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Enhanced classification accuracy and a sufficient number of commands are highly

demanding in brain computer interfaces (BCIs). For a successful BCI, early detection

of brain commands in time is essential. In this paper, we propose a novel classifier

using a modified vector phase diagram and the power of electroencephalography

(EEG) signal for early prediction of hemodynamic responses. EEG and functional

near-infrared spectroscopy (fNIRS) signals for a motor task (thumb tapping) were

obtained concurrently. Upon the resting state threshold circle in the vector phase diagram

that uses the maximum values of oxy- and deoxy-hemoglobin (1HbO and 1HbR) during

the resting state, we introduce a secondary (inner) threshold circle using the 1HbO and

1HbR magnitudes during the time window of 1 s where an EEG activity is noticeable.

If the trajectory of 1HbO and 1HbR touches the resting state threshold circle after

passing through the inner circle, this indicates that 1HbOwas increasing and 1HbRwas

decreasing (i.e., the start of a hemodynamic response). It takes about 0.5 s for an fNIRS

signal to cross the resting state threshold circle after crossing the EEG-based circle. Thus,

an fNIRS-based BCI command can be generated in 1.5 s. We achieved an improved

accuracy of 86.0% using the proposed method in comparison with the 63.8% accuracy

obtained using linear discriminant analysis in a window of 0∼1.5 s. Moreover, the active

brain locations (identified using the proposed scheme) were spatially specific when a

t-map was made after 10 s of stimulation. These results demonstrate the possibility of

enhancing the classification accuracy for a brain-computer interface with a time window

of 1.5 s using the proposed method.

Keywords: brain-computer interface (BCI), functional near-infrared spectroscopy (fNIRS), electroencephalography

(EEG), hybrid EEG-fNIRS, hemodynamic response, vector phase diagram, classifier

INTRODUCTION

In order to reduce the brain signal detection time and to improve the classification accuracy
for brain-computer interfaces (BCIs), concurrent measurement of brain commands using
electroencephalography (EEG), and functional near-infrared spectroscopy (fNIRS) at a focused
local brain region is proposed. This paper presents a novel hybrid technique for the early detection
of fNIRS signals based upon the power spectra of EEG signals to conclude the occurrence of
hemodynamic responses. Over the past decades, computer and communication technologies have
developed rapidly. BCI techniques have become an indispensable tool for patients’ daily life. The
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goal of BCI is to make patients’ life more convenient and natural
in daily living environment (Ding et al., 2017). The primary
goal of BCI is to assist patients (typically, in locked-in state)
to interact with the living environment using only brain signals
(Coyle et al., 2003; Nicolas-Alonso and Gomez-Gil, 2012). It

FIGURE 1 | Configuration of EEG electrodes and fNIRS optodes focusing on C3 reference point in the left motor cortex, and photos of EEG-fNIRS patch and a

subject performing experiment: the numbers in the top right corner indicate the fNIRS channel numbers.

is important for patients to control an external device easily,
accurately, quickly, and with a sufficient number of commands
(e.g., robots, wheelchairs, etc.) (Turnip et al., 2011; Hong et al.,
2018a,b). However, if we increase the number of commands,
the accuracy drops in most BCIs. In order to compensate for
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FIGURE 2 | Experimental paradigm used for acquiring brain signals.

FIGURE 3 | Cross-checking strategy for finding active fNIRS channels using EEG electrodes showing the highest power for 1 s, in which EEG electrodes are placed

vertically and horizontally (Sub. 1, fNIRS channels 13–36 are omitted).

the reduction in accuracy and also to improve the brain signal
detection time, the concept of hybridization has been introduced
(Pfurtscheller et al., 2010).

A hybrid EEG-fNIRS BCI has great potential to enhance the
classification accuracy and to increase the number of commands
than regular BCI systems (Hong and Khan, 2017). The early
hybrid EEG-fNIRS BCI developed in Fazli et al. (2012) already
showed that a simultaneous decoding of EEG signals along with
oxy- and deoxy-hemoglobin (1HbO and1HbR) signals acquired
using fNIRS can enhance the classification accuracy. The hybrid
method discussed in Tomita et al. (2014) demonstrated that
the accuracy for a motor task was improved by combining the

probability scores obtained from EEG and fNIRS classification
using a joint classifier. Many other studies also demonstrated
that BCI accuracy can be enhanced by decoding EEG and fNIRS
features simultaneously (Putze et al., 2014; Koo et al., 2015; Yin
et al., 2015; Buccino et al., 2016). The studies of Khan et al.
(2014) and Khan and Hong (2017) also showed that the decoding
of EEG and fNIRS signals from different brain regions can be
adopted to increase the number of commands without sacrificing
the classification accuracy.

