grice et al., 2003). The 9-PPB consisted
of two rectangular boards that were attached; one board had nine
holes in three rows and other board, which was located above
the first, had nine holes with a peg in each holes. The 9-PPB
was placed in front of each participant who was instructed to
pick up each peg from the top board, one by one, as quickly as
possible and place it in a hole in the other board. The total time

taken to complete the task was determined using a chronometer
and was recorded as the test score for each individual (Croarkin
et al., 2004). The chronometer accuracy was 0.01 s. The 9-PPB test
has excellent test–retest reliability in acute stroke patients (Heller
et al., 1987).

Fugl–Meyer Assessment
The FMA was used to assess upper limb motor function in stroke
patients (Fugl-Meyer et al., 1974; Nitsche and Paulus, 2000). The
upper limb section of the assessment contained 33 items and
each item had the following score: 0 = unable to move the limb;
1 = partially able to move the limb; and 2 = fully able to move
the limb. The total scores for the upper limb section ranged from
0 to 66. Previous studies have reported excellent inter-rater and
intra-rater reliability and good construct validity for the FMA
(Gladstone et al., 2002).

Procedure
Figure 2 shows the experimental setup of the study. Participants
were asked to sit on an adjustable chair. Participants became
familiar with the testing procedures and the outcome measures,
which included the FMA, 9-PPB, and RT. Just before and
immediately after each experimental intervention, which were
given 72 h apart, the outcome measures were assessed and
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TABLE 2 | Visual Analog Scale Scores for fatigue, attention, and discomfort measurements before and after each intervention.

Discomfort (Mansur et al., 2005) Attention (Mansur et al., 2005) Fatigue (Mansur et al., 2005)

After Before After Before After Before

Sham 1.60 ± 0.91 1.73 ± 1.03 6.87 ± 0.35 6.80 ± 0.41 1.00 1.13 ± 0.35

p = 0.164 p = 0.334 p = 0.164

a-tDCS 1.33 ± 0.90 1.67 ± 0.97 6.93 ± 0.25 6.80 ± 0.41 1.00 1.20 ± 0.41

p = 0.082 p = 0.164 p = 0.055

a-tDCSUHCDS 1.47 ± 0.91 1.67 ± 1.13 6.93 ± 0.25 6.80 ± 0.56 1.00 1.20 ± 0.41

p = 0.082 p = 0.164 p = 0.082

Data showing Mean ± SD of group, scores: 1–7 (1: no attention, 7: full attention; 1: no fatigue, 7: highest fatigue level; 1: no pain, 7: maximum pain).

the participants’ scores were measured. Other factors, such as
attention, fatigue, and discomfort, were also assessed using a
7-grade Visual Analog Scale (VAS) to evaluate any adverse
or side effects of the tDCS. The participants were asked to
show the intensity of their fatigue, attention and discomfort
on the 7 cm VAS just before and immediately after the
experimental interventions. The scoring methods for the scales
were as follows: 1 = no concentration and 7 = maximum
concentration; 1 = no fatigue and 7 = maximum fatigue; and
1 = no discomfort and 7 = maximum discomfort, respectively.
The VAS scoring used in this process has been reported to
have excellent reliability (Aitken, 1969; Scherder and Bouma,
2000).

Data Analysis
Data were analyzed using SPSS version 21 (IBM Corp., Armonk,
NY, United States). The normal distribution of the data was
assessed using the Shapiro–Wilk test. The effects of the different
stimulation conditions on the outcome measures, which included
RT, 9-PPB, and FMA, were evaluated using the repeated
measures analysis of variance (ANOVA). A comparison of
the baseline measurements before each stimulation condition
was conducted using the one-way ANOVA. The Wilcoxon test
was used to compare the psychological data before and after
each stimulation condition. The level of significance was set at
p < 0.05.

TABLE 3 | Mean and SD of RT, 9-PPT, and FMA in three stimulation conditions.

