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Resting-state brain activity has been widely investigated using blood oxygenation
level dependent (BOLD) contrast techniques. However, BOLD signal changes reflect a
combination of the effects of cerebral blood flow (CBF), cerebral blood volume (CBV),
as well as the cerebral metabolic rate of oxygen (CMRO2). In this study, resting-state
brain activation was detected and compared using the following techniques: (a) BOLD,
using a gradient-echo echo planar imaging (GE-EPI) sequence; (b) CBV-weighted signal,
acquired using gradient and spin echo (GRASE) based vascular space occupancy
(VASO); and (c) CBF, using pseudo-continuous arterial spin labeling (pCASL). Reliable
brain networks were detected using VASO and ASL, including sensorimotor, auditory,
primary visual, higher visual, default mode, salience and left/right executive control
networks. Differences between the resting-state activation detected with ASL, VASO
and BOLD could potentially be due to the different temporal signal-to-noise ratio (tSNR)
and the short post-labeling delay (PLD) in ASL, along with differences in the spin-echo
readout of VASO. It is also possible that the dynamics of spontaneous fluctuations in
BOLD, CBV and CBF could differ due to biological reasons, according to their location
within the brain.
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INTRODUCTION

The measurement of functional connectivity (FC) in the resting state has been a powerful
method with which to characterize the intrinsic functional architecture of the brain (Biswal et al.,
1995; Greicius et al., 2003; Fox et al., 2005). It has been suggested that FC may reflect relevant
task-induced activation and behavioral performance (Hampson et al., 2006; Zou et al., 2013),
and could be a biomarker for diagnosing diseases and for the monitoring of treatment outcomes
(Buckner et al., 2008; Fornito and Bullmore, 2010; Salvador et al., 2010; Menon, 2011; Miao et al.,
2014). It is possible to acquire functional signals using magnetic resonance imaging (MRI) based
on blood oxygenation level dependent (BOLD) contrast, cerebral blood flow (CBF), cerebral blood
volume (CBV) and cerebral metabolic rate of oxygen (CMRO2).

Among these techniques, resting-state BOLD fMRI is the most widely used. This is due
to its simple MRI acquisition sequence, high sensitivity and relatively high spatial and temporal
resolution. However, BOLD signal changes reflect a combination of effects from blood oxygenation,
CBV, CBF and CMRO2 (Davis et al., 1998; Hoge et al., 1999; Buxton et al., 2004). In contrast,
imaging techniques based on the physiological parameters of CBV, CBF or CMRO2 are collected
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with fewer confounds and are straightforward to interpret. In
addition, although the literature relating to BOLD-based FC is
extensive, it is relatively disorganized and there is proportionately
very little relating to CBF-CBV- and CMRO2-based FC. A
non-BOLD approach is therefore highly desirable in order to
clarify the meaning of the BOLD-based FC literature.

It has been widely demonstrated that CBF is coupled with
BOLD, which has also been shown to be linked to brain
metabolism (Raichle, 1998). This is the case in both active and
resting states (Fox and Raichle, 1986; Fox et al., 1988; Raichle
et al., 2001; Jann et al., 2015; Storti et al., 2017; Chiacchiaretta
et al., 2018). Changes in CBF can be measured non-invasively
with arterial spin labeling (ASL; Barbier et al., 2001; Golay et al.,
2004). In ASL, the perfusion contrast in the images is generated
by the subtraction of successively acquired images: one with and
one without the proximal labeling of arterial spins after a delay
time. The subtracted signal is on the order of 1% of the baseline
signal, and resting-state fluctuations cause merely an additional
fractional change. The main challenges in using ASL to observe
resting-state CBF fluctuations are the low signal-to-noise ratio
(SNR), low temporal resolution and possible contamination from
BOLD fluctuations. Continuous ASL imaging, which provides
higher SNR compared to pulsed ASL, has been used to investigate
resting-state brain activity as a comparison with BOLD (Chuang
et al., 2008; Viviani et al., 2011; Li et al., 2012). High-pass
filtering of the ASL signal allows for CBF oscillations to be
isolated with reduced BOLD contamination (Chuang et al.,
2008). Connectivity maps from the CBF and the BOLD signal
have been demonstrated to be regionally similar (Fukunaga et al.,
2008; Viviani et al., 2011; Li et al., 2012; Chen et al., 2015).

