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Goal: We aimed to identify electroencephalographic (EEG) signal fluctuations within
independent components (ICs) that correlate to spontaneous blood oxygenation level
dependent (BOLD) activity in regions of the default mode network (DMN) during
eyes-closed resting state.

Methods: We analyzed simultaneously acquired EEG and functional magnetic resonance
imaging (fMRI) eyes-closed resting state data in a convenience sample of 30 participants.
IC analysis (ICA) was used to decompose the EEG time-series and common ICs were
identified using data-driven IC clustering across subjects. The IC time courses were
filtered into seven frequency bands, convolved with a hemeodynamic response function
(HRF) and used to model spontaneous fMRI signal fluctuations across the brain. In
parallel, group ICA analysis was used to decompose the fMRI signal into ICs from which
the DMN was identified. Frequency and IC cluster associated hemeodynamic correlation
maps obtained from the regression analysis were spatially correlated with the DMN. To
investigate the reliability of our findings, the analyses were repeated with data collected
from the same subjects 1 year later.

Results: Our results indicate a relationship between power fluctuations in the delta,
theta, beta and gamma frequency range and the DMN in different EEG ICs in our
sample as shown by small to moderate spatial correlations at the first measurement
(0.234 < |r| < 0.346, p < 0.0001). Furthermore, activity within an EEG component
commonly identified as eye movements correlates with BOLD activity within regions of
the DMN. In addition, we demonstrate that correlations between EEG ICs and the BOLD
signal during rest are in part stable across time.

Discussion: We show that ICA source separated EEG signals can be used to investigate
electrophysiological correlates of the DMN. The relationship between the eye movement
component and the DMN points to a behavioral association between DMN activity
and the level of eye movement or the presence of neuronal activity in this component.
Previous findings of an association between frontal midline theta activity and the DMN
were replicated.

Keywords: fMRI, EEG, independent component analysis, EEG independent component clustering, default mode
network
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INTRODUCTION

Synchronous low frequency fluctuations in the blood
oxygenation level dependent signal (BOLD) as measured
by functional magnetic resonance imaging (fMRI) during rest
have gained considerable interest in recent years (Raichle,
2011). These temporally correlated and spatially organized
large-scale resting state networks (RSNs) can be detected in
the absence of a specific task, are therefore easily obtained
from different populations (e.g., children or patients), and are
consistently identified across subjects (Beckmann et al., 2005;
Fox and Raichle, 2007). In addition, numerous neurological and
psychiatric disorders were shown to be associated with altered
RSN activity and connectivity (Menon, 2011; Mulders et al.,
2015).

Until now, 10–20 RSNs have been consistently identified
(Kalcher et al., 2012; Allen et al., 2018), while especially the
task negative default mode network (DMN) received substantial
attention. Regions of the DMN have a high energy demand
(Raichle, 2011), receive more blood flow (Zou et al., 2009), and
are characterized by their high connectivity (Hagmann et al.,
2008) indicating the importance as network of information
integration (van den Heuvel et al., 2012). Functionally, the
DMN has been associated to operations such as self-referential,
emotional and perceptual processing (Mason et al., 2007;
Coutinho et al., 2016). Methodologically, RSNs are commonly
identified using data-driven independent component analyses
(ICA), which is frequently applied as an unsupervised learning
method that separates mixed signals into maximally statistically
independent components (ICs; Damoiseaux et al., 2006).

While the DMN has been of major interest in cognitive
neuroscience in the last decade, the underlying neuronal activity
remains incompletely understood due to the indirect nature
of the hemeodynamic signal measured by fMRI. This is in
contrast to the signal measured by electroencephalographic
(EEG), which is produced by superposition of synchronous
neuronal electrical activity primarily originating from cortical
pyramidal cells (David and Vince, 2014). At the electrodes
on the scalp, activity from concurrently active brain sources
and non-brain related signals are recorded as mixed signals
through volume conduction (Delorme et al., 2012). As potential
solutions for unmixing the signals, ICA is popular in EEG
research since it allows the reconstruction of the different
source activity time courses by maximizing their statistical
independance. However, it remains difficult to identify common
sources across subjects due to the lack of correspondence in the
time courses, inter-individual variability of scalp topographies,
and unstable ICA results (Huster et al., 2015). Nonetheless,
ICA can lead to physiologically plausible components based on
the assumption that the underlying sources can be modeled as
dipoles (Palmer et al., 2011; Delorme et al., 2012) and similar
components can be identified across subjects by application
of clustering algorithms (Delorme and Makeig, 2004). In
addition, compared to other approaches to reconstruct source
activity that assume a physical head model, ICA has no
assumptions about the underlying physiological structures and
is unsusceptible to individual differences that violate these

assumptions. Simultaneous recordings of fMRI and EEG have the
potential to improve our understanding of the resting state brain
activity and can be used to investigate whether the components
of the different imaging modalities converge.

Several studies have investigated the relationship between
the resting state fMRI and EEG signal by correlating the time
course of EEG frequency band power with the BOLD signal.
Special emphasis was placed on the BOLD correlates of the alpha
rhythm recorded from posterior electrodes, where one of the
most prominent findings is a negative correlation between alpha
activity and posterior regions of the visual cortex (Laufs et al.,
2003a,b; Moosmann et al., 2003; Feige et al., 2005; Gonçalves
et al., 2006). In addition, the correlation between other EEG
rhythms and their interactions with the BOLD signal revealed
different associations with mixed results (Laufs et al., 2003b;
Scheeringa et al., 2008; Tyvaert et al., 2008; de Munck et al.,
2009; Marawar et al., 2017). In particular, it was shown that the
relationship between EEG band power fluctuations and the fMRI
BOLD signal are subjected to large inter- and intra-individual
variability during resting state (Gonçalves et al., 2006; Meyer
et al., 2013). This highlights the importance of replication studies
that investigate the reproducibility of EEG-fMRI associations
over time. With regard to the DMN, frequency band specific
correlations to the BOLD signal were shown in several studies.
During eyes closed rest, regions of the DMN are positively
correlated to beta band fluctuations (Laufs et al., 2003b). In case
of alpha activity, the association to the DMN appears to be state
dependent, since a relationship to the DMN was shown only
during eyes open rest, but not eyes closed rest (Scheeringa et al.,
2012; Mo et al., 2013). In addition, theta activity from a frontal
EEG component is negatively correlated to the DMN during eyes
open rest (Scheeringa et al., 2008). While these studies indicated
an association of single frequencies to BOLD activity in regions
associated with the DMN, it was also shown that RSNs are
characterized by specific mixtures of EEG rhythms, which might
explain the findings in such diverse frequency bands (Mantini
et al., 2007).

Due to the fact that EEG measured at the scalp is a
mixture of several volumes conducted cortical sources, the
origin of the EEG signal, which correlates to the BOLD
signal fluctuations, remains incompletely understood. When
studying the relationship between EEG rhythms and the BOLD
signal on the group-level it appears that large inter-individual
variability in this association leads to inconsistent results
(Gonçalves et al., 2006; Tyvaert et al., 2008). Since most studies
have investigated EEG signal fluctuations on the scalp level,
focusing on EEG source separated signals may lead to more
robust EEG-BOLD relationships across subjects. By analyzing
simultaneously recorded resting state EEG/fMRI we aimed to
examine whether EEG rhythms of source separated signals
correlate with BOLD fluctuations in regions of the DMN.
In addition, we investigated the reproducibility of the results
over time by repeating the analyses with data from the same
subjects recorded 1 year later. We hypothesized, that stable and
reproducible activity within regions of the DMN can be derived
from EEG data which closely resembles the DMN obtained
by fMRI-ICA in the spatial domain. Especially in the light
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of pathophysiological alterations in RSNs commonly observed
in various disorders, the resulting EEG signatures could be
used in therapeutic interventions aiming to specifically influence
localized brain activity in real-time (e.g., neurofeedback; Rogala
et al., 2016).

