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In daily life, we often need to make accurate and precise movements. However, our

movements do not always end up as intended.Whenwe are consistently too late to catch

a ball for example, we need to update the predictions of the temporal consequences of

our motor commands. These predictions can be improved when the brain evaluates

sensory error signals. This is thought to be an optimal process, in which the relative

reliabilities of the error signal and the prediction determine how much of an error

is updated. Perturbation paradigms are used to identify how the brain learns from

errors. Temporal perturbations (delays) between sensory signals impede the multisensory

integration of these signals. Adaptation to these perturbations is often incomplete. We

propose that the lack of adaptation is caused by an increased measurement noise that

accompanies the temporal perturbation. We use a modification of the standard Kalman

filter that allows for increases in measurement uncertainty with larger delays, and verify

this model with a timing task on a screen. Participants were instructed to press a button

when a ball reached a vertical line. Temporal feedback was given visually (unisensory

consequence) or visually and auditory (multisensory consequence). The consequence of

their button press was delayed incrementally with one ms per trial. Participants learned

from their errors and started pressing the button earlier, but did not adapt fully. We

found that our model, a Kalman filter with non-stationary measurement variance, could

account for this pattern. Measurement variance increased less for the multisensory

than the unisensory condition. In addition, we simulated our model’s output for other

perturbation paradigms and found that it could also account for fast de-adaptation.

Our paper highlights the importance of evaluating changes in measurement noise when

interpreting the results motor learning tasks that include perturbation paradigms.

Keywords: temporal, adaptation, Kalman filter, delay, uncertainty, noise, multisensory integration

1. INTRODUCTION

Successful sports performance often depends on the ability to make accurate and precise
movements in time and space. Yet not all of the movements we make turn out as intended. Our
muscles can fatigue, and the world around us changes constantly. Generally, we can correct errors
online, however in order to do so, we rely on sensory feedback that is processed by our brain with
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a delay of around 150 ms for visuomotor tasks (Miall et al., 1993).
In order to compensate for these delays, our brain predicts the
consequences of our motor commands with a forward model
(Jordan and Rumelhart, 1992; Wolpert and Miall, 1996). This
internal model predicts the sensory feedback it will receive
when a motor command is sent. The difference between the
predicted sensory feedback and the actual sensory feedback is
called the prediction error (Jordan and Rumelhart, 1992). Error-
based learning occurs when we evaluate the prediction error to
update the forward model (Wei and Körding, 2009). The process
of updating the forward model is called adaptation (Huang et al.,
2011). Through adaptation, our predictions of future movements
can become more accurate.

Unfortunately, there are many factors unrelated to the
accuracy of our motor command that can influence its
consequence (He et al., 2016). Trial-to-trial variability in these
consequences might stem from neural sources like sensory noise,
cellular noise, and motor noise (Harris and Wolpert, 1998; Jones
et al., 2002; van Beers et al., 2004; Churchland et al., 2006a,b;
Faisal et al., 2008; van Beers, 2009). Note that not all these
types of noise are necessarily disadvantageous. Neural noise in
the form of stochastic resonance can benefit detection of inputs
that otherwise would remain sub-threshold (Faisal et al., 2008;
van der Groen et al., 2018). Other sources of noise are inaccurate
estimates of the task requirements (Osborne et al., 2005), and
disturbances from the outside world (Tan et al., 2016). These
different types of noise give the brain the complex task to evaluate
which part of an error stems from noise, and which part stems
from inaccurate predictions (Wei and Körding, 2009).