Aside from the issues of enhancing the classification accuracy
and increasing the number of commands, results on optimal
feature selection in hybrid EEG and fNIRS frameworks and
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TABLE 1 | Selected EEG and fNIRS channels per subject.

Subject EEG EEG + vector

phase analysis

fNIRS channels selected by the

cross-checking strategy in Figure 3

1 1 and 4 Chs. 17, 18, 29,

and 33

5, 6, 8, 9, 17, 18, 20, 21, 29, 30, 32, 33

2 1 and 3 Chs. 32, and 33 8, 9, 11, 12, 20, 21, 23, 24, 32, 33, 35, 36

3 1 and 4 Chs. 17, 21,

and 33

5, 6, 8, 9, 17, 18, 20, 21, 29, 30, 32, 33

a unified classification model for hybrid systems are still
insufficient in the literature (Keles et al., 2016; Park et al., 2016;
Hong and Khan, 2017). The bottleneck in the hybrid EEG-fNIRS
framework is still considered to be the command generation
time due to the inherent delay in hemodynamic signals of
fNIRS. Therefore, in this paper, a quick detection method of the
occurrence of hemodynamic responses is investigated.

Several researchers have worked on the problem of finding
an optimal window size for BCI. However, the literature yet did
not show a conclusive work on a standardized window selection
method for simultaneous decoding of brain activities. In the
work of Tomita et al. (2014), a window size of 10 s was reported
for simultaneous EEG-fNIRS feature extraction, but it results in
a 10 s delay which is inappropriate for controlling an external
device. For hybrid EEG-fNIRS, various window sizes for feature
extraction and classification have been reported in the literature
(Blokland et al., 2014; Fazli et al., 2015; Yin et al., 2015; Buccino
et al., 2016). In most cases, a window size larger than 5 s was
used for feature extraction and classification for hybrid EEG-
fNIRS BCI. This will cause an unnecessary delay in making the
final decision because the data should be processed using the data
during the window.

However, the window size for command generation can be
reduced by either initial dip detection (Jasdzewski et al., 2003;
Yoshino and Kato, 2012; Naseer and Hong, 2015) or fast optical
response (Hu et al., 2011) methods instead of relying on the
hemodynamic responses. Recent fNIRS-BCI studies have shown
the feasibility of using initial dips for BCI application, which
generate multiple commands from the prefrontal cortex using
initial dip features within a 2.5 s window (Hong and Naseer,
2016; Zafar and Hong, 2017). A recent hybrid EEG-fNIRS study
also combined EEG and fNIRS (initial dip) features in a 0∼2 s
window to enhance the accuracy of a BCI system. However,
the command generation time needs to be further reduced for
practical applications (Li et al., 2017) by extracting differentiable
features (Kim et al., 2016; Naseer et al., 2016a; Huang et al.,
2017; Song et al., 2018), or by using signal processing algorithms
(Santosa et al., 2013; Gui et al., 2017; Hamadache and Lee, 2017;
Yaqub et al., 2018), or by application of better classification
approach (Bui et al., 2016; Choi et al., 2016; Naseer et al., 2016b;
Azizi et al., 2017). Therefore, a decision making scheme that
can detect fNIRS signals in a window smaller than 2 s should
be the primary focus of the current hybrid EEG-fNIRS research.
To the best of the authors’ knowledge, an algorithm that can
simultaneously extract and classify features from the same brain
area in <2 s in an EEG-fNIRS system has not been developed yet.