MATERIALS AND METHODS

Participants
The convenience sample used in this study consisted of
20 experienced meditators (10 females; mean age ± SD:
46.96 ± 12.46 years) participating in a meditation training
program (Timeless Wisdom Training, TWT) and 10 controls
(five females; mean age ± SD: 41.44 ± 14.44 years) without
any meditation experience. TWT participants and controls were
scanned before the training started and after the first year
of the program. These two time-points of measurement will
be referred to as time-point 1 and time-point 2. Both groups
were comparable with respect to their educational background
with 85% of all TWT participants and 90% of all controls
having a degree from a university of applied sciences or higher.
Participants were predominantly right-handed, with one subject
from the TWT group being left-handed. The study was carried
out according to the ethical guidelines of the review board of
the German Psychological Society (DGPs; reference number:
DVUO29092008DGPS) with written informed consent from all
subjects in accordance with the Declaration of Helsinki. The
protocol was approved by the review board of the German
Psychological Society. Participants received reimbursement of
travel expenses and a financial compensation for participation.

Scanning Procedure
The scanning session was identical at both time-points and
divided into two parts. First, an anatomical scan was taken lasting
for around 6 min. Subsequently, the EEG cap and additional
peripheral sensors were attached outside of the scanner. A
40-min functional scan was performed consisting of two 20-min
blocks, a resting state condition, where the participants were
asked to let their mind wander freely with the eyes closed,
followed by a mindfulness meditation condition, where the
subjects focused their attention on the sensations arising around
the nostrils during breathing. Furthermore, the subjects were
instructed to not change their breathing pattern and return
their focus on the breath once they realized an episode of mind
wandering. The second block is not included in the current
analysis.

EEG Data Acquisition
EEG was recorded simultaneously inside the MRI scanner
from the subject’s scalp using 30 sintered Ag/AgCl electrodes
attached to an EEG cap (BrainCap-MR 32 Channels, Easycap,
Hersching, Germany) placed according to the 10-20 system
and MRI-compatible BrainAmp MR amplifiers (Brain Products
GmbH,Munich, Germany). The sampling rate was 5 kHz and the
signal was referenced to an electrode positioned between Fz and
Cz. Impedance was kept below 5 kΩ. Two remaining channels
were used for electrocardiogram (ECG, attached to the subject’s

back) and electrooculogram (EOG, attached besides the left eye).
The helium-pump of the MR scanner was turned off during
acquisition to reduce the generation of additional artifacts.
Synchronization of the EEG and fMRI gradient system clocks
was achieved via the Brain Products SyncBox (Brain Products,
Munich, Germany) to ensure accurate gradient artifact sampling
and improvement of the subsequent gradient artifact subtraction.
The beginning of each MR volume was automatically marked in
the EEG data.

(f)MRI Data Acquisition
From each participant, functional and structural MRI images
were acquired using a Siemens Symphony (Erlangen, Germany)
1.5-Tesla MR scanner and a standard 1-channel head coil for
radiofrequency transmission and reception. A high-resolution
three-dimensional magnetization prepared rapid acquisition
gradient echo (3D MPRAGE) T1-weighted anatomical scan
was acquired from each subject with the following parameters:
160 slices, time to repetition (TR) = 1990 ms, echo time
(TE) = 4.18 ms, flip angle (FA) = 15◦, matrix size = 256 × 256,
Field of View (FOV) = 250 × 250 mm2, ∼1 × 1 × 1 mm3

isotropic voxels. A gradient echo field map sequence was
obtained with an echo time difference of 4.76 ms. Eight-hundred
and ten axial whole brain functional volumes were acquired
in a descending order using a T2∗ weighted gradient-echo-
planar-imaging (EPI) sequence. The following pulse-sequence
parameters were used: TR = 3,000 ms, TE = 50 ms, FA = 90◦.
EPI volumes were acquired at 30 slices with 4 mm thickness and
a 1mm slice gap. Matrix size was 64× 64, FOV = 192× 192mm2

and voxel size = 3 × 3 × 4 mm3. Slices were aligned parallel to
the anterior-posterior commissure plane.

Physiological Recording
Respiration was measured using a respiratory belt positioned
at the level of the costal arch measuring expansions
during breathing. Cardiac activity was measured with
electrocardiography (ECG) and pulse frequency was assessed
using a finger clip.

EEG Preprocessing
A schematic overview of the analyses performed is shown in
Figure 1. Brain Vision Analyzer 2 (BrainProducts, Germany)
was used to account for timing jitter of the MR scanner volume
marker timing. All markers were moved to a distinctive element
of the artifact by −15 ms, the data sampling rate was increased
by factor 10 and the Brain Vision Analyzer function Slice
Volume Align was applied for marker realignment. Subsequent
gradient artifact removal was performed by subtracting an
artifact template from the data, using a baseline-corrected sliding
average of 21 consecutive volumes (Allen et al., 2000) followed by
down-sampling to 500 Hz. In the next step, ballistocardiogram
(BCG) related artifacts were removed by subtraction of averaged
EEG signal in synchrony to the heartbeat events (R peaks)
as measured with the ECG (Allen et al., 1998). The data was
imported to EEGLAB (Delorme and Makeig, 20041), running

1http://www.sccn.ucsd.edu/eeglab
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FIGURE 1 | Schematic overview of the functional magnetic resonance imaging-electroencephalographic (fMRI-EEG) processing pipeline. The two time-points were
1 year apart. ICA, Independent Component Analysis; CSF Cerebrospinal fluid; FWHM, Full Width Half Maximum; GLM, General Linear Model; MNI, Montreal
Neurological Institute; BOLD, Blood Oxygenation Dependent Signal; DMN, default mode network.

under the Matlab R2015a environment. Continuous EEG data
was downsampled to 250 Hz and a 1–45 Hz band-pass FIR filter
was applied to remove low-frequency drifts and high-frequency
noise. Artifact dominated channels and data segments were
identified and removed by application of the artifact subspace
reconstruction method as implemented in the clean_rawdata
plugin of EEGLAB. Removed channels were interpolated to
reduce potential biases in the re-referencing step. The EEG signal
was then re-referenced to the common average and Adaptive
Mixture Independent Component Analysis (AMICA; Palmer
et al., 2011) was used to temporally decompose a 12 min
data sequence ranging from 7 min to 9 min corresponding to
the resting state fMRI data. We chose the AMICA algorithm
since it performs significantly better than other ICA and blind
source separation approaches in the generation of dipolar

EEG components while also producing the greatest reduction
in mutual information (Delorme et al., 2012). We used the
Dipfit2 algorithm as implemented in EEGLAB for the location
of equivalent dipoles associated with each IC in the MNI
standard space. Since ICs are thought to reflect locally restricted
synchronous cortical activity that can be explained by an
equivalent dipole, the amount of spatial variance of an IC
explained by its associated equivalent dipole can serve as quality
criterion for the selection of EEG components. Hence, if dipoles
accounted for less than 85% of the ICs spatial variance or were
located outside of the brain, the associated ICs were excluded
from further analysis since they were likely to be associated
with non-brain sources. These restrictions led to the inclusion
of 550 components for time-point 1 (61.1%, 18.3 per subject) and
576 (64%, 19.2 per subject) for time-point 2.
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Independent Component Clustering
In order to investigate comparable ICs from the temporal
decomposition of single-subject data across-subjects, the
k-means clustering algorithm as implemented in EEGLAB was
applied to the individual ICs using the following parameters:
location of the equivalent dipole (dimensions: 3, relative
weighting 10), mean log power spectrum (1–45 Hz, dimensions:
10, weighting: 2) and scalp maps (dimensions: 7, weighting: 3).
We aimed to emphasize the spatial correspondence of the
components, hence the highest weights were given to dipole
locations and scalp maps. Due to inter-individual variability in
gyrification pattern, the dipole direction and associated scalp
topography can vary drastically. Hence, the largest weights were
given to dipole location, without taking their orientation into
account. The number of clusters was predefined to be 19, so that
on average each subject had the chance to contribute one IC to
each cluster.

fMRI Preprocessing
SPM122 and FSL 5.0.9 (FMRIB’s Software Library3) were used
for preprocessing of functional and structural MRI data. Due to
excessive EEG artifacts, nine volumes from the beginning and
one volume at the end of the fMRI time-series were removed
from the data, resulting in a total of 800 functional volumes.

