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Spontaneous fluctuations of resting-state functional connectivity have been studied in

many ways, but grasping the complexity of brain activity has been difficult. Dimensional

complexity measures, which are based on Eigenvalue (EV) spectrum analyses (e.g., �

entropy) have been successfully applied to EEG data, but have not been fully evaluated

on functional MRI recordings, because only through the recent introduction of fast

multiband fMRI sequences, feasable temporal resolutions are reached. Combining the

Eigenspectrum normalization of � entropy and the scalable architecture of the so called

Multivariate Principal Subspace Entropy (MPSE) leads to a new complexity measure,

namely normalized MPSE (nMPSE). It allows functional brain complexity analyses at

varying levels of EV energy, independent from global shifts in data variance. Especially

the restriction of the EV spectrum to the first dimensions, carrying the most prominent

data variance, can act as a filter to reveal the most discriminant factors of dependent

variables. Here we look at the effects of healthy aging on the dimensional complexity

of brain activity. We employ a large open access dataset, providing a great number of

high quality fast multiband recordings. Using nMPSE on whole brain, regional, network

and searchlight approaches, we were able to find many age related changes, i.e., in

sensorimotoric and right inferior frontal brain regions. Our results implicate that research

on dimensional complexity of functional MRI recordings promises to be a unique resource

for understanding brain function and for the extraction of biomarkers.

Keywords: functional magnetic resonance imaging (fMRI), resting-state fMRI, Rockland sample, healthy aging,

complexity, dimensional complexity, entropy, principal subspace analysis (PSA)

1. INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI) has become one of the main
staples for understanding the functioning human brain (Biswal, 2012). When it comes to basic
principles of brain function, the brain at rest, meaning in the absence of a dedicated task, seems
to be a fruitful resource for brain state interpretations (Zhang and Raichle, 2010). Several studies
demonstrated that, the resting brain is organized into independently acting, as well as interacting
networks (Fox et al., 2005; Damoiseaux et al., 2006; Fox and Raichle, 2007; Smith et al., 2009;
Binder, 2011; Shirer et al., 2012). Undoubtedly, the human brain is one of natures most complex
information processing systems, but finding a measure to describe this complexity has been
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difficult (Sokunbi, 2016). Analyzing age-related changes in brain
function is a nonetheless complex endeavor (Brodoehl et al.,
2013).

Methods for studying the dimensional complexity of brain
activity were already introduced for EEG-Data in the nineties,
e.g., �-Entropy (Wackermann, 1996). As fMRI data quality
and temporal resolution has increased significantly through
multiband MRI sequences (temporal resolutions of whole brain
recordings at a TR of ≈1s are easily achievable), these measures
might now be of great value to understand the complex
organization of brain function. Also with the help of online
data sharing initiatives, like the 1,000 functional connectomes
project1, access to vast amounts of high quality resting-state fMRI
datasets has never been easier.

Predominantly, temporal patterns in rs-fMRI recordings are
analyzed using linear correlation methods, averaging multiple
voxel time courses to generate so called functional connectomes,
neglecting non-linear temporal relations. This restriction to
linearity might not be advised, as demonstrated by Pritchard
et al. (2014). Using a non-linear information theory approach
(cross-sample entropy) Pritchard et al. found the brain to be
organized in “mega-hubs” with a scale-free degree distribution.
In a review manuscript Sokunbi (2016) provides an overview
on non-linear information theory based techniques, analyzing
complexity of fMRI data in healthy aging, cognitive performance,
Alzheimer’s disease, attention deficit hyperactivity disorder
(ADHD), schizophrenia and multiple sclerosis. Nevertheless,
these approaches, based on Shannon entropy, operate on singular
voxel (or averaged) time courses, some information theory
approaches have extensions to two or multiple time courses but
the immense computational demands to these measures make it
almost impossible to get a holistic overview of brain states and
brain complexity.