One way to study how the brain solves this problem is
by applying temporal or spatial perturbations to learned
movements, for example through delay (Vercher and
Gauthier, 1992; Cunningham et al., 2001), visuomotor rotation
(Cunningham, 1989), or force field (Shadmehr andMussa-Ivaldi,
1994) paradigms. Studies have shown that we can adapt to these
perturbations (for review: Shadmehr et al., 2010), but that we
do not always fully update the predicted consequences of our
actions (Vercher and Gauthier, 1992; Krakauer et al., 2006; Tseng
et al., 2007; Galea et al., 2011; de la Malla et al., 2014; Vaswani
et al., 2015). A lack of full adaptation is seen even after prolonged
exposure to these perturbations (van der Kooij et al., 2016). The
widely used state space model of adaptation (Thoroughman and
Shadmehr, 2000; Donchin et al., 2003; Cheng and Sabes, 2006)
captures this behavior well (Equation 1).

xt = A • xt−1 + B • et−1 (1)

The trial-by-trial adaptation is described by recursively updating
the previously learned motor output xt−1 with a part of the error.
Learning factor B describes how much of the error e is corrected
on each trial. In order to account for the lack of adaptation,
this model includes a retention factor A, which describes how
much of previously learned behavior is maintained on the next
trial. A multi-rate modification of this model (Smith et al., 2006),
in which the motor output is the sum of a slow and a fast
process, can account for features of motor learning like savings

(the observation that re-adaptation is faster than the original
adaptation) (Kojima et al., 2004; Ebbinghaus, 2013), anterograde
interference (slower learning of an opposite perturbation) (Sing
and Smith, 2010), and rapid de-adaptation/downscaling (de-
adaptation is faster than the original adaptation)(Jansen-Osmann
et al., 2002; Davidson and Wolpert, 2004). Unfortunately, these
models are mostly descriptive in nature, and do not explain how
the brain acquires its learning rate and retention factor.

According to other mainstream theories of motor control,
error correction can be described as an optimal process (Todorov
and Jordan, 2002; Körding and Wolpert, 2004). The learning
rate depends on the uncertainty of the internal model and
the uncertainty of the error measurement. In support of this
view it has been shown that learning decreases when the
sensory feedback is noisy, whilst learning increases with larger
uncertainty of feedforward estimations (Wei and Körding, 2010).
In motor control, this theory has been formalizedmathematically
through a widely used Bayesian tool called the Kalman Filter
(Kalman et al., 1960). The Kalman filter recursively updates its
prediction of the future state by correcting part of the error on
each trial (Korenberg and Ghahramani, 2002; Burge et al., 2008;
Wei and Körding, 2010). The size of the correction depends on
the reliability of the previous state estimate and the uncertainty in
the new state measurement. The standard Kalman filter assumes
the environment to be stationary, meaning that the process and
measurement noise come fromGaussian distributions and do not
change over time. The measurement noise, however, is unlikely
to be stationary when temporal or spatial perturbations are
applied, because these perturbations lead to dispersed feedback
from different sensors. Imagine a task in which a button press
causes a flash (Figure 1A). The visual timing information from
the flash can be integrated with the haptic timing information
from the button press based on their reliability (Ernst and Banks,
2002; Bresciani et al., 2005). Combining the sources provides
more reliable timing estimations. When the flash is delayed with
respect to the button press, it becomes more difficult to optimally
combine the estimates from these sources of feedback (Ernst
and Bülthoff, 2004; Parise et al., 2012). The larger the temporal
perturbation, the more the integration is affected (Stein and
Meredith, 1993). Additionally, studies have shown that estimates
of time lose precision and accuracy when the temporal intervals
increase (Gibbon, 1977;Wearden and Lejeune, 2008; Jazayeri and
Shadlen, 2010). Consequently, the error estimates aremore noisy.
We therefore propose a model based on a single modification to
the standard Kalman filter, in which the measurement noise can
change depending on the size of the temporal perturbation.