B0-field-distortion correction was performed using field map
based realign and unwarping (SPM12) with the first volume as
reference.

Outlier detection was performed on a volume by volume basis
by calculating the mean squared differences to the previous and
the next volume. The smaller difference was used as deviation
score for each volume. The scores were thresholded using the
method of Hubert and Van der Veeken (2008) which calculates
a robust measure of skewness (Medcouple, MC, USA) and uses
it for correcting the interquartile range (IQR). For thresholding
deviation scores, the IQR was multiplied by 1.5 and added to
the 75th percentile (P75). Subsequently, outlying volumes were
corrected for in a nuisance regression step (see below) using
FSL FEAT by incorporation of an additional regressor for each
outlying volume.

Unwarped functional images were co-registered to subject
specific high-resolution anatomical brain images that were
segmented into gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) using segment from SPM12 and skull-
stripped using the ROBEX algorithm Iglesias et al., 2011).

CSF clusters in functional volumes were determined by
resampling the T1 based CSF mask to the functional series.
Time-series were extracted from five largest CSF clusters using
the first eigenvariate.

Physiological noise regressors were created for each
functional series based on peripheral cardiac and respiration
recordings using the PhysIO Toolbox Kasper et al.,
2017). Specifically, retrospective image-based correction
(RETROICOR; Glover et al., 2000) with application of Fourier
expansion for the cardiac phase (3rd order), respiration (4th

2http://www.fil.ion.ucl.ac.uk/spm/software/spm12
3www.fmrib.ox.ac.uk/fsl

order) and cardio-respiratory interactions (1st order), respiration
volume per unit time (RVT; Birn et al., 2013) and heart rate
variability (HRV; Chang et al., 2009) were calculated resulting in
20 regressors.

Subsequently, identified outlying volumes and a total of
31 nuisance regressors corresponding to cardiac, respiration, CSF
and motion were removed from the fMRI time courses using
FSL’s (5.0.9) FEAT (Jenkinson et al., 2002). The mean functional
image was added to the remaining residuals.

A total of 12 min (7–19 min) from the resting condition were
selected to allow for optimal ICA data decomposition (Birn et al.,
2013) while reducing the computational demand of the analyses.
Smoothing with a 5 mm full-width half maximum (FWHM)
Gaussian kernel was applied and the data were high-pass filtered
at 100 s.

Group Independent Component Analysis
(group ICA)
Registration of individual functional data to high resolution
MNI125 standard space images was carried out using FSL
FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002).
Group ICA was performed following a temporal concatenation
approach of the single subject data, using Probabilistic
Independent Component Analysis (Beckmann and Smith, 2004)
as implemented in FSL’s Multivariate Exploratory Linear
Decomposition into ICs (MELODIC) version 3.14. The data of
all 30 participants over both time-points were concatenated and
a spatial decomposition with 15 predefined dimensions was used.
The number of predefined dimensions was determined by the
maximum number at which the DMN was not split into two
separate ICs. The ICs were labeled after spatial correlation with
the exemplar dataset provided by Smith et al. (2009)4 using the
FSL-tool fslcc for calculation. In this way, the DMN used in later
analyses was obtained.

Test for Differences Within the Sample
Regarding Levels of Meditation Experience
In order to test whether the DMN differed between subjects with
different amounts of meditation experience, FSL dual-regression
analysis was performed. Subjects were assigned to three groups:
controls (10 subjects; no meditation experience), intermediate
meditators (10 subjects; less than 11 years of meditation
experience; M = 2.02 years; SD = 3.15 years) and expert
meditators (10 subjects; more than 11 years of meditation
experience; M = 19.5 years; SD = 6.45 years). The DMN obtained
from the group ICA analysis was used to generate subject-specific
versions of the spatial maps, and associated timeseries, using
dual regression (Beckmann et al., 2009; Nickerson et al., 2017).
First, for each subject, the DMN spatial map is regressed (as
spatial regressors) into the subject’s 4D space-time dataset. This
results in a subject-specific timeseries associated with the DMN.
Next, this timeseries is regressed (as temporal regressor) into the
same 4D dataset, resulting in a spatial map reflecting the subject-
specific DMN. We then tested for between group differences

4http://www.fmrib.ox.ac.uk/datasets/brainmap+rsns
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via F-tests using FSL’s randomize permutation-testing tool with
threshold-free cluster enhancement and 10,000 permutations.

EEG Regressor Computation and General
Linear Model Analysis
The time course of each IC was decomposed by Fast Fourier
Transform (FFT) into seven non-overlapping frequencies bands
(delta: 1–4 Hz, theta: 4–8 Hz, alpha1: 8–10 Hz, alpha2: 10–12 Hz,
beta1: 12–20 Hz, beta2: 20–30 Hz, gamma: 35–45 Hz). Within
each frequency the power was averaged and the time course
subdivided into 3 s long segments corresponding to the recorded
fMRI volumes. The resulting time series were convoluted with
a double gamma hemeodynamic response function (HRF) as
implemented in FSL FEAT. Hence, we obtained one regressor per
frequency band for each EEG IC. Since the different frequency
band power fluctuations can be significantly correlated, we
created one GLM for each frequency to capture the whole extent
of correlated BOLD activity at the cost of lower specificity, as
compared to models, where the covariation between frequency
bands is accounted for (de Munck et al., 2009; Tyvaert et al.,
2008). The obtained statistical parametric maps were registered
to 4 mm MNI125 standard space using FSL FLIRT. On the
group-level, one-sample t-tests were computed using FSL FMRIB
Local Analysis of Mixed Effects (FLAME) for each frequency
band and EEG cluster leading to 133 group-level analyses (19
(EEG clusters)∗ 7 (frequency bands)) that were performed for
the first time-point. After identification of z-score correlation
maps of interest, respective analyses were repeated at the second
time-point for 10 IC cluster and frequency band combinations.

Comparison of GLM- and Group ICA
Analyses
The spatial correlation between the DMN component and the
regression results was calculated using fslcc, in which a mask was
used that left only gray matter voxels. We included negative as
well as positive z-values from the regression results and the DMN
map in the spatial correlation analysis. To select only correlation
maps that show some spatial overlap with our example DMN, a
cutoff value of more than 5% variance explained corresponding

to a correlation coefficient of 0.224 was used. The remaining
maps are not considered in this analysis. Significance of the
correlations was assessed at a Bonferroni-adjusted p = 0.000376
(0.05/133 comparisons). The analysis was repeated with data
acquired 1 year later from the same subjects for component
clusters that met the defined correlation threshold. Component
Clusters 7 and 15 could not be identified at the second time-
point.

RESULTS

Group fMRI ICA Analysis and Test for
Group Differences
The estimated independent component from the group ICA
decomposition with the highest correlation (r = 0.81) to the
DMN found by Smith et al. (2009) is depicted in Figure 2.

The groups based on different durations of meditation
experience did not differ significantly in their DMN ICs. The
F-tests comparing the group means for time-point 1 showed that
all familywise error-corrected p > 0.36 and for time-point 2 all
p > 0.9.

EEG Clustering
We identified common EEG components across the group using
k-means clustering based on their scalp topography, dipole
location, and frequency spectrum. At both time-points, 19 IC’s
were retained based on the average number of available ICs
across subjects. The average percentage of subjects contributing
to each IC Cluster was 68.4% at TP1 and 66.7% at TP2 with
around 1.5 components contributed to each cluster from
each subject (see Table 1). No significant differences between
time-points with regard to the amount of subjects contributing
to each cluster or the amount of components being assigned to
each cluster were present (Student’s t-test, p > 0.05).

EEG Frequency Band Power GLM Analysis
After identification of common EEG IC’s across subjects, we
addressed the question whether EEG IC time courses are
correlated to the simultaneously recorded BOLD signal in a

FIGURE 2 | Group ICA estimated DMN. DMN obtained from temporally concatenated group ICA. Images are superimposed onto the MNI standard brain. Blue
indicates z-scores below the 10th percentile and red indicates z-scores above the 90th percentile.
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TABLE 1 | Independent component (IC) clustering of electroencephalographic
(EEG) data.