The main objective of this paper is to develop a systematic
way that EEG signals are combined with fNIRS signals for the
purpose of improving the detection time without knowing the
start time of a brain task. The task adopted in this paper is
thumb movement (not a cognitive task). As EEG and fNIRS
signals caused by thumb movement can be measured in most
subjects, a small area (4 × 5 cm) in the motor cortex focusing
on C3 in the International 10–20 System was focused. For the
proposed idea on a motor task, the consistency of a particular
subject in validating the proposed signal processing scheme is
more crucial than investigating an averaged value among many
subjects. The hypotheses of this study are (i) EEG signals can
be used in detecting/predicting the hemodynamics response of
fNIRS, and (ii) a false detection of brain activity using EEG
can be reduced by fNIRS at a delayed hemodynamic response
time.

METHODS

Participants
Since the activity for brain signal acquisition is a fingermovement
task (i.e., right thumb finger) that can be performed by most
people without difficulty, no particular attention has been given
to the subjects’ age, gender, and the previous experience on BCI
(except consistency). Three male subjects (age: mean 28.5 ± 2.5
years, hairstyle: very short hair) participated in the experiment
to validate a new signal processing scheme. All three subjects
were healthy, right handed, and had normal or corrected-to-
normal vision, and none had a history of any neurological or
visual disorder. All were given a detailed description on the
experimental procedure prior to the beginning of experiment,
and all provided written consent after having been informed.
The experiment was conducted in accordance with the latest
Declaration of Helsinki upon the approval of the Pusan National
University Institutional Review Board.

Channel Configuration And Signal
Processing
Brain signals generated by tapping of right thumb were acquired
at a sampling rate of 9.19Hz from the left motor cortex using
a frequency-domain fNIRS system (ISS Imagent, ISS Inc., USA).
The system utilizes near-infrared light of two wavelengths (690
and 830 nm). In this study, 3 detectors and 12 emitters were
used in a dense emitter-detector configuration, see Figure 1, to
examine the C3 area on the left motor cortex (Nguyen and
Hong, 2016; Nguyen et al., 2016; Zafar and Hong, 2018). In
accordance with the International 10–20 System, the detectors
were positioned surrounding the C3 point as a reference point.
The standard EEG cap (Neuroelectrics R© Neoprene Headcap,
Barcelona, Spain) was used to access the C3 location for
individual subjects. Also, five Ag/AgCl EEG electrodes were
placed around/beside the fNIRS optodes. The EEG data were
recorded using a g-MOBIlab+ biosignal acquisition device
(Christoph Guger, Austria) at a sampling rate of 256Hz. In
Figure 1, the hollow circle with a number in it denotes an
fNIRS emitter (total 12 emitters), the (blue) filled circles (D1,
D2, D3) represent the fNIRS detectors (total 3 detectors), and
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TABLE 2 | Different phases in the vector diagram related to initial dip and hemodynamics.

Phase 1 2 3 4 5 6 7 8

1HbO Positive Positive Negative Negative Negative Negative Positive Positive

1HbR Positive Positive Positive Positive Negative Negative Negative Negative

1HbT Positive Positive Positive Negative Negative Positive Negative Positive

1COE Negative Positive Positive Positive Positive Negative Negative Negative

Condition 1HbO > 1HbR 1HbO <

1HbR

1HbT >

1COE

1HbT < 1COE 1HbO < 1HbR 1HbO > 1HbR 1HbT > 1COE 1HbT < 1COE

Type Initial dip Hemodynamic

the hollow octagons indicate the EEG electrodes (3 vertically, 2
horizontally). Thirty-six channels were configured using emitter-
detector combinations (see the top right corner in Figure 1). The
numbers in the top-right corner denote the fNIRS channels: For
instance, emitter 1 and detector 1 makes Ch. 1, emitter 2 and
detector 1 makes Ch. 2, emitter 1 and detector 2 makes Ch. 13,
etc. As seen from the left photo (hybrid EEG-fNIRS patch) and
the channel configuration, EEG electrodes #1 and #2 were placed
on the top of fNIRS channels, and EEG electrodes #3, #4, and #5
were located to the left side of the fNIRS emitters.