The Kalman filter predicts the state of the world Xt and state-
uncertainty (σt)

2 on a given trial (t) through the following set of
equations (Equation 2–6):

Prediction:

X−

t = X̂t−1 (2)

(σ−

t )2 = σ
2
t−1 + (σ

p
t )

2 (3)

The prediction is estimated through the posterior state-
estimation X̂t−1 on the previous trial, and its uncertainty (σ−

t )2.
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FIGURE 1 | (A) Theoretical overview of sensory signal integration and its effect on the measurement noise. When action and consequence diverge in time, the

integration becomes weaker, which in turn increases the measurement noise. This increase is the foundation for the NSKF model. (B) Experimental setup: Each trial,

the red ball on the screen moved toward the reference line (v = 20, 23, or 26 cm/s; TTC = 1.0, 1.2, or 1.4 s). Participants were instructed to press a button (action)

when the ball was as close to the vertical line as possible. The consequence of the action was delayed incrementally with 1 ms per trial. The visual consequence was

the disappearance of the ball and the auditory consequence was a low pitched tone. Participants needed to press earlier to align the consequence of the action with

the reference, and account for the added delay. Each condition consisted of 270 trials (of which 135 baseline trials and 135 adaptation trials). (C) The NSKF model

was tested for different perturbation paradigms.

The process variance (σ
p
t )

2 denotes the uncertainty coming from
the possibility that the state of the world has changed over time.

Update:

K ≈
(σ−

t )2

(σ−

t )2 + (σm
t )2

(4)

X̂t = X−

t + K(X−

t − Xm
t ) (5)

(σt)
2
= (1− K)(σ−

t )2 (6)

During each trial the state estimate Xt and the state-uncertainty
estimate σ

2
t are updated by combining the previous state

prediction with the weighted prediction error of the previous
trial. The prediction error is the difference between the predicted
sensory feedback from the state of the world X−

t and the actual
sensory feedback from the state measurement Xm

t . The weighing
of this error is modulated by the Kalman Gain K. The Kalman
Gain represents the reliability of the measurement (σm

t )2 relative
to the reliability of the state-estimate (σ−

t )2. These updated
estimates then are used again to predict the state and state-
uncertainty on the next trial.

In the standard (or stationary) Kalman filter (SKF), the
measurement variance is static.

(σm
t )2 = (σm

0 )2 (7)

However, the more our actions are temporally perturbed, the
more the measurement uncertainty increases (Figure 1A). The
following equation illustrates how the measurement variance is
affected by the delay on each trial. 1(σm)2 denotes the change in
measurement variance for each increase of the delay Dt .

(σm
t )2 = (σm

0 )2 + 1(σm)2 • Dt (8)

In this study we modified the SKF into a Non-Stationary Kalman
Filter (NSKF) by replacing Equation (7) with Equation (8). This
equation allows the measurement variance to increase according
to the size of the delay Dt . Larger delays will therefore lead to a
smaller Kalman Gain (Equation 4), which in turn will decrease
the part of the error that is corrected for.

In order to understand the behavioral patterns of adaptation
when temporal perturbations are present, we test this model with
unisensory and multisensory error feedback. The multisensory
feedback should provide more reliable feedback estimates with
regards to the unisensory feedback. We expect the measurement
variance to increase when the consequence of the action is
delayed in time. In addition, we expect themeasurement variance
to increase at a lower rate in the multisensory condition (MC)
compared to the unisensory condition (UC), and consequently
a higher adaptation in the MC condition than in the UC
condition. Next, we simulated the results of our model for block
perturbation paradigms. We expected to find a sustained lack of
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adaptation in stationary situations, and also expected the NSKF
to be able to account for rapid de-adaptation/downscaling.

2. MATERIALS & METHODS

2.1. Participants
Ten subjects participated in the experiment. All participants
gave written consent. Their vision and hearing were normal or
corrected to normal. The study was part of a program that has
been approved by the local ethics committee.