Time-point 1 Time-point 2

Cluster #Subjects #Components #Subjects #Components

1 21 34 20 39
2 23 36 19 24
3 17 24 18 19
4 28 42 25 38
5 21 31 20 26
6 16 17 25 36
7 15 17 25 43
8 25 38 19 28
9 15 18 15 29
10 23 37 14 25
11 24 40 22 36
12 18 19 27 41
13 20 29 21 25
14 19 30 18 23
15 19 20 18 22
16 20 27 18 27
17 27 39 20 34
18 20 31 18 27
19 19 21 18 34

Mean 20.5 (68.4%) 28.9 (1.4/S) 20 (66.7%) 30.3 (1.51/S)
SD 3.7 8.5 3.5 7.1

Summary of the number of ICs and the number of subjects per time-point contributing to
each IC cluster.

frequency specific manner. Hence, each frequency band power
time-course was used in a single session level GLM and group
analyses were performed using all components assigned to
each cluster. We identified EEG component and frequency
band combinations which correspond to the DMN by spatially
correlating the z-score map of the DMN with the results from
the regression analyses.

Figure 3 displays the fMRI correlation maps, which
correspond to specific frequencies obtained from EEG ICs at
the two time-points. For illustration purposes, in Figures 2,
3, correlation maps were individually thresholded to show
correlations below the 10th percentile and above the 90th
percentile.Table 2 lists the correlations between correlationmaps
of cluster and frequency combinations from time-point 1 with
the DMN obtained from group ICA. A total of 13 correlation
maps correlated above our defined threshold and absolute
correlations ranged from r = 0.234 (Cluster 9, t = 38.0,
p < 0.0001) to r = 0.346 (Cluster 17, t = 58.2, p < 0.0001).
Interestingly, most frequencies were negatively associated with
activity in regions of the DMN, while only for the beta band we
found a positive relationship and no association in case of both
alpha frequencies. Only the Clusters 1 and 10 had more than one
correlation map that correlated above the threshold. In case of
Cluster 1 the correlation maps of the theta and beta1 frequency
were correlated with the DMN in different directions: while
the map associated with the beta1 frequency showed a positive
correlation with the DMN (r = 0.278, t = 45.7, p < 0.0001),
the map corresponding to the theta range had a negative one
(r = −0.278, t = 45.7, p < 0.0001). Surprisingly, a frontal EEG
cluster commonly associated with eye movements was correlated
to BOLD activity in regions of the DMN (Cluster 4, r = −0.249,
t = 40.6, p < 0.0001).

Replication at Time-Point 2
In order to investigate whether the obtained results are reliably
detected, the analyses were repeated with data obtained from
the same subjects 1 year later. Only cluster and frequency
combinations which resulted in correlation maps correlated with
the DMN at time-point 1 were considered. Component clusters
at time-point 2 were selected based on visual similarity with
clusters from time-point 1. No corresponding maps for the
Clusters 6, 9 and 14 of time-point 1 could be identified at
time-point 2 (Figure 3). Table 3 lists correlation values of the
DMN to correlation maps resulting from the GLM analysis.

In general, correlations were lower at time point 2, but only
the two following results from time-point 1 could clearly not
be replicated. The initial correlation of r = 0.243 (t = 39.6,
p < 0.0001) of the beta1 frequency from Cluster 7 with the
DMN at time-point 1 dropped in the corresponding Cluster 16 at
time-point 2 to r = 0.014 (t = 2.18, p = 0.0292). In addition,
Cluster 18 was initially correlated to the DMN with r = −0.346
(t = 58.2, p < 0.0001), but the corresponding Cluster at the
second time-point did not replicate this finding (Cluster 10,
r = 0.068, t = 10.7, p < 0.0001).

The absolute correlations of the remaining correlation maps
at time-point 2 are in the range from r = 0.158 (Cluster 6, t = 25.3,
p< 0.0001) to r = 0.283 (Cluster 13, t = 46.7, p< 0.0001). Parietal
theta seemed to replicate best with r =−0.278 (Cluster 1, t = 45.7,
p < 0.0001) at time-point 1 and r = −0.275 (Cluster 5, t = 45.2,
p < 0.0001) at time-point 2. In conclusion, 8 of 13 Clusters were
replicated at the second time-point.

DISCUSSION

The aim of the present study was to investigate whether
frequency specific signal fluctuations of EEG ICs are correlated
with BOLD signal changes within regions of the DMN during the
eyes-closed resting state. We have found an association between
the power of several frequency bands of different EEG ICs with
BOLD signal fluctuations in regions that are spatially correlated
with the DMN. In particular, this relationship was observed for
the delta, theta, beta and gamma frequency band in different
EEG ICs. Furthermore, theta activity within an EEG component
commonly interpreted as eye movements correlated negatively
with BOLD activity in regions of the DMN. These correlations
appear to be in part reproducible over time, since 8 out of
13 EEG clusters showed an association with the DMN in the same
subjects 1 year later.

EEG IC Power Fluctuations Correlate to
the BOLD Signal in Regions of the DMN
The findings of this study suggest a complex relationship between
the representation of the DMN found in the fMRI-BOLD signal
and EEG component activity. Not only was activity from EEG
IC Clusters found to correlate with the DMN, this correlation
was also present within different frequency bands in positive
as well as negative directions. These findings further strengthen
the results previously reported in literature, where associations
between the DMN and the theta (Scheeringa et al., 2008;
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FIGURE 3 | Regression results. Independent components (IC) scalp map with cluster number, frequency band and correlation maps from both time-points. EEG
scalp maps indicate, which EEG electrodes contribute to the IC. Only regression analysis results, which explain more than 5% of the example DMN spatial variance
in a voxelwise correlation, are shown. Z-score maps obtained from the GLM regressions were thresholded below the 10th percentile (blue) and above the 90th (red).
The correlation coefficients between corresponding correlation maps from time-point 1 and 2 ranged from −0.03 to 0.52 (mean 0.28).
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TABLE 2 | Clusters at time-point 1.

Cluster Frequency Correlation t-value p-value

17 gamma −0.345 58.2 <0.0001
10 theta −0.332 55.7 <0.0001
13 delta −0.291 48 <0.0001
1 beta1 0.278 45.7 <0.0001
1 theta −0.278 45.7 <0.0001
14 beta2 0.269 44.1 <0.0001
18 theta −0.26 42.5 <0.0001
8 gamma −0.253 41.3 <0.0001
4 theta −0.249 40.6 <0.0001
6 theta −0.249 40.6 <0.0001
7 beta1 0.243 39.6 <0.0001
10 delta −0.238 38.8 <0.0001

Spatial correlation between group-level correlation maps at time-point 1 and the group
ICA estimated default mode network (DMN).

TABLE 3 | Clusters at time-point 2.

Cluster Frequency Correlation t-value p-value

10 gamma 0.0675 10.7 <0.0001
17 theta −0.223 36.1 <0.0001
13 delta −0.17 27.2 <0.0001
4 beta1 0.178 28.6 <0.0001
4 theta −0.275 45.2 <0.0001
18 theta −0.161 25.7 <0.0001
5 gamma −0.158 25.3 <0.0001
12 theta −0.283 46.7 <0.0001
16 beta1 0.0138 2.18 0.0292
17 delta −0.226 36.7 <0.0001

Spatial correlation between group-level correlation maps at time-point 2 and the group
ICA estimated DMN.

Tyvaert et al., 2008; Marawar et al., 2017), delta (Hlinka et al.,
2010) and beta frequency bands (Laufs et al., 2003b; Moosmann
et al., 2003; Hlinka et al., 2010; Neuner et al., 2014) were
observed. In addition, our results indicate a negative relationship
between high-frequency brain activity in the gamma frequency
range (35–45 Hz) and spontaneous BOLD signal fluctuations
in the DMN. While gamma activity was suggested to be closely
related to neuronal processing, especially in case of fMRI/EEG
experiments high frequency EEG activity should be interpreted
with caution since it is prone to be confounded by artifacts of
non-neuronal origin (Muthukumaraswamy, 2013).