Here we want to introduce a new, whole brain complexity
measure, analog to �-Entropy (Wackermann, 1996) but with
adaptations to fit the needs of rs-fMRI. Like �, the normalized
Multivariate Principal Subspace Entropy (nMPSE) uses the
Eigenvalue spectrum of a subjects time and space data matrix.
Contrary to �, nMPSE can be restricted in the amount of used
EV energy, so that only the k dimensions with the highest
variances are taken into consideration. Thus it is possible to
reduce the state space to the most important dimensions. MPSE
(not normalized), was shown to be efficient in differentiating
between task and non-task periods in a task based fMRI study
(Schütze et al., 2012). However, in a resting state scenario, due to
the lack of normalization,MPSE is not independent of global data
variance changes. Supplementary Figure 9 illustrates this effect
on simulated data: While global data variance increases, MPSE
also increases, nMPSE on the contrary, is not susceptible to this
effect and stays constant even in the advent of global changes in
data variance. Global variance is strongly influenced by multi-
variate noise, at the foremost, subject motion. Even advanced
artifact reductionmethods like ICA-AROMA (Pruim et al., 2015)
and multiband adapted physiological noise regression (Scheel

11000 Functional Connectomes Project datasets are freely accessible at www.nitrc.

org/projects/fcon_1000/.

et al., 2014a) are not able to fully eliminate this effect (Scheel et al.,
2014b). In addition to physiological noise, global data variance is
even more likely to modulate MPSE on real data, which would
make any systemic interpretation very difficult. Thus, in this
manuscript we will focus on normalized complexity measures,
i.e., nMPSE and �, which are not predisposed to this effect.

With direct relation to independent component
analysis (ICA) of spatial Resting-State-Networks (RSNs)
and corresponding Temporal-Functional-Modes (TFMs)
(Damoiseaux et al., 2006; Smith et al., 2012), dimensional
complexity measures, such as nMPSE and �, aim to quantify
the dynamics that drive functional brain networks: Assuming
all networks are operating in approximately the same dynamic
states, i.e., if energy is evenly distributed over all brain activity
patterns, overall entropy is expected to be high. If there is a clear
focus on one (or a few) networks, overall entropy of the system
will be small. With measures as such, it would thus be possible
to characterize the organization of temporal processes in the
human brain.

Changes in brain organization due to healthy aging have been
reported in several studies (e.g., Brodoehl et al., 2013; Beason-
Held et al., 2016; Goldstone et al., 2016; La Corte et al., 2016; He
et al., 2017; Peterson et al., 2017; Siman-Tov et al., 2017; Tremblay
et al., 2017; Zhuang et al., 2017; Zhu et al., 2017). In accordance to
Liu et al. (2013), Toussaint et al. (2014), and Sokunbi et al. (2015)
non-linear brain complexity measures, derived from information
theory, find changes in brain complexity as a result of healthy
aging as well. This makes aging a perfect example to study
holistic changes in brain complexity, as we expect dimensional
complexity also to be affected by aging. With nMPSE applied to
healthy aging, as a proof of concept, we want to demonstrate
that dimensional complexity measures can be used to describe
changes in brain organization, due to external factors. We want
to advocate this unique way of looking at brain function, as a
method that might give rise to biomarkers of neurodegenerative
diseases, as well as a tool to describe basic brain function.

2. MATERIAL AND METHODS

2.1. Nathan Kline Institute Rockland
Sample
We used the so called Rockland sample (Nooner et al., 2012), a
public dataset from the Nathan Kline Institute, that provides a
community sample of a great number of subjects that underwent
a multitude of scanning protocols. In the scope of this study
we employed the multiband session with a spatial resolution of
2 × 2 × 2 mm, a TR of 1,400 ms and 404 volumes. All Rockland
sample subjects from releases 1–4 (of now 10 releases), who
were at least 18 years of age and had a maximum movement
displacement of 3 mm were included. This lead to 186 viable
subjects with a mean age of 46.6 (standard deviation = 18)
years. The dataset also provides physiological recordings (heart
rate and breathing), which were removed from the fMRI
data using the multiband adapted version of RETROICOR-
RVHR (Scheel et al., 2014a). Further preprocessing steps
included head motion realignment (McFlirt, Jenkinson et al.,
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2002), brain extraction (BET, Smith, 2002) and 4mm isotropic
smoothing (SUSAN, Smith and Brady, 1997), all from the FMRIB
Software Library - FSL (Jenkinson et al., 2012). Remaining
head motion induced artifacts were further reduced using ICA-
AROMA (Pruim et al., 2015). All subsequent preprocessing
steps were carried out using the Data Processing Assistant
for Resting-State fMRI (DPARSFA) V4.3 (Chao-Gan and Yu-
Feng, 2010). These steps consisted of cropping and reorienting
the T1 anatomical volumes, co-registration of functional and
anatomical volumes, functional volume normalization to MNI
space using DARTEL (Ashburner, 2007), regression of nuisance
covariates (linear trends, cerebro-spinal fluid and white matter
signals) as well as temporal bandpass filtering from 0.01 to
0.08 Hz.