2.2. Apparatus and Stimuli
Participants were seated in front of a 27-inch led-monitor (ASUS
VG278H; resolution: 1920 x 1080; refresh rate: 120 Hz; pixel
size: 0.311 mm) and held a joystick (sampled at 130Hz) of
which they could use either a left-handed button or right-handed
button. On each trial, a vertical white reference line (length =
10 cm) appeared 20 cm to the right of the center of a black
screen (depicted as a gray screen in Figure 1B). A solid red ball
(diameter 0.6 cm) appeared, moving toward the reference line in
a straight horizontal line. We used 3 different movement speeds
(v = 20, 23, or 26 cm/s) and 3 different time to contact durations
(TTC = 1.0, 1.2, or 1.4 s). This way, the ball could appear at
9 different distances from the reference line. The participants
were instructed to press the button when the ball was as close
as possible to the reference line. The feedback they received
differed between conditions. In the Unisensory Consequence
(UC) conditions, the ball disappeared and in the Multisensory
Consequence (MC) conditions the ball disappeared and a low
pitched tone was played. From the sensory consequence of the
button press, participants perceived the size of their temporal
error. We did not provide any further feedback about the
“correctness” of the participant’s responses. Each condition
consisted of a baseline and a perturbation phase. Both phases
consisted of 135 trials. During the baseline phase there was no
perturbation. In the perturbation phase the consequence of the
participants’ action was delayed incrementally with 1 ms per
trial, resulting in a maximal delay of 135 ms. At the end of
each experiment, we asked participants if they had consciously
perceived any delay or conflict in the feedback they received.
If the delays were consciously perceived, this would affect the
sense of agency of the consequence of the action. None of the
participants reported noticing the delay in the consequence of
their action.

2.3. Analysis of Responses
We recorded the response time (RsT), i.e., the time difference
between the button press and the moment the ball reached the
target line (Figure 1B). Positive RsT denoted that the action
preceded the ball crossing the line. During this experiment,
we delayed the consequence of the action incrementally with
1 ms/trial. In order to adapt to this increasing temporal
perturbation, participants would need to initiate the action earlier
with increasing delays, i.e., have more positive RsT. We analyzed
individual behavior by inspecting the RsT and its simple moving
average (window = 10 trials). It seemed that baseline variance
was negatively affecting the adaptation. We verified this effect

by calculating the Pearson correlation of the baseline variability
and RsT during adaptation. Furthermore, we tested for one-sided
differences in adaptation with a paired t-test between theMC and
UC condition (α = 0.05).

2.4. Modeling
We modeled the SKF and the NSKF on the data of each
participant. We fitted the models with the help of the fkf function
from the FKF-package (Luethi et al., 2018) in the R program (R
Core Team, 2013). This function is designed to implement the
Kalman filter by iteratively predicting the next state according to
Equations (1–6).

The Kalman filter was updated by introducing the temporal
perturbation as a new measurement of the state Xm

t on each
trial. The difference between the two models comes from the
expected effect of the temporal perturbation on the measurement
noise (Equations 7 vs. 8). In the SKF model, 1(σm)2 was
zero and therefore the (σm)2 equaled (σm

0 )2 during the entire
experiment (Equation 7). (σm

0 )2 was approximated by calculating
the participants’ baseline variance. For the NSKF model, we
calculated the increase in measurement noise 1(σm)2 per 1 ms
delay (Equation 8), in addition to the (σm

0 )2 (baseline variance).
1(σm)2, was a free parameter in the model. The 1(σm)2 that
resulted in the least squared error between the prediction of the
Kalman filter and the RsT data was calculated. It was calculated
separately for the UC and MC condition.

The following initial parameters were used for both models:
X̂−

0 = 0 ms, (σ−

0 )2 = 0.25 ms, and (σ P
t )

2
= 4 · 10−6 ms2.

The output from the model provided the state prediction
X−

t and the Kalman Gain K. We expected (σm
0 )2 and 1(σm)2

to be larger for the UC condition and checked for these one-
sided significant differences between conditions with t-tests (α =

0.05). We reported bootstrapped confidence intervals (95%).