ISS Imagent data acquisition and analysis software (ISS-Boxy)
were used to obtain the raw intensity data. The intensity data
were then converted to 1HbO and 1HbR using the ISS-Boxy
software, with extinction coefficients εHbO = 0.95 mM−1cm−1

and εHbR = 4.93 mM−1cm−1 for the 690 nm wavelength and
εHbO = 2.135 mM−1cm−1 and εHbR = 1.791 mM−1cm−1

for the 830 nm wavelength, according to the modified Beer-
Lambert law (MBLL) (Baker et al., 2014; Bhatt et al., 2016).
The converted data of 1HbO and 1HbR were pre-processed to
remove the physiological noises related to the respiration, cardiac
activity, and low-frequency drift signals. For this, fourth-order
Butterworth low- and high-pass filters with cutoff frequencies of
0.15Hz and 0.01Hz, respectively, were used to filter off the noises
caused by respiration, cardiac activity, and low-frequency drift
fluctuations from the converted hemodynamic signals (Hong
et al., 2015; Khan and Hong, 2015; Weyand et al., 2015; Hong
and Santosa, 2016). In this study, any motion-artifact correction
algorithm was not used because any motion artifacts were not
found from the raw data. It is noted that all three subjects have
had a number of previous experiences in performing fNIRS
experiments. The band-pass filtering of the EEG electrode signals
into the α-, β-, 1-, and θ-bands (acquired via 8–12, 12–28,
0.5–4, and 4–8Hz, respectively) allowed the isolation of β-band,
which corresponds to the motor activity (Lotte et al., 2007;
Ortiz-Rosario and Adeli, 2013; Ramadan and Vasilakos, 2017).

Experimental Paradigm
A tapping of right thumb task associated with the left
motor cortex was investigated. The subjects were seated on
a comfortable chair and were instructed to avoid any body
movement, particularly the head, as much as possible during
the experiment. The experiment was conducted in a dark and

quiet room to avoid any interference from the environment.
Figure 2 shows the experimental paradigm used in this study.
One experiment consists of 12 trials of thumb tapping task
with pre- and post-rest periods of 60 and 10 s, respectively. The
duration of one trial was 30 s, which includes a 10 s activity
task followed by a rest period of 20 s. During the task period,
the subjects were instructed to tap their right thumb as fast as
they could, without paying attention to the number of taps. A
computer screen indicating thumb finger taps during the task
period was placed in front of the subject. During the rest period,
a black screen was shown. The subjects were also instructed to
keep their eyes open during the experiment. In conclusion, the
total number of data in this work is 1,296 (i.e., 36 channels ×12
trials× 3 subjects).

Cross-Checking Strategy
Figure 3 shows the perpendicular arrangement of 5 EEG
electrodes (3 vertically, 2 horizontally), and 12 plots of the
hemodynamic responses of 12 fNIRS channels (the plots of
13–36 channels are not shown). Upon the tapping task, the
power of individual EEG electrodes were measured. Assume
that EEG electrode #4 among the vertically arranged electrodes
showed the highest power and EEG electrode #1 among the
horizontally placed ones showed the highest power. Then, as
far as fNIRS channel selection is concerned, channels 5, 6, 8,
and 9 can be examined because they are nearest ones to the
two EEG electrodes (Joundi et al., 2012; Solis-Escalante et al.,
2012; Wagner et al., 2016). Table 1 summarizes the selected
EEG electrodes and fNIRS channels per subject. For instance,
for Subject 1, since EEG channels 1 and 4 showed the highest
power, fNIRS channels 5, 6, 8, 9, 17, 18, 20, 21, 29, 30, 32,
33 were pre-selected by using the strategy in Figure 3. The
problem in this method however is that twelve channels are
always selected, which contain information from both active and
inactive channels. Thus, a precise determination of the most
activated channels is not possible. Therefore, a further reduction
of channels is required to correctly identify the activated brain
region. Now, we shifted our approach to vector-phase analysis.

Vector-Phase Analysis
Vector-phase analysis is a systematic method that can trace
the entire hemodynamic response using two components (i.e.,
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FIGURE 4 | The proposed scheme to predict the early hemodynamic response using the highest EEG power obtained from the 1 s time window: If the EEG power is

over a certain threshold value, the (black) threshold circle is drawn using Equation (6).
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FIGURE 5 | Comparison of the circles (in black) obtained by the EEG activated

window upon trials and the resting state threshold circle (in red) (Sub. 3).