Sham a-tDCS a-tDCSUHDCS

RT (s)

Pre 0.670 ± 0.048 0.604 ± 0.054 0.625 ± 0.052

Post 0.665 ± 0.048.91 0.607 ± 0.048 0.577 ± 0.037

9-PPT (s)

Pre 70.76 ± 5.56 74.33 ± 6.40 70.23 ± 6.13

Post 70.38 ± 5.96 71.09 ± 5.80 65.75 ± 5.47

FMA

Pre 38.20 ± 1.47 38.26 ± 1.46 38.20 ± 1.43

Post 38.46 ± 1.50 38.33 ± 1.46 38.53 ± 1.41

RT, reaction time; 9-PPB, nine-pin pegboard; FMA, Fugl–Meyer assessment;
a-tDCS, anodal-tDCS; a-tDCSUHCDS, anodal unihemispheric concurrent dual-site
transcranial direct current stimulation. Values are mean ± SE.

RESULTS

The analysis showed that the distribution of the psychological
data was not normal. However, the RT, 9-PPB, and FMA data
were distributed normally.

Psychological Data
An analysis of the psychological data revealed that there was
no significant difference between the pre- and post-procedure
attention, fatigue, and discomfort of the participants. No
participant reported a headache or any other adverse effect after
receiving the tDCS; however, two participants had the feeling
of burning at the point of the active electrode at the start
of the stimulation, which was resolved after 1 min. Table 2
shows patients’ perceived VAS scores in centimeter for the
assessed psychological variables including fatigue, attention, and
discomfort just before and immediately after each experimental
condition.

Comparison of Baseline Values
The one-way ANOVA showed that there were no significant
difference between the baseline RT [F(2,28) = 2.56, p > 0.05],
9-PPB [F(2,28) = 1.638, p > 0.05] and FMA [F(2,28) = 0.318,
p > 0.05] for the sham stimulation, a-tDCS, and a-tDCSUHCDS:
(Table 3). Thus, the baseline for the sham stimulation was used
as baseline measurement for all conditions in data analyses.

Reaction Time
The repeated measures ANOVA showed the type of stimulation
had a significant effect on the RT: F(2.087,29.224) = 4.96, p < 0.05
(Figure 3). The Bonferroni correction showed that after applying
a-tDCSUHCDS, there was a significant lower RT compared
with the sham stimulation (p = 0.031). However, there was
no significant difference between a-tDCS and a-tDCSUHCDS
(p > 0.05).

Nine-Pin Pegboard Test
The repeated measures ANOVA showed the type of stimulation
had a significant effect on the completion time for the 9-PPB:
F(3,42) = 5.997, p < 0.05 (Figure 4). There was a significant lower
completion time after applying a-tDCSUHCDS compared with the
sham stimulation (p = 0.036) and a-tDCS (p = 0.015). However,
there was no significant difference between a-tDCS and the sham
stimulation (p > 0.05).
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FIGURE 3 | The comparison of reaction time (mean ± SD) before and after the stimulation. a-tDCS, anodal-tDCS; a-tDCSUHCDS, anodal unihemispheric concurrent
dual-site transcranial direct current stimulation; ∗, significant.

FIGURE 4 | The comparison of completion time of the 9-pin pegboard test (mean ± SD) before and after the stimulation. a-tDCS, anodal-tDCS; a-tDCSUHCDS,
anodal unihemispheric concurrent dual-site transcranial direct current stimulation; ∗, significant.

Fugl–Meyer Assessment
Comparing baseline values and post-stimulation values showed
the effect of the type of stimulation on the FMA was not
significant. The repeated measures ANOVA showed that the
stimulation had no significant effect on the FMA scores:
F(3,42) = 2.364, p > 0.05 (Figure 5).

DISCUSSION

Baseline Measurements
There were no significant differences between the baseline
measurements of the dependent variables (i.e., RT, FMA,
and 9-PPB) for the three experimental conditions. This
similarity indicated that the length of the wash-out period was
enough to avoid the carry-over effect between the stimulation
conditions.

Safety and Side Effects of a-tDCSUHCDS
Fatigue, attention, and discomfort can influence motor
performance. However, there was no significant difference
between the pre- and post-procedure for these scales in this
study, so we concluded fatigue, attention and discomfort did not
affect out the results.