The use of the spontaneous fluctuation of the CBV-weighted
signal using whole-brain gradient and spin echo (GRASE)
based vascular space occupancy (VASO) to detect resting-state
networks has also been demonstrated (Miao et al., 2014). The
VASO technique makes use of the T1 difference between blood
and the surrounding brain tissue and uses an inversion recovery
pulse sequence to null the blood signal while maintaining part of
the tissue signal. The VASO signal intensity is thus proportional
to 1-CBV. When neural activation causes the CBV to increase,
the VASO signal shows a decrease, allowing the detection of
activated regions in the brain (Lu and van Zijl, 2012). Using
3D-GRASE as a readout method, the data from the entire brain
can be collected at the blood nulling time. This implies the
possibility of observing changes in CBV in the entire brain
(Gunther et al., 2005; Poser and Norris, 2009; Miao et al., 2014).
Reliable brain networks were detected from the CBV-based,
whole-brain images, including the default mode network, the
salience, the executive control, the visual, the auditory and the
sensorimotor networks. The improved spatial location offered
by the VASO technique, compared to BOLD, was shown in
task-evoked brain activation, in which activation aligned well
with gray matter in VASO but extended to other areas in BOLD.
Moreover, 3D-GRASE VASO images showed less sensitivity to
susceptibility artifacts.

Great effort has been devoted to the comparison of BOLD,
CBV and CBF (Chen and Pike, 2009; Wu et al., 2009;
Shih et al., 2011; Sforazzini et al., 2014; Krieger et al., 2015;

Donahue et al., 2017), and comparisons between BOLD, CBV
and CBF have been performed in visual and in sensorimotor
stimulations in human studies (Chen and Pike, 2009; Krieger
et al., 2015). Resting-state FC maps from the CMRO2 signal
are, in general, similar to those from BOLD and perfusion in
human studies (Wu et al., 2009). Multimodal functional imaging
was also performed in animal models for the study of pain
(Shih et al., 2011). It was found that BOLD and CBV contrast
produced consistent resting-state networks in mouse models
(Sforazzini et al., 2014). However, thus far, no comparison
of resting-state networks has been reported in relation to the
combined use of BOLD, CBV and CBF in human studies.
In this work, resting-state brain activation, detected by three
contrasts including BOLD, CBV and CBF, were compared
in order to investigate/observe differences in: (a) seed-based
FC; (b) temporal and frequency characteristics; and (c) FC
matrices.

MATERIALS AND METHODS

Subjects
Sixteen healthy subjects (eight male, eight female; mean age
28 ± 5 years) were scanned using a 32-channel head receive
RF coil on a 3T Trio Siemens scanner (Siemens Healthcare,
Erlangen, Germany). All subjects were highly educated, relatively
young, healthy volunteers (20 < age < 40 years). Participants
were excluded if they suffered from a neurological or psychiatric
illness, any untreated medical illness, such as uncontrolled
diabetes or treatment-resistant hypertension, or if they had
any metallic implants. Written informed consent was obtained
from all subjects and the study was approved by the
Ethics Committee of the Medicine Faculty of the Rheinisch-
Westfälischen TechnischenHochschule Aachen (RWTHAachen
University). The study was conducted in accordance with the
Declaration of Helsinki. The order of BOLD, VASO and ASL
scans was pseudo-randomized among participants. The subjects
were instructed to close their eyes and to refrain from falling
asleep during the scans.

Image Acquisition
A gradient-echo echo planar imaging (GE-EPI) sequence was
used for BOLD imaging acquisition. The sequence parameters
of the EPI measurement were: α/TE/TR = 90◦/30/2,500 ms,
matrix = 64 × 64 × 36, resolution = 3.4 × 3.4 × 3 mm3. Each
BOLDmeasurement included 130 repetitions and was performed
in 5.4 min.

A VASO sequence with a global inversion pulse,
for the purpose of blood nulling and a single-shot
GRASE, for readout, was implemented. The specific
sequence parameters of the 3D-GRASE based readout
were: TI/TE/TR = 740/16.4/2,500 ms, flip angle = 180◦,
matrix = 64 × 64 × 24, resolution = 3.4 × 3.4 × 5 mm3,
GRAPPA factor along ky = 3, partial Fourier along kz = 6/8,
bandwidth = 1,776 Hz/pixel and total readout length = 295. TI
was determined based on the blood T1 of 1,627 ms (Lu et al.,
2004; Poser and Norris, 2011; Miao et al., 2014). Each VASO
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measurement included 130 repetitions and was performed in
5.4 min.