HbO and HbR) in the 1HbO-1HbR phase diagram. An initial
dip is the early decrease/increase in 1HbO/1HbR as result of
neurovascular coupling. Therefore, both the initial dip as well as
the hemodynamic signal can be detected using the vector-phase
diagram (Hong and Zafar, 2018). The original method uses eight
phases that are created using a pair of 1HbO and 1HbR signals
(or 1HbT and 1COE signals) (Yoshino and Kato, 2012; Sano
et al., 2013; Yoshino et al., 2013; Oka et al., 2015). The vector
components 1HbT (total hemoglobin) and 1COE (cerebral
oxygen exchange) are obtained by rotating the vector coordinate
system defined by 1HbO and 1HbR by 45◦ counterclockwise
using the following equations:

1HbT =
1
√
2
(1HbO+ 1HbR), (1)

1COE =
1
√
2
(1HbR− 1HbO). (2)

The magnitude and phase of a vector p= (1HbO, 1HbR) in this
plane can be calculated as

∣

∣p
∣

∣ =
√

1HbO2 + 1HbR2, (3)

6 p = tan−1
(

1HbR

1HbO

)

= tan−1
(

1COE

1HbT

)

+ 45o. (4)

The phase diagram is divided into eight phases/regions according
to four components (1HbO, 1HbR, 1HbT, and 1COE). The
details of the vector diagram are summarized in Table 2.

Modified Vector-Phase Analysis With a
Second Circle Based on EEG Activated
Window
A threshold circle (the red solid circle) based on the maximum
magnitude during the resting state was used for the detection
of hemodynamic responses in the previous studies (Hong and
Naseer, 2016; Zafar and Hong, 2017). The circle was placed based
on the highest values of 1HbO and 1HbR in the resting state. As
for the criterion used, an initial dip appears if the magnitude p
crosses the threshold circle in Phases 3, 4, and 5. If there were no
threshold circle, a resting state fluctuation with 1COE > 0 could
easily be interpreted as an initial dip. The radius of the resting
state threshold circle R1 is defined as follows:

R1 = max (1HbO2
resting + 1HbR2resting)

1/2
. (5)

For a conventional hemodynamic signal, 1HbO increases and
1HbR decreases after a task is performed. Therefore, Phases
7 and 8 correspond to the hemodynamic signals in the vector
diagram. The problem with the previous method is that a false
negative increase in the hemodynamic signal can cause p to
cross the threshold circle made by the baseline period, which
might be deemed as a positive detection as per the criterion
used. To solve the problem of false detection of hemodynamic
signals, we propose a new method that involves adding a second
circle based on the 1HbO and 1HbR values, which correspond
to the window in which EEG sensing is active. To reduce the
computation time, we only used four quadrants instead of the
phases in the vector diagram. The only quadrant in which 1HbO
is positive and 1HbR is negative is the fourth quadrant. The
trajectory of vector p in the fourth quadrant from the smaller
circle to the larger circle indicates that 1HbO is increasing and
1HbR is decreasing. The radius R2 of the smaller circle is given
as:

R2 = (max(1HbO)2w +max(1HbR)2w)
1/2

, (6)

where w is the window number that corresponds to EEG
activation. Figure 4 shows the proposed scheme in our method.

The black circle was made using the 1HbO and 1HbR values
corresponding to the EEG activation window. In contrast, the red
circle is the threshold circle made from the resting state, which
uses the maximum values of 1HbO and 1HbR. Figure 5 shows
an example of circles plotted based on the EEG activation window
for Subject 3. The sizes of the black circles obtained in trials were
different due to the differences in HbO and HbR values per trial.
It is noted that the circle was made after k= 1 s after stimulation,
because a moving window of 1 s was used to synchronize the EEG
and fNIRS signals.

Ideal Trajectory For Modified Vector-Phase
Analysis
A threshold circle (red solid circle) based on the maximum
magnitude of the baseline was used for the detection of initial
dips in previous studies (Hong and Naseer, 2016). We used a
hemodynamic model based on two gamma functions (1HbO
and 1HbR) to estimate the ideal trajectory (Ye et al., 2009).
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FIGURE 6 | Ideal trajectory of HbO/HbR made by two-gamma-function model (see Phases 7 and 8 in Table 2).