Effect of a-tDCSUHCDS on Reaction Time
The results of this study indicated that a-tDCSUHCDS had a more
significant effect on the reduction of RT than the single-site
a-tDCS and the sham stimulation. The findings supported the
hypothesis that a-tDCSUHCDS of the M1–DLPFC would induce
a larger decrease in RT than single-site a-tDCS of the M1. This
result agreed with the findings of Vaseghi et al. (2015b) who
reported that the simultaneous stimulation of the M1 and DLPFC
increased the CSE in healthy individuals. There is a functional
connectivity between the different brain regions (Keeser et al.,
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FIGURE 5 | The comparison of Fugl-Meyer assessment (mean ± SD) before and after the stimulation. a-tDCS, anodal-tDCS; a-tDCSUHCDS, anodal unihemispheric
concurrent dual-site transcranial direct current stimulation.

2011; Luft et al., 2014). It has been shown that the premotor
cortex consists of dorsal and ventral sections. The outputs of
the dorsal section are sent to the M1 and spinal cord, while
the premotor cortex receives inputs from the DLPFC (Dum and
Strick, 1991; He et al., 1993). Therefore, we can conclude that the
M1 and DLPFC are indirectly connected. Studies have also shown
the functional connectivity between M1 and DLPFC (Vaseghi
et al., 2015b, 2016). Therefore, compared with single-site a-tDCS
of the M1, a-tDCS of the M1–DLPFC activates the DLPFC–
premotor cortex–M1 pathway (Bunge et al., 2001; Nitsche and
Paulus, 2001; Van Ryckeghem et al., 2013), which may have a
profound effect on cortical and behavioral outcome measures,
such as motor RT. In addition, there is also a connection between
the ventral premotor section and the prefrontal cortex (Hutchins
et al., 1988; Lu et al., 1994). Therefore, stimulating the prefrontal
cortex can influence the ventral premotor section, which contains
the upper limb representations (Hutchins et al., 1988; Lu et al.,
1994). It should be noted that any improvement in performance,
such as a reduced RT, requires high levels of cognition and
improved motor performance (Salthouse, 1996; Madden, 2001).
Cappon et al. (2016) in a comprehensive systematic review
reported that a-tDCS stimulation of DLPFC could improve
cognitive impairments in chronic stroke patients. Therefore,
the simultaneous stimulation of the M1 and DLPFC not only
favorably affects the CSE, but also improves the performance
by decreasing the RT (Salthouse, 1996). In other words, an
improved RT requires both motor and cognitive functions and
the simultaneous stimulation of the M1 and DLPFC may cause
motor and cognitive improvement.

Hummel et al. (2006) showed that one session of a-tDCS of
M1 could significantly reduce the RT. This finding disagreed
with the results of the current study because we did not observe
any significant changes in the RTs of patients’ upper limbs after
a-tDCS of the M1. The discrepancy between the results may be
explained by the fact that different assessment tools were used.
In the present study, the clinical measurements of RT were used,

while Hummel et al. (2006) used electromyography to assess
the RT.

Effect of a-tDCSUHCDS on Nine-Pin
Pegboard Test
The results of the present study indicated that there was a
significant reduction in the completion time of the 9-PPB test
after a-tDCSUHCDS compared with the single-site a-tDCS and
the sham stimulation. This finding supported our hypothesis
that a simultaneous stimulation of ipsilateral M1 and DLPFC
would improve the 9-PPB completion time. This finding was
consistent with the study by Vaseghi et al. (2015b), which showed
an improvement in M1 excitability and motor function following
the dual-site stimulation of the M1 and DLPFC. It is believed
that the 9-PPB test involves a neural network for transferring
the touch and visual information to the opposite M1 of the
involved hand. Therefore, the 9-PPB test involves the integration
of sensory, motor, and cognitive processes (Talati et al., 2005).
Other studies have claimed that a-tDCS of the DLPFC improves
performance in several cognitive domains, including executive
functions (Keeser et al., 2011); thus, the present findings seemed
reasonable. In addition, there are a number of well-known
projections between the DLPFC, the cingulate cortex, and the
parietal lobe. Therefore, it might be assumed that a-tDCS of
the DLPFC increases the interaction between these pathways,
which form part of the so-called “attention” network. Increased
connectivity within this network was also reported following
cognitive training and application of a-tDCS. Therefore, it is
quite possible that the simultaneous stimulation of the M1 and
DLPFC improves a patient’s attention, which consequently leads
to a better performance in completing the 9-PPB test (Fransson,
2005; van de Ven et al., 2008; Keeser et al., 2011). In addition,
Bachtiar et al. (2015) reported that a-tDCS of the M1 causes
an increase in CSE. This increase coincided with a reduction in
the GABAergic inhibitory system (Ziemann et al., 1998; Garry
et al., 2004; Vaseghi et al., 2015b), as evidenced by a decrease in
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the short interval intracortical inhibition (Nitsche et al., 2005).
Increased CSE in the involved cerebral hemispheres may help in
the recovery of motor function of affected limbs after a stroke,
which may lead to a better performance during the 9-PPB test.