2.5. Other Perturbation Paradigms
In order to see how our model would perform to other types
of perturbation paradigms, we extrapolated the measurement
variance (σm)2 to different situations. We were interested
to see how our model would behave when the perturbation
was stationary (Figure 1C-1) and when the perturbation was
suddenly removed (Figure 1C-2). Based on results from previous
studies (Jansen-Osmann et al., 2002; Davidson and Wolpert,
2004; Smith et al., 2006), we expect faster de-adaptation
compared to the initial adaptation. On top of that, we expected
that longer adaptation phases would cause longer de-adaptation
(Figure 1C-3). We tested these hypotheses by fitting exponential
functions on the model output and calculating the time constants
of these functions.

3. RESULTS

3.1. Behavioral Analysis
We exposed participants to a temporal perturbation paradigm
and analyzed the adaptive behavior. Figure 2 shows the behavior
of two representative participants. The participants started
accounting for the delay, meaning that they pressed the button
earlier in order to decrease the temporal error. As expected, there

Frontiers in Human Neuroscience | www.frontiersin.org 4 February 2019 | Volume 13 | Article 46

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Knelange and López-Moliner Measurement Noise Affects Temporal Adaptation

FIGURE 2 | Adaptive behavior of two representative participants during the temporal perturbation experiment. Dots denote the individual responses per trial and the

lines are the moving averages. Positive values denote an early response. The dashed line represents the temporal perturbation. The more the responses followed this

line, the more successful the adaptation to the temporal perturbation.

was a lack of full adaptation to the perturbation (for all but
one participant).

The degree of adaptation varied among participants. A factor
that seemed to influence the amount of adaptation was the
variability of the participants (Figure 2). We confirmed this
observation by calculating the correlation between the baseline
variance and the sum of the response times during the adaptation
phase. Higher RsT variability in the baseline phase seemed to be
correlated with lower average RsT during the adaptation phase
[r(18) = –0.5, p = 0.02]. On average, there were more positive RsT
in the MC than in the UC condition for most participants [t(18)
= 4.8, p < 0.001], providing further evidence that the lack of
adaptation could have to do with changes in measurement noise.

3.2. Increases in Measurement Noise Can
Account for Lack of Adaptation
Figure 3 demonstrates the modeling results of the SKF and
NSKF for the MS and US condition. The participants showed
adaptive behavior by initiating the button press earlier (i.e., more
positive RsT) over time. The SKF predicted an adaptation that
was larger than observed in the participants, and parallel to
the temporal perturbation that was introduced. As expected, the
NSKF described the data more accurately, with lower weights
for new measurements as the temporal perturbation grew larger.
This is reflected in an increasing (σm

t )2 (Figure 3B), showing that
the best fit of the NSKF model is achieved with a non-stationary
measurement noise. The Kalman Gain (presented in a log-scale
in Figure 3C) reaches its asymptote in the SKF, while it keeps
declining in the NSKF. This means that the weight on error
measurements decreases as the temporal perturbation increases
in the NSKF model.

3.3. Smaller Increase of Measurement
Variance for Multisensory Condition
In order to quantify the effect of temporal perturbations on the
measurement noise, we examined the differences between the
MC and UC condition for (σm

0 )2 and 1(σm)2 (Figure 4). (σm
0 )2,

approximated by the baseline RsT variance, was higher for the
UC condition (0.0015 s2) than for the MC condition [0.0010
s2; t(9) = 4.4, p < 0.001]. Similarly, 1(σm)2 was higher in the
UC condition (3.7 · 10−4 s2) than the MC condition [1.7 · 10−4

s2; t(9) = 1.9, p = 0.04]. The lower measurement variance in
the multisensory compared to the unisensory condition led to
improved learning and more complete adaptation.

3.4. Accounting for Lack of Adaptation to
Stationary Situations and Rapid
De-adaptation
We applied our model to a number of different perturbation
paradigms (Figure 1). Figure 5A shows predictions for an
adaptation to stationary perturbations (i.e., where the delay
is fixed to 135 ms). We can see that the NSKF predicts the
participants’ behavior to converge with the input after about 250–
300 trials. It therefore does not predict the lack of adaptation to
stationary perturbation paradigms as described in the literature.