A designed hemodynamic response function (dHRF) is defined
as the convolution of the canonical hemodynamic response
function (cHRF), h(k), and the stimulus, s(k), as follows:

u(k) = k1

k−1
∑

n=0

h(n)s(k− n), (7)

where u is the dHRF, k1 is the scaling parameter used to scale the
amplitude of the response (k1 = 10 was used) if required, and s(k)
is defined as

s(k) =
{

1, if k ∈ task,
0, if k ∈ rest,

(8)

where rest and task stand for the rest and the task periods,
respectively. The cHRF, h(k), is generated as a linear combination
of two gamma variant functions as follows:

h(k) = α1

[

(k/τ1)
(φ1−1)e−(k/τ1)

τ1(φ1 − 1)!
− α2

(k/τ2)
(φ2−1)e−(k/τ2)

τ2(φ2 − 1)!

]

, (9)

where α1 is the amplitude, τi and φi (i = 1, 2) tune the shape
and scaling, respectively, and α2 is the ratio of the response to the
undershoot. If we had ideal data, the trajectory would be a straight
line in the vector diagram. The ideal trajectory plot is shown in
Figure 6.

RESULTS

In this paper, we propose a novel method to reduce the number of
fNIRS signal detections bymodifying the vector-phase analysis. A

first threshold circle based on the magnitude of oxyhemoglobin
(1HbO) and deoxyhemoglobin (1HbR) is placed in the vector
diagram. A second circle is placed using the magnitudes of
1HbO and 1HbR corresponding to the window in which EEG
is activated. A moving window of 1 s is used to synchronize
and simultaneously decode EEG and fNIRS activities. The
hemodynamic trajectory from the second circle to the first circle
is estimated. Activity detection is performed if the trajectory
moves from the first circle to the second circle in the fourth
quadrant (where 1HbO is positive and 1HbR has a negative
value). It takes around 0.5 s for the trajectory to move from
the second circle to the first circle. Thus, a command can be
generated in 1.5 s using the EEG activity detected within the 1
second moving window. To the best of the authors’ knowledge,
no method has been reported for the detection of fNIRS signals
in 1.5 s.

In addition, we used a moving window of 1 s on both EEG and
fNIRS data to synchronize the windows. We measured the power
of each window according to thumb tap activity. Threshold
values of 15% over the baseline maximum value were used for
the detected EEG activity. The threshold values were selected as
a safety margin to avoid false detections. The results obtained
using the proposed method for all channels with active channels
highlighted for Subject 3 are shown in Figure 7. It can be seen
from the figure that the trajectories of only a few channels went
from the black circle to the red circle. Thus, the only channels
that can be considered active are the ones in which the trajectory
moved from the black circle to the red circle and crossed it. Thus,
it is possible to identify the activated channels using the proposed
method. In contrast with the selected channels shown in Table 3,
only the channels that were activate were selected.
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FIGURE 7 | Trajectories of all the channels obtained by the proposed scheme (Sub. 3, Trial 3): The red dotted boxes show the channels in which the trajectory has

crossed the EEG-based circle (black) in the fourth quadrant and moved away from the resting state threshold circle (red).

Examples of the trajectories of all trials for Ch. 21 of Subject 3
are shown in Figure 8. It can be seen that the trajectories did not
follow the same path in each trial. However, they moved from the
smaller (black) circle to the larger (red) circle if the channel was
active.

In fNIRS data analysis, the estimation of cortical activation
and its localization are the most important steps. Cortical
activation can be estimated by fitting themeasured hemodynamic
response (HR) to the predefined dHRF (Hu et al., 2010; Santosa
et al., 2014), and its existence can be determined according to
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TABLE 3 | Accuracies obtained using the proposed method.

Subject EEG+fNIRS accuracies using

LDA (%)

Proposed EEG-fNIRS

method (%)

1 66.6 83.3

2 58.3 91.6

3 66.6 83.3

Mean 63.8 86.0

the t-values of the associated channels. The t-value is the ratio
of the weighting coefficients resulting from the process of fitting
the measured HR to the modeled dHRF and its standard error. A
higher t-value means that the signal is highly correlated with the
dHRF. Using the t-values, the regions of interest (ROIs), which
consist of the channels in which the t-values are higher than the
critical t-value (tcrt) for the performed task, can be identified.
In this study, tcrt was set to 1.65, according to the degrees of
freedom (i.e., trial = 30 s, number of data points N = 30 ×
9.19 = 275, N – 1 = 274) and the statistical significance level
(i.e., 0.05 for the one-tailed test). The t-values were computed
using the robustfit function available in MATLABTM. The brain
region that corresponds to the selected active channels is shown
in Figure 9A. The channels were selected after 1.5 s of stimulation
when the trajectory from the black circle touched the red baseline
circle. Figure 9B shows the t-map for Subject 3 at k = 10 s after
stimulation.