For ASL-MRI, a pseudo-continuous arterial spin labeling
(pCASL) sequence was considered as it offers a high SNR
(Wu et al., 2007; Dai et al., 2008). pCASL uses a 1 s train of
RF and gradient pulses to invert the magnetization of blood
water flowing through the labeling plane (Okell et al., 2010).
In our experiments, the position of the labeling plane was
selected from a quick time-of-flight angiography to ensure the
optimal orientation of the carotid and vertebral arteries. The
positioning of the labeling plane was located at the point where
the main arteries run approximately in the inferior-superior
direction, and twists in the arteries were avoided. Typically,
a position between the two ‘‘twists’’ in the vertebral arteries,
before they fuse to form the basilar artery, was chosen. A
delay of 1,050 ms between labeling and readout was included
to guarantee blood perfusion in the majority of the voxels.
Pre-saturation pulses were applied to the imaging region before
labeling to avoid the spin perturbation in imaging planes
caused by the labeling train. By using readouts with single-shot
2D EPI, 130 measurements with 65 pairs of label-control
volumes were obtained. Explicitly, sequence parameters were
as follows: α/TE/TR = 90◦/14/3,000 ms, dim: 64 × 64 × 20,
Partial Fourier = 6/8, resolution: 3.4 × 3.4 × 5 mm3.
The total measurement time for pCASL acquisitions was
7.6 min.

Finally, a conventional 3D MP-RAGE sequence of 6 min
was performed to acquire T1-weighted anatomical images
(resolution = 1 mm3 isotropic, TI/TR = 1,100/2,530 ms, flip
angle = 7◦, 256 × 256 × 176, GRAPPA factor = 2).

Data Processing
Preprocessing
The resting-state BOLD, VASO and ASL were preprocessed
using DPARSF1 with the following steps: slice-timing (only
applied to BOLD), motion correction, spatial normalization
to the standard Montreal Neurological Institute (MNI) space,
smoothing along three directions with FWHM = 6 mm
(CBF calculation), detrending and band-filtering (0.01–0.08 Hz)
to remove certain nuisance covariates, including six head
motion parameters, global mean signal, white matter signal
and cerebrospinal fluid signal. The functional images were
normalized to MNI space by using a unified segmentation on
T1 to improve the accuracy of the spatial normalization. This
procedure contains three steps: co-registration, segmentation
and the writing of normalization parameters. To ensure that
CBF values were not contaminated by the BOLD effect, spatially
smoothed ASL raw data was split into a high-pass filtered series
with a cut-off at 1/(4∗TR) (Chuang et al., 2008), which was
0.08 Hz in our case. A low-pass series was obtained as a residual
of the filtering. The high-pass filtering range applied to the
ASL signal to generate uncontaminated CBF fluctuations was
0.08–0.2 Hz. The high-passed filtered series was used to obtain
the CBF signal. The calculation of the CBF was obtained using
ASLtbx (Wang et al., 2008) and a surround subtraction method

1http://rfmri.org/DPARSF

was used on the high-pass filtered series. After CBF calculation,
the CBF data were detrended and nuisance covariates were
removed by regression, as was also the case for BOLD and VASO.

Seed-Based Functional Connectivity Analyses
To obtain the corresponding networks in the resting-state, eight
seed spherical regions-of-interest (ROIs), with radii of 6 mm,
were placed in the left precentral gyrus (Talairach coordinates:
−53, −7, 29), left transverse temporal gyrus (−50, −21, 11), left
cuneus (BA17: −6, −76, 11), left inferior occipital gyrus (BA17:
−20,−94,−8), left posterior cingulate cortex (−12,−54, 10), left
dorsal cingulate cortex (−4, 26, 34), left inferior parietal cortex
(−48, −63, 38) and right inferior parietal cortex (45, −58, 42).
The cross-correlation coefficient (cc) maps for each subject were
calculated based on the extracted average time course of each
seed ROI. These maps were then transformed to z-value maps
using Fisher’s z transform. A one-sample t-test was performed
on these z-value maps to acquire significant FC maps at a group
level, which were thresholded at t > 7.68, with a cluster size
resulting in a p-value p < 0.05 (FWE). The numbers of active
voxels and the summed t of these active voxels in different
networks were compared.