As expected, we found a much faster de-adaptation compared
to the initial predicted adaptation (Figure 5B). This predicted de-
adaptation was slightly faster for the MC- than the UC condition.
When we examine the effect of the length of the adaptation phase
on the speed of de-adaptation for the MC condition (Figure 5C),
we find de-adaptation to be faster for longer adaptation phases.
This finding was opposite to the results reported in the literature.
Increasing de-adaptation times can thus not be explained by
the NSKF.

4. DISCUSSION

In this study, we aimed to provide a possible explanation for the
decreasing amount of error correction to gradually increasing
temporal perturbations. We have shown that increasingly noisy
feedback estimates that arise from accumulating delays can
explain the pattern of adaptation observed in our participants.
When feedback is delayed in time, its uncertainty increases. The
coupling between the participant’s action and its consequence

Frontiers in Human Neuroscience | www.frontiersin.org 5 February 2019 | Volume 13 | Article 46

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Knelange and López-Moliner Measurement Noise Affects Temporal Adaptation

FIGURE 3 | The modeling results for the stationary (left) and non-stationary (right) Kalman filter. (A) The average response times (dots) and model prediction (colored

lines) for the MC and UC condition. The black dashed line represents the temporal perturbation of the action during the experiment. (B) The measurement noise as

calculated from equation 7 (SKF) and 8 (NSKF). (C) The resulting log(Kalman Gain).

becomes more noisy due to diverging sensory signals, impeding
sensory integration (Stein and Meredith, 1993; Ernst and
Bülthoff, 2004; Parise et al., 2012).

We are not the first to demonstrate that noise affects
the amount of learning from an error. The amount of
learning from an error has been shown to increase when state
estimates are more uncertain, while learning rates decreased
when measurement estimates are more uncertain (Wei and
Körding, 2010). The Kalman filter has previously been used
to show that the measurement uncertainty could effect the
amount of adaptation to a perturbation (Burge et al., 2008;
Haith et al., 2008). Furthermore, recent studies have provided
evidence that multisensory feedback can benefit performance
in a delay detection task (van Kemenade et al., 2016, 2017;

Straube et al., 2017). However, to our knowledge we are the
first ones to model the behavioral patterns during adaptation
to incremental temporal delays by increasing the measurement
variance. The model successfully predicted lower weights for new
measurements when temporal perturbations became larger, as
was observed in the behavioral data.

We chose to apply gradually increasing temporal delays in
order to verify the NSKF model. The first reason for this
approach was that the gradual delays simulated the effect of
small changes that occur in muscles during exercise. Fatigue
and temperature changes for example, are thought to increase
the electromechanical delays in muscles over time (Zhou et al.,
1998). Secondly, it gave us the opportunity to estimate the
increment of measurement noise with the increasing delay.
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FIGURE 4 | Measurement variance for the MC and UC condition. Error bars indicate 95% confidence intervals. (A) Baseline measurement variance. (B) The increase

of measurement variance on each trial.

A sudden stationary perturbation could have also served to
calculate increases in measurement noise, but it may have
affected other factors in the model, like the process variance
(Narain et al., 2013), or the sense of agency with regards to
the sensory consequence of the action (Rohde et al., 2014;
Rohde and Ernst, 2016).

In order to decrease the amount of free parameters in
the model, we used baseline RsT-variability to reflect the
measurement variance of the model in the unperturbed state.
These variabilities are correlated, but the RsT variability likely
overestimates the actual baseline measurement noise in the
system.The reason being that motor variability includes, along
with measurement noise, planning noise (Churchland et al.,
2006a,b; van Beers, 2009), execution noise from the motor
neurons (Harris and Wolpert, 1998; Jones et al., 2002; van
Beers et al., 2004; Faisal et al., 2008), noise from imprecise
estimates of the speed of the target (Osborne et al., 2005) and
perturbations from the environment (Tan et al., 2016). However,
any differences between the UC and MC condition are expected
to be due to differences in measurement noise. By using the
baseline variability, we filter out any baseline differences between
the conditions. As a result, we can assume that differences in
(1σ

m)2 stem from the temporal perturbation. Even though
this might underestimate the size of (1σ

m)2, it does preserve
the trend.