Similarly to the idea that the DMN is related to the combined
activity of several distinct EEG microstates (Pascual-Marqui
et al., 2014) and EEG frequency bands (Mantini et al., 2007; Chen
et al., 2008; Neuner et al., 2014), it appears that several frequency
bands within different EEG ICs contribute to the activity of the
DMN.

The alpha rhythm has been the most widely studied brain
rhythm in simultaneous EEG/fMRI research (Goldman et al.,
2002; Laufs et al., 2003a; Gonçalves et al., 2006; de Munck et al.,
2008). However, regarding the relationship between alpha power
and the DMN, the results are largely inconclusive. In case of our
study, we did not find an association between alpha power from
any of the IC clusters with the DMN. Since the EEG spectral
power and scalp distribution differs between eyes open and eyes
closed states (Berger, 1934), it is possible that the alpha power to
DMN relationship differs between these states. Mo et al. (2013)

used occipital alpha activity to compare eyes open and eyes closed
rest in a similar analysis of concurrent fMRI- and EEG-data.
They only found an association with the DMN in eyes open rest,
which confirms our findings, since in our eyes-closed paradigm
no correlation with the alpha bands above the selected threshold
was found.

Replication of Previous Findings in Frontal
(Midline) Theta
The term frontal midline theta can be traced back to the seventies
(Ishihara and Yoshii, 1972) and refers to theta oscillations
recorded at medial-frontal electrode positions. Subsequent
investigations have linked frontal theta to working memory,
episodic memory tasks and sustained cognition in general
(Scheeringa et al., 2008; Michels et al., 2010; White et al., 2013).
Moreover, it is a possible mechanism for cognitive control
(Cavanagh and Frank, 2014), which is supported by findings
of enhanced activity in adept meditators during concentrative
meditation and thus heightened cognitive control (Brandmeyer
and Delorme, 2016). Our observation of an association between
theta activity in the frontal Cluster (Cluster 10 at time-point 1 and
Cluster 17 at time-point 2) and DMN deactivation are consistent
with previous findings (Scheeringa et al., 2008; Marawar et al.,
2017) and can thus be viewed as a replication.

Eye Movements as Behavioral Marker of
DMN Activity?
Surprisingly, we found a negative association between the
DMN and theta activity within a frontal EEG component
that is commonly interpreted as eye movement component
(e.g., Rissling et al., 2014). Two possibilities are conceivable
which explain this association. First, the relationship between
the frontal component and the DMN may be dominantly
behavioral. Slow eye movements may elicit EEG signals in the
theta frequency range while the level of movement decreases
when activity of the DMN increases, for example during
episodes of mind wandering. Previous studies have shown
that mind wandering is associated with the complexity of eye
movements during reading (Rayner and Fischer, 1996; Uzzaman
and Joordens, 2011) and to pupil diameter, gaze position, and
blink rate in a focused attention task (Grandchamp et al.,
2014). Furthermore, activation of the DMN is consistently
observed during episodes of mind wandering (Christoff et al.,
2009; Ellamil et al., 2016; Scheibner et al., 2017). Hence, it
is possible that a decrease in eye movements is a marker for
activity of the DMN. Different resting state conditions, such as
eyes-fixed resting state, might produce different eye movements
and have been shown to differ in test-retest reliability (Patriat
et al., 2013). This might explain why we are the first to
report this finding. Second, it may be that the frontal eye-blink
component is confounded by theta activity originating from the
cortex, which was shown to negatively correlate with the DMN
(Scheeringa et al., 2008). Consequently, the causal relationship
between spontaneous decreases in theta activity from a frontal
‘‘eye movement’’ component and DMN activity needs further
investigation.
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Limitations of This Study
We aimed for a primarily data-driven EEG IC clustering with
minimal intervention to ensure reproducibility between the two
time-points. One issue may be the inter-individual variability
in components obtained from each subject and the potential
assignment of several components per subject to each cluster.
The decomposition into maximally ICs is inherently unstable
and might be further destabilized by residual artifacts in the
EEG data. This problem may be dealt with by application of
methods that characterize the reliability of ICA decompositions
within subjects (i.e., RELICA; Artoni et al., 2014). Furthermore,
the number of clusters was chosen based on the amount of
available components in each subject. This choice might be
further improved by application of statistical indicators for the
ideal number of clusters (Cali ński and Harabasz, 1974).

A standard spherical 4-shell head model for the localization of
dipoles associated with each IC was used and the spatial location
of each dipole was included as criterion for the identification of
similar ICs across subjects. However, it was shown that realistic
head models which incorporate information about the head
morphology, volume conductivity of the different tissue classes
and exact electrode locations are important for an accurate EEG
source localization (Ramon et al., 2006; Akalin Acar and Makeig,
2013; Cho et al., 2015). When accurate source localization is
performed it is possible to detect RSNs from EEG data alone,
which are comparable to the ones known from fMRI studies (Liu
et al., 2017). Moreover, only components were allowed, whose
equivalent dipole could explain more than 85% of the spatial
variance and was located in the brain. While this criterion is
widely used to ensure that components reflect brain sources, it
could be invalid when looking for indicators of network activity,
whose constituents are distributed across the brain.

Even though not formally assessed in this study, several
average components appear similar at the two time-points,
and the overall amount of components included in each
cluster remained stable, which indicate some stability in
the EEG ICA decompositions across time. Nevertheless, not
all clusters could be identified at both time-points, which
indicates that further investigation into the area of stable
ICA decomposition and group-level component selection is
needed. Approaches that aim to reduce the inter-individual
variability in the group EEG data decomposition currently
do not allow the application on resting state data (Eichele
et al., 2011; Bigdely-Shamlo et al., 2013), but with advancing
methodologies the comparability of ICs across subjects may
greatly improve.

Besides differences induced by ICA decomposition and
component clustering, behavioral changes may be associated
with the difference in results. First, we did not control for the
level of wakefulness during the resting state recording and it is
possible that the subjects fell asleep during this time, influencing
the association between EEG power and fMRI DMN. Second,
the data we used were acquired as part of a meditation study,
where two thirds of the participants underwent meditation
training. Hence, it may be possible that the relation between EEG
and fMRI activity has changed. We tested the subgroups with
different meditation experience for differences in the topology

of the DMN and found no significant deviations depending on
amounts of meditation practice. However, it cannot be ruled
out that differences in DMN activity and connectivity with
other networks could have been present and even influenced
the correlation between DMN BOLD fluctuations and EEG
component activity. In our study, we did not address a possible
difference but focused on general associations irrespective of the
meditation experience that varied in our convenience sample. A
larger sample size for subgroups would be required to investigate
possible differences related to meditation practice.

In our analyses we created one GLM for each frequency
band and IC, because the different frequency band power
fluctuations can be significantly correlated with each other and
we aimed to identify EEG parameters that could be used in
EEG neurofeedback. Hence, we cannot distinguish the BOLD
effect specific to each rhythm. Therefore, it would be interesting
to investigate the specificity of EEG rhythms of different ICs
and their association to the BOLD signal, while controlling for
covariation between frequencies (Tyvaert et al., 2008; de Munck
et al., 2009). Having said that, the correlation maps of Cluster 1,
which corresponded to theta and beta1 power fluctuations,
had opposite signs at time-point 1 and were reproduced at
time-point 2. This shows that even if there is considerable cross-
frequency correlation between neighboring frequency bands,
differentiation between frequency bands further apart was
achieved.

Although our results at time-point 1 are highly significant,
the effect sizes are small to medium and the explained
variance ranges from 5% to 12%. In a recent study, Yuan
et al. (2016) attempted to reconstruct fMRI RSNs based
on ICA decomposition. Instead of decomposing channel
data, they temporally concatenated estimated amplitudes of
current densities in distributed dipole sources and obtained
spatial correlations in agreement with our results (Table 2,
r = 0.28 correlation between the best matched EEG resting
state component and the fMRI derived DMN). In our
fMRI ICA the number of components was set to produce
one DMN component. Allowing the DMN to split into
several subcomponents might fit better to the dipole model
that underlies the EEG ICA equivalent dipole model for
quality control. Hence, the low spatial correspondence between
networks independently derived from fMRI and EEG data
indicates methodological difficulties when investigating the
BOLD correlates of electrophysiological sources.