Time Courses and Spectra
To explore the frequency characteristic of the three contrasts,
unfiltered resting-state BOLD, VASO and ASL time courses
were extracted from seed ROIs in the primary visual cortex and
default-mode network of all subjects, and their spectra were
computed.

Adjacency Matrix Construction
One hundred and sixteen network nodes were defined using
the anatomical automatic labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002). Subsequently, 116 region-wise, mean time-courses
were employed to calculate the functional connection based on
their Pearson’s correlation. This resulted in one (116 × 116)
correlation matrix for each subject, representing interregional
FC. The group-level connectivity matrix was averaged across
the individual network matrix under BOLD, VASO and ASL. A
one-sample t-test was performed to confirm the significance of
connectivity in each group.

RESULTS

For comparison, the seed-based function networks generated
from BOLD, VASO and ASL are displayed side by side in
Figure 1. Eight resting functional networks were generated,
which included the sensorimotor network, the auditory network,
the primary visual network, the higher visual network, the
default-mode network, the salience network, the left executive-
control network (ECN) and the right ECN. The location
and strength of the connectivities, based on their t values,
are similar among all three contrasts. In all the networks
observed, with the exception of the higher visual network, the
connectivities based on BOLD were found to be higher than
those of VASO and ASL. Most of the networks show higher
connectivity in VASO than in ASL. Compared to VASO, the
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FIGURE 1 | Brain networks detected by the seed-based analysis of the (A) blood oxygenation level dependent (BOLD), (B) vascular space occupancy (VASO) and
(C) arterial spin labeling (ASL) data, including sensorimotor, auditory, primary visual, higher visual, default mode, salience and left/right executive control networks.

sensorimotor and the salience network in ASL had higher
connectivities.

The numbers of active voxels with a t-value >7.68 in BOLD,
VASO and ASL network maps are presented in Figure 2A.
The summed t of these active voxels is presented in Figure 2B
and the averaged t (summed t/number of active voxels) is
presented in Figure 2C. It can be observed that in most of
the networks, again with the exception of the higher visual
network, BOLD has the highest number of active voxels, and
the summed t-scores, VASO remains in the middle and ASL

has the lowest values. In the sensorimotor network and salience
network, BOLD has the highest active voxel number and
summed t-scores, ASL stays in the middle and VASO has the
lowest value. In the higher visual network, VASO has the highest
active voxel number and summed t-scores while ASL has the
lowest value. Averaged t-scores show similar values between
different contrasts. Figure 3 shows the averaged spectra from
all subjects. The frequency domain representation of the time
courses shows that the spectral energy of BOLD fluctuation
mostly falls into the low-frequency range from 0.01 Hz to
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FIGURE 2 | (A) The numbers of active voxels with t value >7.68 in BOLD,
VASO and ASL network. (B) The summed t and (C) averaged t of these active
voxels in different networks.

0.04 Hz. However, the spectral energy of ASL fluctuation shows
more high-frequency oscillations in the default mode network.
In addition to the low frequency, the high-frequency range
of the ASL fluctuation is between 0.08 Hz and 0.16 Hz in
the default mode network. Since the fluctuation components

of BOLD, and although CBF signals are well separated in the
frequency domain, BOLD contamination in the CBF signal
can be suppressed by a high-pass filtering of the ASL data.
As shown in Figure 4, similar networks can be identified
in the correlation matrices. The functional networks around
AAL regions, i.e., region number 12 (Frontal_Inf_Oper_R), 27
(Rectus_L), 40 (ParaHippocampal_R), 50 (Occipital_Sup_R), 60
(Parietal_Sup_R), 75 (Pallidum_L), 80 (Heschl_R), are found
to be significant using the t-test (p < 0.05) in all contrasts
(Figure 4).

DISCUSSION

The measurement of FC in the brain has attracted tremendous
interest in the neurosciences as well as in clinical practice.
For this purpose, BOLD imaging has been widely used in
resting-state fMRI studies. BOLD has high sensitivity and
is easy to implement. However, BOLD signal fluctuations
represent combined changes in blood oxygenation, CBV, CBF
and CMRO2, making it challenging to interpret the BOLD
signal (Davis et al., 1998; Hoge et al., 1999; Buxton et al.,
2004). Furthermore, CBV and CBF-based signals provide better
spatial localization than the BOLD signal (Jin and Kima, 2008;
Donahue et al., 2009). Therefore, imaging of less-confounding
physiological parameters, such as CBV or CBF, is needed for
further investigation.