The multi-rate state space model of Smith et al. (2006)
is a simple descriptive model that can account for a series
of motor learning features, like savings (Kojima et al., 2004;
Ebbinghaus, 2013), anterograde interference (Sing and Smith,
2010), lack of adaptation (Krakauer et al., 2006; Tseng et al.,
2007; Galea et al., 2011; de la Malla et al., 2014; Vaswani
et al., 2015), and fast de-adaptation (Jansen-Osmann et al.,
2002; Davidson and Wolpert, 2004). It has been proposed
that savings and anterograde interference are features of motor
learning that are expressed in the final adaptation. However,
it is more likely that these features stem from different model
free types of learning processes: use-dependent plasticity and

operant reinforcement (Huang et al., 2011). We believe that at
least some of the other proposed features stem from changes
in measurement noise due to temporal perturbations. The
NSKF accounts for decreased sensorimotor learning due to
perturbation-induced measurement noise. One disadvantage of
the Kalman filter is that the predicted state, with stationary
perturbations, converges to the input (Burge et al., 2008). This is
even the case with increased measurement noise, as the Kalman
gain never completely reaches zero. In reality however, people
do not fully adapt to the perturbation, even after prolonged
exposure (van der Kooij et al., 2016). The persisting adaptation
bias can therefore not be explained by our single modification
of the standard Kalman filter. Furthermore, the model predicts
fast de-adaptation, which is consistent with reported behavior
in other studies (Jansen-Osmann et al., 2002; Davidson and
Wolpert, 2004; Smith et al., 2006). The multi-rate model predicts
a decreasing speed of de-adaptation with longer adaptation
phases (Smith et al., 2006), while our model predicts the opposite
effect: longer adaptation times predicted slightly smaller time
constants for de-adaptation. However, this feature of motor
learning could justifiably be attributed to changing uncertainties
of the state-estimate (as modeled by Narain et al., 2013), rather
than measurement uncertainty. Unexpected perturbations in the
environment increase the uncertainty of the state-estimate (Tan
et al., 2016). As a result, the Kalman Gain temporarily increases
as well. Over time, the Kalman Gain decreases again. The sooner
de-adaptation happens after the original adaptation, the higher
the Kalman gain. Though in theory, this idea could explain
how de-adaptation becomes slower over time, more research is
needed on how sudden perturbation affect the Kalman Gain.
We decided against modeling the process variance as a non-
stationary parameter, due to its implications on the interpretation
of themeasurement variance. Futuremodels could aim to explore
these relationships further.

Even though our model does not account for lack of
adaptation in stationary situations, higher levels of measurement
noise do likely have an effect, even over longer periods of
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FIGURE 5 | Model predictions. (A) The conversion of the Kalman filter during stationary perturbations for Unisensory and Multisensory feedback. Perturbation

denoted by dashed line. (B) Speed of adaptation vs. de-adaptation for Unisensory and Multisensory feedback. Perturbation denoted by dashed line. (C) Speed of

de-adaptation after different lengths of the adaptation phase. Perturbation denoted by dashed lines.

time. It has been recently shown that people can correct for
errors near-optimally over time, but not from trial to trial (van
Beers et al., 2013). In order to be optimal, the brain needs to
distinguish a bias in prediction errors from other sources of noise
(Rohde and Ernst, 2016). Through experience, the brain can
learn from signals and become more optimal (van Beers et al.,
2013). The noisier the signal, the more experience is required.
It is possible that, at a certain noise level, the time to reach
the required experience becomes infinite. If this were the case,
prediction errors would be perceived as noise in the system
and adaptation would stall. This would also explain why more
variable participants of this study were likely to adapt less than
participants with a lower variability.