At the end, our results show stable relationships between
several IC clusters and the DMN in our sample. This is an
important step in the search for reliable EEG parameters that
indicate RSN activity and thus for targeting specific networks
with EEG-neurofeedback.

CONCLUSION

In conclusion, our results indicate that the DMN as seen in
fMRI is reflected in a combination of different frequency bands
within several EEG ICs. One major strength of our study is
the replication of the analysis with data collected from the
same subjects 1 year apart, which indicated a stable relationship
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between several EEG ICs and fMRI-BOLD activity during
rest. Furthermore, the results from an EEG ‘‘eye movement’’
component may provide useful as a behavioral marker of DMN
activity. In addition to previous studies investigating the BOLD
correlates of scalp level EEG activity, we attempted to increase the
specificity by decomposition of the EEG signal into temporally
ICs. We were able to recover the DMN independently using
two different approaches, a group ICA on concatenated multi-
subject fMRI data and based on frequency separated EEG data in
a regression model.
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Caliński, T., and Harabasz, J. (1974). A dendrite method for cluster analysis.
Commun. Stat. 3, 1–27. doi: 10.1080/03610917408548446

Cavanagh, J. F., and Frank, M. J. (2014). Frontal theta as a mechanism for cognitive
control. Trends Cogn. Sci. 18, 414–421. doi: 10.1016/j.tics.2014.04.012

Chang, C., Cunningham, J. P., and Glover, G. H. (2009). Influence of heart rate
on the BOLD signal: the cardiac response function. Neuroimage 44, 857–869.
doi: 10.1016/j.neuroimage.2008.09.029

Chen, A. C. N., Feng, W., Zhao, H., Yin, Y., and Wang, P. (2008). EEG default
mode network in the human brain: spectral regional field powers. Neuroimage
41, 561–574. doi: 10.1016/j.neuroimage.2007.12.064

Cho, J.-H., Vorwerk, J., Wolters, C. H., and Knösche, T. R. (2015). Influence of the
head model on EEG and MEG source connectivity analyses. Neuroimage 110,
60–77. doi: 10.1016/j.neuroimage.2015.01.043

Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., and Schooler, J. W. (2009).
Experience sampling during fMRI reveals default network and executive system

contributions to mind wandering. Proc. Natl. Acad. Sci. U S A 106, 8719–8724.
doi: 10.1073/pnas.0900234106

Coutinho, J. F., Fernandesl, S. V., Soares, J. M., Maia, L., Gonçalves, Ó. F., and
Sampaio, A. (2016). Default mode network dissociation in depressive and
anxiety states. Brain Imaging Behav. 10, 147–157. doi: 10.1007/s11682-015-
9375-7

Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J.,
Smith, S. M., et al. (2006). Consistent resting-state networks across healthy
subjects. Proc. Natl. Acad. Sci. U S A 103, 13848–13853. doi: 10.1073/pnas.
0601417103

David, B., and Vince, C. (2014). Magnetoencephalography: From Signals
to Dynamic Cortical Networks eds. S. Supek and C. J. Aine (Berlin
Heidelberg: Springer-Verlag Berlin Heidelberg), 1–1013. Available online at:
https://doi: 10.1007/978-3-642-33045-2

de Munck, J. C., Gonçalves, S. I., Faes, T. J. C., Kuijer, J. P. A., Pouwels, P. J. W.,
Heethaar, R. M., et al. (2008). A study of the brain’s resting state based on
α band power, heart rate and fMRI. Neuroimage 42, 112–121. doi: 10.1016/j.
neuroimage.2008.04.244

de Munck, J. C., Gonçalves, S. I., Mammoliti, R., Heethaar, R. M., and Lopes
da Silva, F. H. (2009). Interactions between different EEG frequency bands
and their effect on α-fMRI correlations. Neuroimage 47, 69–76. doi: 10.1016/j.
neuroimage.2009.04.029

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis. J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.
10.009

Delorme, A., Palmer, J., Onton, J., Oostenveld, R., and Makeig, S. (2012).
Independent EEG sources are dipolar. PLoSOne 7:e30135. doi: 10.1371/journal.
pone.0030135

Eichele, T., Rachakonda, S., Brakedal, B., Eikeland, R., and Calhoun, V. D. (2011).
EEGIFT: group independent component analysis for event-related EEG data.
Comput. Intell. Neurosci. 2011:129365. doi: 10.1155/2011/129365

Ellamil, M., Fox, K. C. R., Dixon, M. L., Pritchard, S., Todd, R. M., Thompson, E.,
et al. (2016). Dynamics of neural recruitment surrounding the spontaneous
arising of thoughts in experienced mindfulness practitioners. Neuroimage 136,
186–196. doi: 10.1016/j.neuroimage.2016.04.034

Feige, B., Scheffler, K., Esposito, F., Francesco, D. S., Hennig, J., and Seifritz, E.
(2005). Cortical and subcortical correlates of electrocephalographic α rhythm
modulation. J. Neurophysiol. 93, 2864–2872. doi: 10.1152/jn.00721.2004

Fox, M. D., and Raichle, M. E. (2007). Spontaneous fluctuations in brain activity
observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8,
700–711. doi: 10.1038/nrn2201

Glover, G. H., Li, T. Q., and Ress, D. (2000). Image-based method for retrospective
correction of physiological motion effects in fMRI: RETROICOR.Magn. Reson.
Med. 44, 162–167.

Goldman, R. I., Stern, J. M., Engel, J.Jr., and Cohen, M. S. (2002). Simultaneous
EEG and fMRI of the α rhythm. Neuroreport 13, 2487–2492. doi: 10.1097/01.
wnr.0000047685.08940.d0

Gonçalves, S. I., De Munck, J. C., Pouwels, P. J. W., Schoonhoven, R.,
Kuijer, J. P. A., Maurits, N. M., et al. (2006). Correlating the α rhythm to
BOLD using simultaneous EEG/fMRI: inter-subject variability.Neuroimage 30,
203–213. doi: 10.1016/j.neuroimage.2005.09.062

Grandchamp, R., Braboszcz, C., and Delorme, A. (2014). Oculometric variations
during mind wandering. Front. Psychol. 5:31. doi: 10.3389/fpsyg.2014.
00031

Frontiers in Human Neuroscience | www.frontiersin.org 11 November 2018 | Volume 12 | Article 478

https://doi.org/10.1007/s10548-012-0274-6
https://doi.org/10.1007/s10548-012-0274-6
https://doi.org/10.1007/s10548-017-0546-2
https://doi.org/10.1006/nimg.2000.0599
https://doi.org/10.1006/nimg.1998.0361
https://doi.org/10.1006/nimg.1998.0361
https://doi.org/10.1016/j.neuroimage.2014.09.010
https://doi.org/10.1109/tmi.2003.822821
https://doi.org/10.1098/rstb.2005.1634
https://doi.org/10.1016/s1053-8119(09)71511-3
https://doi.org/10.1055/s-0028-1130334
https://doi.org/10.1016/j.neuroimage.2013.01.040
https://doi.org/10.1016/j.neuroimage.2013.05.099
https://doi.org/10.1016/j.neuroimage.2013.05.099
https://doi.org/10.1007/s00221-016-4811-5
https://doi.org/10.1080/03610917408548446
https://doi.org/10.1016/j.tics.2014.04.012
https://doi.org/10.1016/j.neuroimage.2008.09.029
https://doi.org/10.1016/j.neuroimage.2007.12.064
https://doi.org/10.1016/j.neuroimage.2015.01.043
https://doi.org/10.1073/pnas.0900234106
https://doi.org/10.1007/s11682-015-9375-7
https://doi.org/10.1007/s11682-015-9375-7
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1007/978-3-642-33045-2
https://doi.org/10.1016/j.neuroimage.2008.04.244
https://doi.org/10.1016/j.neuroimage.2008.04.244
https://doi.org/10.1016/j.neuroimage.2009.04.029
https://doi.org/10.1016/j.neuroimage.2009.04.029
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1371/journal.pone.0030135
https://doi.org/10.1371/journal.pone.0030135
https://doi.org/10.1155/2011/129365
https://doi.org/10.1016/j.neuroimage.2016.04.034
https://doi.org/10.1152/jn.00721.2004
https://doi.org/10.1038/nrn2201
https://doi.org/10.1097/01.wnr.0000047685.08940.d0
https://doi.org/10.1097/01.wnr.0000047685.08940.d0
https://doi.org/10.1016/j.neuroimage.2005.09.062
https://doi.org/10.3389/fpsyg.2014.00031
https://doi.org/10.3389/fpsyg.2014.00031
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Prestel et al. BOLD Correlates of EEG Independent Components