2.2. Dimensional Complexity Measures
A series of rs-fMRI volumes can be seen as an abstract
geometrical representation of neurological states at discrete
moments in time. This representation is known as the state
space (Wackermann, 1996). It can be described by a matrix
X = [Ex1, ..., Exn] ∈ R

d x n, where d equals the amount of
data points for each discrete moment in time n of all N time
points. Principal Component Analysis - PCA (Jolliffe, 2002)
can be used to find an orthonormal system of base vectors,
so that any data vector Exn ∈ X can be expressed as a
linear combination of orthonormal base vectors. For this, PCA
calculates the Eigenvectors Ev1, ..., Evd−1 of the covariance matrix
C, which is defined by

cij =
1

N

N∑

n= 1

(Exin − X̄)(Exjn − X̄),

where X̄ is the mean of X. The magnitude of an Eigenvalue
(EV) λi of the corresponding Eigenvector Evi, correlates with
the variance of the data in direction of Evi (Jolliffe, 2002).
This leads to multiple boundaries: firstly the trivial (n − 1)
boundary, where all EVs greater than n = min[dim(x), dim(y)]
are zero. By removing all Ev where the EVs are zero, a loss-
less reduction and optimal projection of the original data,
into a space of lower dimension can be achieved. The second
threshold lies below the (n − 1) boundary: here we define it
at the point, where the summed energy of the EV spectrum
reaches 99%. Depending on the EV distribution, it might be
the case, that 99% of EV energy is reached with a fraction
of all possible (n − 1) EVs. The remaining dimensions, above
this boundary, are usually interpreted as additive noise and
discarded. Boundaries, set at even lower percentages of EV energy
are probably the most interesting ones: they only use the first
dimensions, carrying the most prominent data variance. While
the 99% boundary can be seen as a noise filter, lower boundaries
might give an interesting insight into the most discriminating
dimensions.

The first measure of dimensional complexity we use, is
�-Entropy (Wackermann, 1996):

�(X) = 2−
∑d

i= 1 λ
′
i·log2(λ

′
i).

It uses the information of the proportions between all EVs
(normalized to a unit sum):

λ
′
i =

λi

s
, s =

d∑

i= 1

λi.

A dimensional complexity measure, that allows scalable levels
of EV-energy is called Multivariate Principal Subspace Entropy
(MPSE) and was introduced by Schütze et al. (2012).WithMPSE,
it is possible to restrict the number of EVs, using a parameter k:

MPSEk(X) =
1

2

k∑

i= 1

ln(λi)+
k

2
(1+ ln(2π)),

Using normalized Eigenvalues λ
′ (as used with �) instead of λ

adds a normalization step to the k-scalable MPSE and leads to the
normalized Multivariate Principal Subspace Entropy (nMPSE):

nMPSEk(X) =
1

2

k∑

i= 1

ln(λ′i)+
k

2
(1+ ln(2π)),

where λ
′
i =

λi

s
, s =

k∑

i= 1

λi.

Here only the k largest EV dimensions (normalized to a unit sum)
are taken into consideration. Supplementary Figure 9 shows a
simulation of �, MPSE and nMPSE, displaying the invariance
of nMPSE and � to global shifts in data variance. A Matlab
implementation of nMPSE can be found in the Supplementary
Material.

2.3. Brain Parcellation, Complexity and
Aging
In order to examine and study complexity of the aging brain,
we used different brain parcellation approaches. The Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002)
consists of 90 anatomical brain regions. Merging all 90 regions
results in a full brain mask, subsuming all cortical brain regions.
This mask served for whole brain analyses. The next approach
examined complexity on each anatomical region separately.
Here brain complexity was computed within each single AAL
region. As a counterpart to anatomical parcellation, we also
calculated complexity on functional network level by using the
resting-state network atlas by Shirer et al. (2012). Here, we
retrieved a complexity measure for each of the 14 resting-state
networks. An even more fine-grained picture was achieved by
employing a computationally demanding search light approach.
For every voxel (search light) a sphere with a radius of 10 mm
was created. This way we were able to calculate complexity
within each of these spheres and assign a complexity value to
every single voxel of the brain. Finally, to find a connection
between brain complexity and biological age, we calculated the
corresponding Pearson correlation of complexity and age for
each parcellation approach. To evaluate statistical significance we
used permutation tests and corrected for multiple testing using
the Bonferroni method (Bonferroni, 1936). Figure 1 provides an
overview of all different steps carried out.
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FIGURE 1 | Workflow: after preprocessing, parcellation I was used for whole brain, II for anatomical regions, III for functional networks and IV for searchlight analyses.