Finally, we also performed linear discriminant analysis (LDA)
based classification to compare its results with the results of the
proposedmethod. The EEG+1HbO features were estimated (as
they have been reported to show the best results) using a window
of 1.5 s. Table 3 shows a comparison of the accuracies obtained
via the LDA-based method and via the proposed method. The
results shows that accuracies achieved using the proposed scheme
were higher in comparison with LDA-based classification.

DISCUSSION

One method for improving the classification accuracy by
hybridizing EEG with fNIRS is based on the computation of
probability scores (Fazli et al., 2012; Putze et al., 2014; Koo
et al., 2015; Yin et al., 2015; Buccino et al., 2016). In this case,
some decisions on command generation are made only if both
modalities are active, while other decisions are made if only
one of the two modalities is active. However, the problem with
hybrid EEG-fNIRS is the temporal window used for simultaneous
feature extraction. It takes around 6 s to compute the probability
scores for fNIRS due to the inherent delay in the hemodynamic
response, which is a long time for BCI-based control applications.
This negates one of the advantages of EEG, that it can be used
to detect a signal within a second. We minimized this problem
with our method. A decision can be made by estimating the
EEG window and by monitoring the fNIRS trajectory. If the
trajectory goes from the smaller circle to the larger circle in
the fourth quadrant, a decision on command generation can be
made. Because the smaller circle is an indication that an activity

is performed (as it will only be present if the EEG signal shows
activation), the decision on activity detection can be made based
on the direction of the trajectory. We plotted the trajectories
from −2 to +3 s of stimulation (see Figure 7). The channel
plots enclosed in a red dotted square are the ones in which the
trajectory crossed the outer (red) circle, showing activation.

The optimal window proposed by a previous hybrid EEG-
fNIRS study is 10 s (Tomita et al., 2014). That study showed
significant improvement in the classification accuracy for a
steady-state visual evoked potential task. However, the drawback
was the time required for command generation. EEG signals can
be detected within 1 s.We used the same time window (k= 1 s) to
place a threshold circle using the maximum values of 1HbO and
1HbR (during this time window) and estimated the trajectory.
The trajectory direction from the smaller circle to the larger circle
indicates that the hemodynamic signal is increasing within a
channel (see Table 2). It is important to have minimal motion
artifacts within the baseline. An increased number of artifacts
in the baseline would increase the size of R1 (red circle), and
thus it would take longer to for the trajectory to reach the outer
circle as the radius of R1 increases. If the distance between R1

and R2 is small, a decision on command generation can be made
within 1.2 s. Therefore, it is most important to remove all noises
in the baseline signal to further reduce activity detection time.
In our case, we were able to detect the trajectory’s motion from
the smaller to the bigger circle in 0.5 s, and thus we were able to
generate commands in 1.5 s. We further compared the accuracy
obtained with the proposed method with that obtained via LDA
classification with a 1.5 s window, for three subjects performing
the thumb tapping task (see Table 3). We achieved an overall
average accuracy of 86% with the proposed method, in contrast
with that obtained via LDA (63.8% average accuracy). Our results
show the feasibility of removal of the detected false EEG signals
by hybridizing EEG with fNIRS using a 1.5 s window (for fNIRS)
for BCI. Although there were variations in the hemodynamic
responses on individual subjects due to trial-to-trial variability
(Hu et al., 2013), the average classification accuracies obtained
from the proposedmethod demonstrated its applicability for BCI
purposes.

Another important issue is the sampling rates for EEG and
fNIRS. In our case, we synchronized the EEG window (at 256Hz)
with the fNIRS window (at ∼ 10Hz). A high sampling rate for
fNIRS can be used to describe the trajectory well. Additionally, an
fNIRS system with a higher sampling rate can further minimize
the signal detection time using the proposed method. Low
sampling rates may not provide correct information on the
trajectory from R2 to R1, as there would be few data points to
estimate the hemodynamic response.