Additionally it has been shown that the learning rate during
prism adaptation (Kitazawa et al., 1995; Tanaka et al., 2011)
and visuomotor rotation adaptation (Honda et al., 2012) is
affected by delayed temporal feedback. This finding provides
further evidence that measurement noise is higher when sensory
feedback is delayed. Interestingly, Honda et al. (2012) found
that the adverse effect of the delay on the learning rate was
alleviated when adaptation to the delay took place before the
adaptation to the visuomotor rotation. This might be due to
a possible effect of causal binding on the measurement noise.
Causal binding refers to the observation that delays between an
action and its sensory consequence can cause a recalibration
of the perceived timing of the consequence (Stetson et al.,
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2006; Buehner, 2012). When exposed to a delay, the temporally
conflicting signals from action and consequence start to be
perceived as more simultaneous. Removing the delay causes an
after-affect in which the previously delayed sensory consequence
is perceived to lead the timing of the action. The brain constantly
needs to estimate the uncertainty of different signals (Knill and
Pouget, 2004). As causal binding is responsible for decreasing
the perceived size of the sensory conflict, it could have a similar
effect on the estimated measurement uncertainty. Conversely,
Tanaka et al. (2011) did not find an increased learning rate
after an adaptation period, even though the subjective delay was
decreased. The main difference between the studies of Tanaka
et al. (2011) and Honda et al. (2012) is the type of feedback
provided (final movement error and continuous movement error
respectively). It has been previously shown that the type of
feedback provided affects the adaptation (de la Malla et al., 2012).
Final movement feedback provides a lower error signal-to-noise
ratio, regardless of the delay. The decrease of the perceived
measurement noise due to causal binding might be minimal in
more noisy signals. Similarly, studies in delay detection have
shown experiments that only provide final movement error show
larger benefits of multimodel feedback than studies that provide
continuous movement feedback (van Kemenade et al., 2016).
These differences might also be attributed to signal-to-noise
differences, giving a higher benefit of multisensory feedback in
tasks with more noisy feedback types.

The present study explored possible adaptation differences
due to discrepancies in uncertainty between unisensory and
multisensory delayed feedback. The cerebellum has generally
been proposed as the brain area that is involved in computing
the internal forward model (Miall et al., 1993; Wolpert and
Miall, 1996; Wolpert et al., 1998; Bastian, 2006; Tseng et al.,
2007), comparing forward predictions with sensory feedback
(Blakemore et al., 1998, 1999; van Kemenade et al., 2018). A
recent study on unisensory vs multisensory differences in a delay
detection task suggests that the angular and middle temporal
gyrus are involved in detecting cross-sensory prediction errors
(van Kemenade et al., 2018). These areas, connected to the
cerebellum, are a likely candidate for the benefit of multisensory
over unisensory temporal signals, though further examination
is desirable. Further research into the effects of unisensory
and multisensory feedback on brain processes will benefit our
knowledge on how prediction errors are processed and how the
brain deals with sensory noise during adaptation.

A limitation of our study is the absence of a unisensory
auditory condition. The inclusion of this condition would have
shed some light on how noise in auditory feedback is affected by
delays. However, previous research has shown that multisensory
feedback affects the reliability of the estimates (Ernst and
Banks, 2002; Bresciani et al., 2005), and therefore we do not
expect any effect of this limitation on the interpretation of
our study.

In this study we focused mainly on the effect of temporal
perturbations on the estimated measurement noise. However,
an effect of spatial perturbations on the estimated measurement
noise can be expected as well. Spatial perturbations often create
discrepancies between different types of sensory information,
impeding integration. Our study shows that these perturbation
paradigms we use to study motor learning lead to increased
measurement noise. It is important to keep this in mind
when interpreting the results of perturbed actions during a
sensorimotor tasks. Most importantly, we have shown these
increases in measurement noise can account for a lack of
adaptation to perturbation paradigms.
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