Each analysis consisted of calculating � (using all EVs) and nMPSE (using EVs that range from 1 to 99.99% of the summed EV-energy), followed by a correlation with

corresponding subject ages and tests for significance.

FIGURE 2 | Cumulated EV spectrum, normalized to a unit sum, of all subjects (mean and standard deviation), showing multiple boundaries of the cumulated EV

energy for 1–90 of 403 (min(160990 voxel, 404 time steps)-1) possible non-zero EVs resp. principal components - PCs.

3. RESULTS

Dimensional complexity measures, � and nMPSE alike, are
based on a subjects Eigenvalue (EV) spectrum. Figure 2 displays

the cumulated, whole brain, EV spectrum, normalized to a unit
sum, showing the mean of all subjects with the corresponding
standard deviation. As expected, 99% of Eigenenergy are reached
using just a fraction of all possible non zero EV dimensions,
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FIGURE 3 | Whole-Brain complexity vs. age correlation for � and nMPSE (nMPSE labels show k-value and the corresponding percentage of the cumulated EV

energy). Stars denote corrected significance levels with *p ≤ 0.05, **p ≤ 10−2, and ***p ≤ 10−3.

namely 70 of 403. Already the first 6 dimensions make up for
50% of data variance, while 75% of Eigenenergy is represented
in the first 20. This is in line with the expectation, that most
of the data variance is dominated by resting-state network
activity, as previous studies reported approximately 20 non-
noise components, subsumming the activity of 14 resting-state
networks (Shirer et al., 2012).

The next steps consist of analyzing the correlation of
functional brain complexity and the subjects actual ages. Here,
complexity is measured by either � (using the complete EV
spectrum of each subject) or nMPSE (using k-thresholded EV
spectra of each subject). In line with Figure 1, the following
results are sectioned into the four different parcellation strategies:
the analysis of whole brain functional complexity, followed by
(hypothesis driven) anatomical regions, as well as functional
resting-state networks, culminating in hypothesis free, whole-
brain - small neighborhood search lights.

We can report a strong significant correlation for whole-brain
� entropy and age (p ≤ 10−3, incl. Bonferroni correction), see
Figure 3. Note that � uses all dimensions, meaning the complete
EV spectrum to calculate the complexity. On the contrary, whole-
brain nMPSE results show that 50% of EV energy (meaning
using only the first six dimensions) already yield a significant,
yet not strong correlation of nMPSE and age (p ≤ 0.05).
Adding dimensions causes nMPSE-age correlation to increase.
At roughly 91% of EV energy (45 components), nMPSE is on
par with �, even surpassing it with more added EV energy.
Using these observations, we can now try to identify EV energy
bands, prone to age related changes and it turns out that the age
effect is not restricted to some, or only the first few dimensions,
as one would expect with 14 dominant resting-state networks.
Apparently all meaningful whole brain components are affected
by age related changes.

As global, whole brain, age effects are quite distributed over
the EV spectrum, the question arises, if there is a spatial
effect of different separate substructures of the brain. Looking

at complexity within single anatomical regions, essentially
replicates the finding of whole-brain effects (Figure 4). On
average, � vs. age correlation is strongly significant (using
the complete EV spectrum), while nMPSE vs. age correlation
depends on the amount of EV energy used. The mean
characteristic curve of nMPSE, subject to k, reaches � level
at the intersection point of 81% of EV energy. Also, nMPSE
significantly surpasses �, reaching r = 0.4 using 99% of EV
energy. Again, we need a k higher than we would expect from
Figure 2, to obtain an nMPSE-age correlation in the range of �

vs. age.
Additionally, even though the whole-brain effect is replicated

on average with AAL regions, age-complexity correlations are
regionally very diverse. Some regions show a strong significant
complexity-age correlation, others do not. All in all, 81 (of 90)
reach a significant complexity-age correlation using nMPSE, 71
using �. All 9 regions, not reaching significance with nMPSE,
are a subset of the 19 regions not reaching significance with
�. Furthermore, for regional nMPSE, very different amounts of
EV energy are needed, see Figure 5. Some regions only demand
very few dimensions, whereas others take up almost all of the
EV energy to reach significance: e.g., the right insula or the
right lingual AAL region only need the first two dimensions,
corresponding to 29% of EV energy, in contrast, the right angular
gyrus needs 74 components at 99% of EV energy. Most of
the regions using less than the first 50% of EV energy, reach
significance with only 2 or 3 dimensions. Supplementary Table 3

provides a lookup table for the results of each anatomical brain
region.

An alternative to anatomical brain parcellation is a functional
approach, dividing the brain into functional rather than
anatomical units, namely resting-state networks. Analyzing the
age-effect from this point of view (Figure 6), we found that, as for
anatomical regions, some networks are significantly correlated
even for small k, others are more demanding. The Sensorimotor
network needs the smallest number of dimensions to decode
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FIGURE 4 | Mean age vs. complexity correlation for all anatomical regions. Using the first 50% of EV energy (the first 6 dimensions), nMPSE reaches significance. At

this point the correlation for nMPSE is lower than for �. Adding dimensions, nMPSE surpasses � at 28 dimensions (81% of EV engery), the so called �-nMPSE

intersection point. A dent at 82 dimensions represents the 99.99% EV energy boundary.

FIGURE 5 | AAL regions, reaching a significant age/complexity correlation (r = 0.2, approximately) at diverse levels of EV energy. Some regions need extremely few

dimensions, others need almost all EV energy available to reach significance. See Supplementary Table 3 for a listing of AAL regions with corresponding

dimensionality results.

the age difference, whereas the left executive control network
needs most of the EV energy to reach significance. Again,
keep in mind that � uses the whole EV spectrum and reaches
strong age correlations in all resting-state networks but one:
Remarkably, corresponding to the AAL regions, the higher visual
network did not show a significant correlation for � or nMPSE
at any k.

Finally, in order to have an hypothesis free grasp of brain
regions, displaying complexity changes due to healthy aging, we

look at whole brain, local neighborhood searchlights: Figure 7
shows the voxel populations yielding the highest age-complexity
correlations, subject to the different levels of used EV energy.
Figures 7A–D show, that using 99% of EV energy leads to wide
spread, strong positive correlations between age and nMPSE.
Table 1 lists the top ten voxel coordinates with corresponding
locations and r values. On the contrary Figures 7E–H, using
only 50% of EV energy, show a more concise view of aging
effects, as only the first six dimensions were taken into
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FIGURE 6 | Resting-state networks, reaching a significant age/complexity correlation (r = 0.2 approximately) at diverse levels of EV energy. Some networks need

extremely few dimensions (below the 50% threshold), others need quite a lot of EV energy. L/RECN marks the left/right executive control network, d/vDMN the

dorsal/ventral Default Mode Network.

A B C D

E F G H

FIGURE 7 | Searchlights for nMPSE k = 76 (99% of EV energy) and k = 6 (50% of EV energy). (A) Right hemisphere, 99% EV energy, r > 0.45. (B) Left hemisphere,

99% EV energy, r > 0.45. (C) Right hemisphere, 99% EV energy, r > 0.45. (D) left hemisphere, 99% EV energy, r > 0.45. (E) Right hemisphere, 50% EV energy,

r > 0.35. (F) Left hemisphere, 50% EV energy, r > 0.35. (G) Right hemisphere, 50% EV energy, r > 0.35. (H) Left hemisphere, 50% EV energy, r > 0.35.

consideration. Table 2 gives the corresponding list of top ten
voxel coordinates. Results for � and intermediate nMPSE results
(at different k levels) can be found in the Supplementary
Material. Essentially, regional and network results are replicated

by the searchlight approach. It seems like there is a filter-
like transition from small k to big k: small regions grow
naturally, while k increases. Small k regions appear to be
seeds for larger k regions. Additionally some regions only
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TABLE 1 | Top 10 significant voxels for nMPSE (k = 76, 99% of EV energy)

searchlights.