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., VanWedeen, J.,
et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol.
6:e159. doi: 10.1371/journal.pbio.0060159

Hlinka, J., Alexakis, C., Diukova, A., Liddle, P. F., and Auer, D. P. (2010). Slow EEG
pattern predicts reduced intrinsic functional connectivity in the default mode
network: an inter-subject analysis. Neuroimage 53, 239–246. doi: 10.1016/j.
neuroimage.2010.06.002

Hubert, M., and Van der Veeken, S. (2008). Outlier detection for skewed data. J.
Chemom. Society 22, 235–246. doi: 10.1002/cem.1123

Huster, R. J., Plis, S. M., and Calhoun, V. D. (2015). Group-level component
analyses of EEG: validation and evaluation. Front. Neurosci. 9:254.
doi: 10.3389/fnins.2015.00254

Iglesias, J. E., Liu, C.-Y., Thompson, P. M., and Tu, Z. (2011). Robust brain
extraction across datasets and comparison with publicly available methods.
IEEE Trans. Med. Imaging 30, 1617–1634. doi: 10.1109/tmi.2011.2138152

Ishihara, T., and Yoshii, N. (1972). Multivariate analytic study of EEG and mental
activity in Juvenile delinquents. Electroencephalogr. Clin. Neurophysiol. 33,
71–80. doi: 10.1016/0013-4694(72)90026-0

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved
optimization for the robust and accurate linear registration and motion
correction of brain images. Neuroimage 17, 825–841. doi: 10.1016/s1053-
8119(02)91132-8

Jenkinson, M., and Smith, S. (2001). A global optimisation method for robust
affine registration of brain images. Med. Image Anal. 5, 143–156. doi: 10.101
6/s1361-8415(01)00036-6

Kalcher, K., Huf, W., Boubela, R. N., Filzmoser, P., Pezawas, L., Biswal, B.,
et al. (2012). Fully exploratory network independent component analysis
of the 1000 functional connectomes database. Front. Hum. Neurosci. 6:301.
doi: 10.3389/fnhum.2012.00301

Kasper, L., Bollmann, S., Diaconescu, A. O., Hutton, C., Heinzle, J., Iglesias, S.,
et al. (2017). The PhysIO toolbox for modeling physiological noise in fMRI
data. J. Neurosci. Methods 276, 56–72. doi: 10.1016/j.jneumeth.2016.10.019

Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C.,
et al. (2003a). EEG-correlated fMRI of human α activity. Neuroimage 19,
1463–1476. doi: 10.1016/s1053-8119(03)00286-6

Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A.,
et al. (2003b). Electroencephalographic signatures of attentional and cognitive
default modes in spontaneous brain activity fluctuations at rest. Proc. Natl.
Acad. Sci. U S A 100, 11053–11058. doi: 10.1073/pnas.1831638100

Liu, Q., Farahibozorg, S., Porcaro, C., Wenderoth, N., and Mantini, D. (2017).
Detecting large-scale networks in the human brain using high-density
electroencephalography. Hum. Brain Mapp. 38, 4631–4643. doi: 10.1002/hbm.
23688

Mantini, D., Perrucci, M. G., Del, G. C., Romani, G. L., and Corbetta, M. (2007).
Electrophysiological signatures of resting state networks in the human brain.
Proc. Natl. Acad. Sci. U S A 104, 13170–13175. doi: 10.1073/pnas.0700668104

Marawar, R. A., Yeh, H. J., Carnabatu, C. J., and Stern, J. M. (2017). Functional
MRI correlates of resting-state temporal theta and delta EEG rhythms. J. Clin.
Neurophysiol. 34, 69–76. doi: 10.1097/wnp.0000000000000309

Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, T., and
Macrae, C. N. (2007). Wandering minds: the default network and stimulus-
independent thought. Science 315, 393–395. doi: 10.1126/science.1131295

Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying
triple network model. Trends Cogn. Sci. 15, 483–506. doi: 10.1016/j.tics.2011.
08.003

Meyer, M. C., van Oort, E. S. B., and Barth, M. (2013). Electrophysiological
correlation patterns of resting state networks in single subjects: a combined
EEG-fMRI study. Brain Topogr. 26, 98–109. doi: 10.1007/s10548-012-
0235-0

Michels, L., Bucher, K., Lüchinger, R., Klaver, P., Martin, E., Jeanmonod, D., et al.
(2010). Simultaneous EEG-fMRI during a working memory task: modulations
in low and high frequency bands. J. Surg. Oncol. 5:e10298. doi: 10.1371/journal.
pone.0010298

Mo, J., Liu, Y., Huang, H., and Ding, M. (2013). Coupling between visual α

oscillations and default mode activity. Neuroimage 68, 112–118. doi: 10.1016/j.
neuroimage.2012.11.058

Moosmann, M., Ritter, P., Krastel, I., Brink, A., Thees, S., Blankenburg, F., et al.
(2003). Correlates of α rhythm in functional magnetic resonance imaging

and near infrared spectroscopy. Neuroimage 20, 145–158. doi: 10.1016/s1053-
8119(03)00344-6

Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., and
Tendolkar, I. (2015). Resting-state functional connectivity in major depressive
disorder: a review. Neurosci. Biobehav. Rev. 56, 330–344. doi: 10.1016/j.
neubiorev.2015.07.014

Muthukumaraswamy, S. D. (2013). High-frequency brain activity and muscle
artifacts in MEG/EEG: a review and recommendations. Front. Hum. Neurosci.
7:138. doi: 10.3389/fnhum.2013.00138

Neuner, I., Arrubla, J., Werner, C. J., Hitz, K., Boers, F., Kawohl, W., et al. (2014).
The default mode network and EEG regional spectral power: a simultaneous
fMRI-EEG study. PLoS One 9:e88214. doi: 10.1371/journal.pone.0088214

Nickerson, L. D., Smith, S. M., Öngür, D., and Beckmann, C. F. (2017). Using
dual regression to investigate network shape and amplitude in functional
connectivity analyses. Front. Neurosci. 11:115. doi: 10.3389/fnins.2017.00115

Palmer, J., Kreutz-Delgado, K., and Makeig, S. (2011). AMICA: an adaptive
mixture of independent component analyzers with shared components. San
Diego, CA: Swartz Center for Computational Neuroscience. 1–15. Technical
Report. Available online at: https://sccn.ucsd.edu/∼jason/amica_a.pdf

Pascual-Marqui, R. D., Lehmann, D., Faber, P., Milz, P., Kochi, K., Yoshimura, M.,
et al. (2014). The Resting Microstate Networks (RMN): Cortical Distributions,
Dynamics, and Frequency Specific Information Flow. arXiv 1411.1949
[preprint]. Available online at: http://arxiv.org/abs/1411.1949

Patriat, R., Molloy, E. K., Meier, T. B., Kirk, G. R., Nair, V. A., Meyerand, M. E.,
et al. (2013). The effect of resting condition on resting-state fMRI reliability and
consistency: a comparison between resting with eyes open, closed, and fixated.
Neuroimage 78, 463–473. doi: 10.1016/j.neuroimage.2013.04.013

Raichle, M. E. (2011). The restless brain. Brain Connect. 1, 3–12.
doi: 10.1089/brain.2011.0019