Effect of a-tDCSUHCDS on Fugl–Meyer
Assessment
The results of the present study showed that there was no
significant difference between the scores of FMA for the different
experimental conditions. This finding partly agreed with a
previous studies that found there was no improvement in upper
limb performance following a-tDCS of the M1 (Hesse et al., 2007;
Rossi et al., 2013). In the majority of studies, a-tDCS was used
as a priming technique concurrently with functional training or
robotic upper limb therapy. While some of these studies reported
an improvement in the FMA, no difference was observed between
the a-tDCS and control groups (Kim et al., 2010; Cha et al.,
2014). Hesse et al. (2011) assessed the priming effects of a-tDCS
with and without robotic-assisted arm training on the motor
function in subacute stroke patients. Both study groups showed
an improvement in the FMA, although there was no significant
difference between the two experimental conditions (Hesse et al.,
2011).

Rocha et al. (2016) evaluated the effect of a-tDCS on upper
limb function in chronic stroke survivors. They reported an
improvement in FMA scores after a-tDCS compared with the
sham stimulation. This finding did not agree with the findings
in the current study. This discrepancy could be explained by
the methodological differences between the studies. In the Rocha
et al. (2016) study, patients received 12 a-tDCS sessions, while
patients in the present study only experienced a single a-tDCS
session. It may be concluded that one session of intervention
was insufficient to induce an improvement in the motor function
of the upper limbs (Triccas et al., 2015; Rocha et al., 2016). In
addition, the sample size calculation for the present study was
performed based on time-based variables such as RT and 9-PPB
and not based on function-based variables like FMA. Therefore, it
is possible that the small sample size of the present study resulted
in insignificant finding for FMA.

Limitations and Suggestions for Future
Research
There are some limitations of the present study that may affect
the interpretation of the results. First, the target population was
subacute stroke patients. Therefore, it might not be possible
to generalize the results to chronic stroke survivors. As it is
believed that the neuroplasticity of the nervous system changes
over time, the effects of a-tDCS may be different in chronic
stroke patients. The second limitation is that we did not directly
examine the cortex excitability. Future studies should evaluate
the excitability of the cortex directly using a-tDCSUHCDS. Despite
these limitations, this is the first study that used the novel tDCS
on stroke survivors.

A future study with more a-tDCSUHCDS treatment sessions,
especially in combination with other rehabilitation programs,
will shed more light on the rehabilitation of upper limb motor

function in stroke survivors. Vines et al. (2008) suggested that
the addition of cathodal tDCS (c-tDCS) on the contralateral M1
simultaneously with a-tDCS on the M1 might have a greater effect
on motor function than anodal stimulation alone. This may occur
because of the balancing act of the cathodal stimulation of the
opposite M1, which reduces the inhibitory effects of the intact
brain on the involved side (Bradnam et al., 2011). Future studies
are recommended to evaluate the effects of this balancing act
through the cathodal stimulation of the uninvolved hemisphere.
Finally, the small sample size in the present study might limit us
to give a robust conclusion especially on insignificant findings
and compare and investigate effects of the site of lesion on
motor improvement. Future studies with larger sample size and
comparable healthy group are recommended.1

CONCLUSION

The present study investigated the difference between the effects
of conventional single-site stimulation of M1 and unihemispheric
concurrent dual-site a-tDCS of the M1 and DLPFC on upper limb
motor function of subacute stroke patients. We concluded that
the simultaneous stimulation of the M1 and DLPFC induced a
more significant reduction in RT and completion time for the 9-
PPB test and, thus, caused more improvement in hand function.
Therefore, a-tDCSUHCDS could be used as a complementary
treatment for the improvement of upper limb motor function in
stroke patients.
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