X Y Z r AAL Region

48 18 18 0.6664 Frontal Inf Tri R

6 8 50 0.6272 Supp Motor Area R

−58 −32 48 0.619 Parietal Inf L

28 6 56 0.6179 Frontal Mid R

−58 12 18 0.6119 Frontal Inf Oper L

46 −36 58 0.601 Postcentral R

62 −24 42 0.5983 SupraMarginal R

−20 8 58 0.5766 Frontal Sup L

−8 −38 28 0.5663 Cingulum Post L

−30 32 20 0.5662 Frontal Mid L

TABLE 2 | Top 10 significant voxels for nMPSE (k = 6, 50% of EV energy)

searchlights.

X Y Z r AAL Region

10 8 56 0.5352 Supp Motor Area R

32 24 −12 0.5165 Frontal Inf Orb R

46 16 16 0.4924 Frontal Inf Oper R

−62 10 16 0.4852 Frontal Inf Oper L

−24 −40 −12 0.4814 Fusiform L

−6 8 0 0.4803 Caudate L

24 −40 64 0.4784 Postcentral R

−6 4 50 0.4732 Supp Motor Area L

18 −26 66 0.4718 Precentral R

−18 −24 64 0.4718 Paracentral Lobule L

appear when using higher k values (see frontal regions of left
hemisphere).

4. DISCUSSION

Looking at the results, we can see that dimensional complexity
measures, describing the entropy of (sub-)spaces of a subjects
Eigenvalue (EV) spectrum, can be successfully deployed on
resting-state fMRI data, in order to find subtle differences in
the organization and complexity of brain function. In addition
to � for fMRI (initially introduced by Wackermann in 1996
for EEG analysis) we introduced and evaluated the normalized
Multivariate Principal Subspace Entropy (nMPSE) for resting-
state fMRI data. One of the main differences between � and
nMPSE is the fact that, with nMPSE we can analyze entropy at
different levels of k, i.e., for subsets of Eigenvectors (subspaces).
This becomes especially interesting in the scope of resting-state
networks, because we expect them to be related to the most
variant principal components (PCs). Resting-state networks have
been studied in many ways and have proven to be consistent
across multiple data sets, as 10–20 components are reliably
identified as parts of the 14 resting-state networks (Damoiseaux
et al., 2006; Shirer et al., 2012). Looking at the averaged
Eigenspectrum in Figure 2 we see a close resemblance to these

findings: 20 components make up for 75% of cumulated EV
energy, thus most of the data variance can be attributed to a
comparable number of components.

As a proof of concept, we looked at the effects of healthy
aging on dimensional complexity measures. In the following,
we discuss the results of the whole brain functional complexity
analysis. To further discern the contribution of substructures
of the brain to the aging effect, we then discuss the results for
functional networks as well as anatomical regions. The results
of the regional hypothesis free, local neighborhood, whole brain
searchlights will be discussed thereafter.

Whole brain functional complexity analysis (Figure 3)
illustrates that, the first 10 dimensions, accounting for more
than 50% of information, already include major age-related
changes. The remaining dimensions cover the other half of the
age-related effects. Routinely the analysis would be limited to
30 dimensions (approx. 85% of data variance) for comparable
component based analyses. Doing so, barely leads to a stronger
correlation. We found that nMPSE becomes more and more
discriminative for a growing k at values even larger than 30.
This indicates that all dimensions are changed by age-related
processes, and not only the principal components with the
largest Eigenvalues. Obviously there is a lot of discriminative
information in higher dimensions with lower variance. In other
words, the age-related correlation is not depending on just
some prominent factors (e.g., single resting-state networks) but
it seems like a globally distributed effect, that is independent
of global variance (ruled out through normalization in � and
nMPSE).

Not surprisingly, therefore all networks (except the higher
visual network) showed a significant correlation between �

and age. Using nMPSE, we could further examine the amount
of EV energy needed to reach this significance. Here the
higher visual network also never shows a significant correlation
to age, which goes along with the observations using AAL
regions. A closer look at Figure 6 reveals, that basic networks
(i.e., sensorimotor, basal ganglia, and auditory), only need
a small number of dimensions. Higher-order networks (i.e.,
executive control or language) need a lot more EV energy.
One possible interpretation would be, that age-related changes
for basic networks occur already in the first PCs of those
networks, while higher order network changes along age, are
wide-spread over many components. The dissent between the
language network results here and respective areas from the
AAL or search light based approach, can be explained by
the fact, that the language network map is comprised of
multiple language processing areas, while for the AAL and
search light approach specific language related regions are tested
separately.