In this work, resting-state brain activation detected using
BOLD, CBV and CBF were compared. The spontaneous
fluctuation of the CBV-weighted signal was measured using
whole-brain 3D GRASE based VASO imaging. Compared to
GE-EPI BOLD, the 3D-GRASE sequence used for VASO has a
comparable temporal resolution, higher SNR and is less sensitive
to susceptibility-induced image distortions. Quantitative CBF
was measured using a 2D EPI-based pCASL sequence. High
perfusion sensitivity was achieved by using a long labeling pulse.
Subtraction of surrounding tissue was used to achieve a similar
temporal resolution to BOLD. High-pass filtering was added into
the post processing of CBF to suppress BOLD fluctuations.

ASL usually has reduced sensitivity to neural activity
compared to BOLD due to the lower SNR (Viviani et al., 2011;
Chen et al., 2015). In this study, VASO has been shown to be
more sensitive than ASL and less sensitive than BOLD in most of
the networks. One reason behind this phenomenon is the lower
SNR caused by the subtraction of images in ASL. In ASL, the
perfusion contrast comes from the subtraction of successively
acquired images: one with and one without the labeling of arterial
spins after a delay time. The subtracted signal is on the order
of 1% of the baseline signal, and the resting-state fluctuations
cause merely an additional fractional change. After comparing
temporal SNR (tSNR) with BOLD, VASO and ASL, it was found
that BOLD has the highest tSNR (in the range of 0–350), VASO
is in the middle (in the range of 0–300) and the CBF of ASL
has the lowest tSNR (in the range of 0–8), as presented in
Figures 5, 6. The order of tSNR scores coincides with the order of
the sensitivity of the functional activity in the resting-state from
each contrast-based measurement. ASL has the added advantage
that CBF is fully quantitative, while VASO and BOLD are not.
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FIGURE 3 | Averaged spectra of unfiltered BOLD, VASO and ASL signals in the default-node network (B) and primary visual cortex (A) of all subjects.

FIGURE 4 | (A) Functional connectivity (FC) matrices (correlation coefficient R) derived from the BOLD, VASO and ASL. (B) The respective R2 matrices. Similar
networks (red box) are identified by the three contrasts.
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FIGURE 5 | Temporal signal-to-noise ratio (tSNR) maps of BOLD, VASO and cerebral blood flow (CBF) based ASL from a representative subject. BOLD has the
highest tSNR at the range of 0–350, the tSNR of VASO is in the range of 0–300 and ASL has the lowest tSNR in the range of 0–8.

FIGURE 6 | tSNR curves of three different contrasts along subjects. Mean
values are marked with circles and standard deviations are shown as error
bars.

The seed-based analysis of the BOLD, VASO and ASL resting-
state data produced similar networkmaps (Figure 1). Differences
mainly exist in the higher visual network of VASO and the
sensorimotor network, and also in the salience network resulting
from ASL. CBF connectivity was found to be less extensively
distributed than BOLD connectivity, which supports the findings
of previous studies (Viviani et al., 2011; Chen et al., 2015).

According to the number of active voxels and summed t-scores
at t > 7.68, ASL shows higher values in the sensorimotor network
and the salience network than in VASO. This suggests that
CBF-based measurements may provide better sensitivity for
detecting resting-state functional activity than VASO in these
networks. One reason behind these phenomena is the short
post-labeling delay (PLD) used in the ASL sequence. Although
a long delay is favorable to obtain more accurate values for white
matter CBF, it leads to a lower SNR owing to the magnetization
decay. Higher SNR due to the short PLD increases the sensitivity
of ASL in detecting the resting state networks. A short PLD will
underestimate the perfusion in regions with long blood arrival
time (BAT), such as white matter. Long PLD can ensure that the
majority of the voxels are filled with blood but leads to decreased
SNR due to signal decay (Zhang et al., 2014). With a short PLD,
there is a significant large-vessel contribution to the functional
CBF (fCBF) signal (Gonzalez-At et al., 2000; Zappe et al., 2008).
At lower resolutions (lower than 1 × 1 × 2 mm), a shorter PLD
can lead to increased t-values. At high resolutions, a long PLD is
needed to decrease the fCBF arising from vessels. The BAT in the
above networks could be lower than in other networks. In future
studies, the PLD needs to be carefully decided based on the BAT
in the ROIs to be accessed.