Ramon, C., Schimpf, P., and Haueisen, J. (2006). Influence of head models on
EEG simulations and inverse source localizations. Biomed. Eng. Online 5:10.
doi: 10.1186/1475-925X-5-10

Rayner, K., and Fischer, M. (1996). Mindless reading revisited: eye movements
during reading and scanning are different. Percept. Psychophys. 58, 734–747.
doi: 10.3758/bf03213106

Rissling, A. J., Miyakoshi, M., Sugar, C. A., Braff, D. L., Makeig, S., and
Light, G. A. (2014). Cortical substrates and functional correlates of auditory
deviance processing deficits in schizophrenia. Neuroimage Clin. 6, 424–437.
doi: 10.1016/j.nicl.2014.09.006

Rogala, J., Jurewicz, K., Paluch, K., Kublik, E., Cetnarski, R., andWróbel, A. (2016).
The do’s and don’ts of neurofeedback training: a review of the controlled
studies using healthy adults. Front. Hum. Neurosci. 10:301. doi: 10.3389/fnhum.
2016.00301

Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R.,
Norris, D. G., and Hagoort, P. (2008). Frontal theta EEG activity correlates
negatively with the default mode network in resting state. Int. J. Psychophysiol.
67, 242–251. doi: 10.1016/j.ijpsycho.2007.05.017

Scheeringa, R., Petersson, K. M., Kleinschmidt, A., Jensen, O., and
Bastiaansen, M. C. M. (2012). EEG α power modulation of fMRI resting-
state connectivity. Brain Connect. 2, 254–264. doi: 10.1089/brain.20
12.0088

Scheibner, H. J., Bogler, C., Gleich, T., Haynes, J.-D., and Bermpohl, F. (2017).
Internal and external attention and the default mode network.Neuroimage 148,
381–389. doi: 10.1016/j.neuroimage.2017.01.044

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al.
(2009). Correspondence of the brain’s functional architecture during activation
and rest. Proc. Natl. Acad. Sci. U S A 106, 13040–13045. doi: 10.1073/pnas.
0905267106

Tyvaert, L., Levan, P., Grova, C., Dubeau, F., and Gotman, J. (2008). Effects of
fluctuating physiological rhythms during prolonged EEG-fMRI studies. Clin.
Neurophysiol. 119, 2762–2774. doi: 10.1016/j.clinph.2008.07.284

Uzzaman, S., and Joordens, S. (2011). The eyes know what you are thinking: eye
movements as an objective measure of mind wandering. Conscious. Cogn. 20,
1882–1886. doi: 10.1016/j.concog.2011.09.010

van den Heuvel, M. P., Kahn, R. S., Goñi, J., Sporns, O., and van den Heuvel, M. P.
(2012). High-cost, high-capacity backbone for global brain communication.
Proc. Natl. Acad. Sci. U S A 109, 11372–11777. doi: 10.1073/pnas.1203
593109

Frontiers in Human Neuroscience | www.frontiersin.org 12 November 2018 | Volume 12 | Article 478

https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.1016/j.neuroimage.2010.06.002
https://doi.org/10.1016/j.neuroimage.2010.06.002
https://doi.org/10.1002/cem.1123
https://doi.org/10.3389/fnins.2015.00254
https://doi.org/10.1109/tmi.2011.2138152
https://doi.org/10.1016/0013-4694(72)90026-0
https://doi.org/10.1016/s1053-8119(02)91132-8
https://doi.org/10.1016/s1053-8119(02)91132-8
https://doi.org/10.1016/s1361-8415(01)00036-6
https://doi.org/10.1016/s1361-8415(01)00036-6
https://doi.org/10.3389/fnhum.2012.00301
https://doi.org/10.1016/j.jneumeth.2016.10.019
https://doi.org/10.1016/s1053-8119(03)00286-6
https://doi.org/10.1073/pnas.1831638100
https://doi.org/10.1002/hbm.23688
https://doi.org/10.1002/hbm.23688
https://doi.org/10.1073/pnas.0700668104
https://doi.org/10.1097/wnp.0000000000000309
https://doi.org/10.1126/science.1131295
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1007/s10548-012-0235-0
https://doi.org/10.1007/s10548-012-0235-0
https://doi.org/10.1371/journal.pone.0010298
https://doi.org/10.1371/journal.pone.0010298
https://doi.org/10.1016/j.neuroimage.2012.11.058
https://doi.org/10.1016/j.neuroimage.2012.11.058
https://doi.org/10.1016/s1053-8119(03)00344-6
https://doi.org/10.1016/s1053-8119(03)00344-6
https://doi.org/10.1016/j.neubiorev.2015.07.014
https://doi.org/10.1016/j.neubiorev.2015.07.014
https://doi.org/10.3389/fnhum.2013.00138
https://doi.org/10.1371/journal.pone.0088214
https://doi.org/10.3389/fnins.2017.00115
https://sccn.ucsd.edu/~jason/amica_a.pdf
http://arxiv.org/abs/1411.1949
https://doi.org/10.1016/j.neuroimage.2013.04.013
https://doi.org/10.1089/brain.2011.0019
https://doi.org/10.1186/1475-925X-5-10
https://doi.org/10.3758/bf03213106
https://doi.org/10.1016/j.nicl.2014.09.006
https://doi.org/10.3389/fnhum.2016.00301
https://doi.org/10.3389/fnhum.2016.00301
https://doi.org/10.1016/j.ijpsycho.2007.05.017
https://doi.org/10.1089/brain.2012.0088
https://doi.org/10.1089/brain.2012.0088
https://doi.org/10.1016/j.neuroimage.2017.01.044
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1016/j.clinph.2008.07.284
https://doi.org/10.1016/j.concog.2011.09.010
https://doi.org/10.1073/pnas.1203593109
https://doi.org/10.1073/pnas.1203593109
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Prestel et al. BOLD Correlates of EEG Independent Components

White, T. P., Jansen, M., Doege, K., Mullinger, K. J., Park, S. B., Liddle, E. B.,
et al. (2013). Theta power during encoding predicts subsequent-memory
performance and default mode network deactivation.Hum. Brain Mapp. 2943,
2929–2943. doi: 10.1002/hbm.22114

Yuan, H., Ding, L., Zhu, M., Zotev, V., Phillips, R., and Bodurka, J. (2016).
Reconstructing large-scale brain resting-state networks from high-resolution
EEG: spatial and temporal comparisons with fMRI. Brain Connect. 6, 122–135.
doi: 10.1089/brain.2014.0336

Zou, Q., Wu, C. W., Stein, E. A., Zang, Y., and Yang, Y. (2009). Static and dynamic
characteristics of cerebral blood flow during the resting state. Neuroimage 48,
515–524. doi: 10.1016/j.neuroimage.2009.07.006

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Prestel, Steinfath, Tremmel, Stark and Ott. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 13 November 2018 | Volume 12 | Article 478

https://doi.org/10.1002/hbm.22114
https://doi.org/10.1089/brain.2014.0336
https://doi.org/10.1016/j.neuroimage.2009.07.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	fMRI BOLD Correlates of EEG Independent Components: Spatial Correspondence With the Default Mode Network
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Scanning Procedure
	EEG Data Acquisition
	(f)MRI Data Acquisition
	Physiological Recording
	EEG Preprocessing
	Independent Component Clustering
	fMRI Preprocessing
	Group Independent Component Analysis (group ICA)
	Test for Differences Within the Sample Regarding Levels of Meditation Experience
	EEG Regressor Computation and General Linear Model Analysis
	Comparison of GLM- and Group ICA Analyses

	RESULTS
	Group fMRI ICA Analysis and Test for Group Differences
	EEG Clustering
	EEG Frequency Band Power GLM Analysis
	Replication at Time-Point 2

	DISCUSSION
	EEG IC Power Fluctuations Correlate to the BOLD Signal in Regions of the DMN
	Replication of Previous Findings in Frontal (Midline) Theta
	Eye Movements as Behavioral Marker of DMN Activity?
	Limitations of This Study

	CONCLUSION
	AUTHOR CONTRIBUTIONS
	FUNDING
	REFERENCES