The advantage of the proposed method is the removal
of false EEG signal detections using fNIRS to improve the
classification accuracy of BCIs. In previous BCI schemes,
different windows were used to simultaneously extract EEG
features with fNIRS (Fazli et al., 2012; Blokland et al., 2014;
Buccino et al., 2016). The probability scores for EEG and
fNIRS were combined to generate a command. Instead of
using conventional classifiers, our method is able to generate
a command based on the trajectory crossing the threshold
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FIGURE 8 | Trajectories of all 12 trials at Ch. 21 (Sub. 3).

circles. Conventional classifiers require training data to make
predictions on activity detection. However, our method updates
the inner (black) circle radius with the changes in EEG power,
and a decision can be made in real time without the need of
training data to generate a command. Thus, further research
on the proposed method would make it more effective than
conventional classifiers.

Active channel identification is also another advantage of
the proposed method. Activation maps were drawn at the
end of the 10 s period based on the averaged HbO to see

the activated brain regions. We found that the channels that
showed high t-values in the 10 s t-map were the same as the
ones identified “active” in the proposed method. Our results
are consistent with the previous literature (Baker et al., 2014;
Nguyen et al., 2016). It should be noted that the densely
configured emitter-detector pairs in our study contained only
12 emitters and 3 detectors, resulting in only 36 channels to
record brain activity in local brain regions in an area of 2 cm
× 4.9 cm. However, if more emitter/detector combinations were
available for forming more channels that covered a wider brain
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FIGURE 9 | (A) Selected channels using the proposed method at k = 1.5 s,

and (B) t-map at 10 s after stimulation (Sub. 3).

region, a more precise identification of active brain regions
could be made. In addition, we focused only on the activation
map generated by the average of all trials for a subject. The
activation map can vary among individual subjects. Therefore,
using an increased number of subjects with an increased
number of trails could further narrow down the activated brain
regions.

Our method can be extended for the simultaneous detection
of initial dips along with the hemodynamic response. An initial
dip is an early decrease in the hemodynamic response as result
of neuronal firing. Recent fNIRS studies have reported using
this signal in BCIs (Li et al., 2017; Zafar and Hong, 2017; Hong
and Zafar, 2018). In our method, the decision on detecting
hemodynamic signals was based on the trajectory in the fourth
quadrant. The initial dip trajectory could be incorporated
in the vector diagram to further enhance classification
accuracy.

A limitation in this work is the small sample size of 3
participants. If the objective of this work were to find a new

neuroscientific fact, a sufficient number of subjects should be
utilized: The objective of this work was to establish a systematic
method on how to combine EEG and fNIRS for brain signal
detection from the same brain region. Using a small number
of subjects in validating their work are also found in the
literature: 2 subjects (Rakotomarnonjy and Guigue, 2008; Janani
and Sasikala, 2017; Wyser et al., 2017), 3 subjects (Gratton
et al., 1997; Obermaier et al., 2001; Edwards et al., 2013; Thanh
Hai et al., 2013) and 4 subjects (Townsend et al., 2006) to
name a few. For more details, a review paper of Fernández-
Rodríguez et al. (2016) is referred. However, a new scientific (or
cognitive) finding with the proposed method is highly desirable
to utilize a large sample size in the future. Moreover, an accuracy
comparison caused by gender-related effects can be performed
in the future as well-since all subjects were male. In this study,
the pre-processing of the data was done by only a band-pass
filter. As the threshold circle (R1) in the vector phase analysis
is highly dependent on the quality of the measured resting-
state data, it is therefore highly recommended in the future
to use any motion artifact correction algorithm prior to the
selection of R1.

CONCLUSION

In this paper, we have shown the feasibility of detecting an early
fNIRS response using EEG as a marker. A modified vector-
phase analysis was used as a classifier. Two threshold circles
were placed in the vector diagram; one based on the maximum
value of the resting state using 1HbO and 1HbRmeasurements,
and the other using the window in which EEG activity was
detected. The EEG and fNIRS data was synchronized using
a moving window of 1 s. The detection of a decision activity
occurred when the trajectory of the magnitudes of 1HbO and
1HbR crossed the active EEG-window-based threshold circle
and touched the resting state circle. A command generation
decision was made in 1.5 s on average. The proposed scheme
showed potential for early hemodynamic response detection
for BCIs.
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