In comparison to BOLD, VASO active regions are more
confined, partially due to reduced contributions from large
vessels (Magnuson et al., 2010; Kim and Ogawa, 2012). The
3D-GRASE VASO sequence is intrinsically spin-echo weighted
with a short TE. Compared to the gradient-echo readout,
the spin-echo signal sensitivity is significantly reduced due to
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the refocusing of the dephasing effect around large vessels.
Both BOLD and ASL techniques in this study are based
on GE EPI readouts. GE BOLD sensitivity for FC is larger
compared to SE BOLD, and has been demonstrated in a
small number of studies (Bandettini et al., 1994; Chiacchiaretta
and Ferretti, 2015). T2 weighted SE sequences have been
proposed as an interesting alternative when increased functional
localization to the capillary bed is desired. This is because static
dephasing effects around larger vessels are refocused by the
180◦ radiofrequency pulse, trading sensitivity for a higher spatial
specificity for the microvasculature (Norris, 2012). Furthermore,
the sensitivity of VASO is even lower due to the decreased
SNR caused by the inversion pulse. Although 3D-GRASE
VASO has lower sensitivity compared to BOLD, it exhibits less
susceptibility distortion in the air-tissue regions such as those
around the nasal sinuses, orbital frontal lobe and temporal
lobe (Figure 5). SE EPI may, therefore, provide an interesting
alternative for fMRI in regions affected by macroscopic magnetic
field inhomogeneities (Schwarzbauer et al., 2010; Chiacchiaretta
and Ferretti, 2015; Khatamian et al., 2016). In the future,
the same readout for the three modalities should be chosen
for a fair comparison. For VASO, a 3D readout, such as
3D fast GRE (Cheng et al., 2017), is needed for whole brain
coverage.

It is also possible that the dynamics of spontaneous
fluctuations in CBF, CBV and BOLD differ depending on their
location within the brain. In other words, many of these network
differences could be biologically driven rather than being driven
by the specifics of the selected measurement technique.

One limitation of this study is that no respiratory, cardiac, or
pulse oxygenation monitoring took place during scanning, and
thus no RETROICOR type physiological signal correction was
possible post hoc.

For FC analysis, a seed-based approach was applied in
this study instead of independent component analysis (ICA).
ICA decomposes fMRI data into a set of independent spatial
maps and associated time courses and has the advantage
of being a data-driven technique. However, although similar
resting state networks can be obtained with either of the
two analysis methods (Van Dijk et al., 2010), recent studies
suggest that the seed-based method offers greater reliability
and reproducibility of connectivity measures at the individual
subject level (Franco et al., 2013). Since there is still a
possibility that CBF-specific or CBV-specific networks could
emerge from the data if a novel seed location were used,
‘‘negative controls’’ need to be performed. Networks from
brain locations known to play no part in any network at all
were extracted. The results from this type of negative control

(Supplementary Figure S1) show no recognized network in all
three modalities.

Except for the fluctuations in the low-frequency range from
0.01 Hz to 0.04 Hz, the spectral energy of ASL fluctuations in the
default mode network show more high-frequency oscillations.
These results are consistent with previous studies (Chuang
et al., 2008; Miao et al., 2014). Unfiltered resting state ASL and
BOLD spectra show well separated BOLD (<0.08 Hz) and CBF
(>0.08 Hz) fluctuations in the frequency domain (Chuang et al.,
2008), suggesting that BOLD contamination in the CBF signal
can be suppressed by high-pass filtering the ASL data.

The correlation matrices of BOLD, VASO and ASL show a
similar distribution of different networks. Further topological
analysis of function networks can be performed based on these
correlation matrices (Stam and Reijneveld, 2007; Melie-García
et al., 2013; Liang et al., 2014).

CONCLUSION

This study demonstrates a comparison of resting-state brain
activation detected by three different contrasts, including
BOLD, CBV and CBF. The non-invasive and non-contrast
agent methods of 3D-GRASE based VASO and pCASL were
used to obtain separate CBV and CBF signals. Reliable brain
networks were detected using VASO and ASL, and included
the sensorimotor, the auditory, the primary visual, the higher
visual, the default mode, the salience and the left/right
executive control networks. Differences between the resting-
state activation detected by ASL, VASO and BOLD might be
technique-dependent due to the different tSNR, the short PLD
in ASL and the spin-echo readout of VASO. It is also possible
that the dynamics of spontaneous fluctuations in BOLD, CBV
and CBF are biologically driven and differ depending on their
location within the brain.
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