We were able to replicate these findings quantitatively for
all tested parcellation approaches. Specifically, using the AAL
atlas demonstrated that, on average, we also need most of
the components to retrieve a strong significant complexity-
age correlation. Looking at AAL regions separately, we see
that some yield significant correlations, using only the most
dominant PCs (k ≤ 6). It seems, that areas naturally attributed
to aging are also needing the least amount of EV energy to
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FIGURE 8 | The Eigenvalue spectrum in younger subjects is comprised of few components with high and many components with low Eigenvalues, resp. variances in

the direction of the corresponding Eigenvectors. On the contrary, the spectrum for elderly subjects is more leveled and not so much dominated by single components.

This leads to younger subjects having a lower Eigenvalue spectrum entropy than older subjects, resulting in a positive significant age - nMPSE correlation (for

demonstration purposes EV spectra are displayed in an exaggerated manner, as true differences in EV distributions are subtle).

yield a significant result. Most interestingly areas responsible
for motion control and motor processes, cognitive processing
and decision making, memory encoding and retrieval, decision-
making, emotions, language processing, inhibitory control and
regulation of sleep as well as alertness (namely putamen,
orbifrontal cortex, parahippocampal gyrus, amygdala, caudate
nucleus and thalamus) are displaying the strongest correlations
and are in line with other publications reporting aging effects
in the brain (e.g., Brodoehl et al., 2013; Zhuang et al., 2017;
Zhu et al., 2017). On the contrary, areas for processing
visual information like calcarine, cuneus, angular gyrus among
other occipital regions need almost all EV energy if they
reach significance at all, hinting at an age independence, see
Supplementary Table 3.

Employing the searchlight approach, we tried to understand
how the spatial distribution of the complexity-related age-
correlation looks like, without prior parcellation into regions or
networks. Figure 7 shows that the positively correlated regions
are not randomly spread over the whole brain. When visualizing
the searchlight results for 99% EV energy, clusters in large
frontal inferior and sensorimotor areas become apparent. These
regions seem to shrink when we remove more and more
Eigenvectors from nMPSE, leaving only some small, concise
areas, congruent to previous results (compare Table 1 and
Table 2). Also, for only 50% of EV energy, the significant
regions are not randomly scattered within the regions reaching
significance with 99% of EV energy, but seem to be seed regions
to those.

Finally, the question might arise, why brain entropy is
positively correlated with age. Is brain activity in older brains
really more complex? Here, we have to take a closer look
on the exact meaning of complexity. A signal is less complex
(or has a lower entropy) if the signal is dominated by only
a few strong components, e.g., sensory networks for younger

subjects. If then in older brains other (possibly compensatory)
tasks become more demanding, the EV energy would be more
equally leveled and thus lead to a higher entropy. From this
perspective the signal is more complex. Mathematically spoken,
this effect can be explained by a more equally distributed EV
spectrum for the elderly subjects, and thus leading to a higher
entropy for an increasing k in respect to younger subjects
(see Figure 8). Another scenario that might have been possible
is, that using only the first dimensions leads to high age-
complexity correlations and adding more and more dimensions
diminishes correlation strength. This would mean that most
of the information, relevant for aging, would be encoded in
the first dimensions. So, in a way, the characteristic curve of
nMPSE describes the distribution of the investigated problem
on dimensional subspaces. Especially the intersection point of
� and nMPSE might be of great value, as it could be used as
a biomarker, for instance comparing early and later stages of
neurodegenerative diseases.

In summary, the analysis of dimensional complexity of
resting-state functional connectivity promises to be a fruitful
resource for finding biomarkers. Here, healthy aging served as
a proof of concept to provide a method to further study human
brain complexity. The intersection point of � and nMPSE might
be a way to compare the complexity of different problems,
e.g., Parkinson’s disease progression vs. healthy controls or
earlier vs. later stages of Alzheimers disease. Another interesting
research question might be the performance of a modified,
k restricted �, compared to nMPSE, as well as a detailed
analysis of the properties of dimensions with close to zero
Eigenvalues, which are discarded in nMPSE. A windowed
approach, looking at temporal dynamics, might reveal different
complexity states and help understanding temporal processes
in the brain (especially for task experiments). Answering these
questions are computationally very demanding and out of the
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scope of this first publication, but might be very insightful in the
future.
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