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Predicting Brain Age Based on
Spatial and Temporal Features of
Human Brain Functional Networks
Jian Zhai and Ke Li*

School of Mathematical Science, Zhejiang University, Hangzhou, China

The organization of human brain networks can be measured by capturing correlated

brain activity with functional MRI data. There have been a variety of studies showing that

human functional connectivities undergo an age-related change over development. In

the present study, we employed resting-state functional MRI data to construct functional

network models. Principal component analysis was performed on the FC matrices

across all the subjects to explore meaningful components especially correlated with

age. Coefficients across the components, edge features after a newly proposed feature

reduction method as well as temporal features based on fALFF, were extracted as

predictor variables and three different regression models were learned to make prediction

of brain age.We observed that individual’s functional network architecture was shaped by

intrinsic component, age-related component and other components and the predictive

models extracted sufficient information to provide comparatively accurate predictions of

brain age.
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INTRODUCTION

Senescence is an inevitable and complex biological process associated with brain changes.
Moreover, there are notable individual differences in brain aging among the population and
these differences might be an indication of deviation from healthy brain-aging trajectories for
people suffering from developmental neuropsychiatric disorders such as Alzheimer’s disease (AD)
(Daffner, 2010; Koutsouleris and Sauer, 2013; Douaud et al., 2014). Thus a prediction of brain age
for individuals could serve as a reliable biomarker to detect the risk of neurodegenerative diseases
and be used for early diagnosis and therapy (Cole and Franke, 2017). For instance, predicted brain
age being older than chronological age for a subject might imply accelerated brain aging arising
from brain diseases.

Over the last three decades, functional magnetic resonance imaging (fMRI), especially
resting-state functional connectivity fMRI (rs-fMRI) studies have significantly advanced our
knowledge of human brain function and organization (Cole et al., 2014; Dubois, 2016;
Dubois and Adolphs, 2016; Bassett and Sporns, 2017). Functional connectivity reflects the
coherence between temporal fluctuations in the blood oxygen level dependent (BOLD) signal
betweenconnectomics across two or more brain regions (Power et al., 2014; Liégeois et al.,
2017). Increasing variety of studies have employed functional connectivity approaches to explore
effects of aging on resting-state functional networks. A number of studies have revealed
higher between-network connectivity and lower within-network connectivity in older adults
compared with younger adults (Kobuti and Busatto, 2013; Chan et al., 2014; Yang et al.,
2014; Grady et al., 2016; Spreng et al., 2016; Petrican et al., 2017; Zuo et al., 2017). For
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example, Spreng et al. (2016) observed reduced within-network
and increased between-network functional connectivity (FC)
across the default mode and dorsal attention networks. A
measure of network segregation was defined to summarize
values of within-network connectivity in relation to between-
network connectivity in Chan et al. (2014) and they found
that increasing age was accompanied by decreasing segregation
of brain networks, which was consistent with finding of less
within-network and more between-network connectivity with
older age. Grady et al. (2016) revealed frontoparietal network
(FPN) served as a switch to influence the age differences
in default mode network (DMN) besides a similar finding
with weaker within-network connectivity and stronger between-
network connectivity. Apart from linear developmental patterns
with aging (Onoda et al., 2012; Kobuti and Busatto, 2013; Chan
et al., 2014; Petrican et al., 2017), quadratic lifespan patterns of
development have been found to fit the development strategy
better in some studies (Betzel et al., 2014; Cao et al., 2014; Douaud
et al., 2014). For example, Betzel et al. (2014) found that FC
in some brain areas showed an inverted U-shape pattern of an
increase in connectivity during development and early adulthood
and a decrease in older adults.

Even that human brain structure and function greatly vary
across individuals has been recognized for several years (van
Horn et al., 2008), researchers did not show widespread
interest in personalized investigation of brain function until
recent year, benefiting from technological advances and large
brain datasets (Nooner et al., 2012; Van Essen et al., 2013;
Finn et al., 2015; Xia and He, 2017). For example, a model
was built from whole-brain functional network to predict
sustained attention of individuals (Rosenberg et al., 2016),
proving that functional connectivity pattern provided reliable
measures of individual differences in behavior. Thus, there have
been some studies trying to predict brain age for individuals
through brain network approaches. By employing structural or
functional neuroimaging data and machine learning methods,
predictive models are learned on training datasets to make
predicted brain age compared to chronological age based upon
extracting different features (Wang et al., 2012; Mwangi et al.,
2013; Han et al., 2014; Lin et al., 2015; Luders et al., 2016;
Cole et al., 2017; Liem et al., 2017; Lancaster et al., 2018;
Li et al., 2018). For example, Lin et al. (2015) employed
artificial neural network to predict brain age based on structural
connectivity network. Lancaster et al. (2018) used T1-weighted
MRI scans for age prediction and Bayesian optimization method
was adopted to optimize resampling parameters and improve
prediction performance. Compared with studies with prediction
frameworks based on structural features, there have been less
studies predicting brain age built on functional connectivity
features. For instance, Dosenbach et al. (2010) adopted a
multivariate pattern analysis (MVPA) tool to construct a
biomarker from functional connectivity with which accurate
predictions about individuals’ brainmaturity across development
were made.

Base on the above findings, we hypothesized that sufficient
information would be extracted from resting state fMRI data
to make accurate predictions of brain age. In the current

study, two publicly available Enhanced Nathan Kline Institute—
Rockland Sample (NKI-RS-E) dataset (aged 6 to 85 years) and
Nathan Kline Institute—Rockland Sample (NKI-RS) dataset were
employed. Resting-state functional network was constructed for
each subject. Principal component analysis was performed at
the network-based level across all subjects and components
acquired were probed subsequently to explore whether they were
meaningful and their relationships with age. Then coefficients
across the components were extracted as predictor variables and
different regression models were learned to make prediction of
brain age. What’s more, two other feature extraction/reduction
methods, edge-based method and temporal features based
method, were also proposed as a control and complementary
analysis, and we expected that accurate prediction could be
achieved. Finally, three distinct regression models were trained,
K-fold cross-validation was performed on NKI-RS-E dataset and
external validation was performed on NKI-RS dataset.

MATERIALS AND METHODS

Subjects and Imaging Protocols
In this work, we used two datasets: Enhanced Nathan Kline
Institute—Rockland Sample (NKI-RS-E) data and Nathan Kline
Institute—Rockland Sample data, for internal and external
validation. Characteristics of subjects for two datasets are shown
in Supplementary Tables 1, 2.

Enhanced Nathan Kline Institute—Rockland Sample

(NKI-RS-E) Data

Multiband resting-state fMRI (R-fMRI) data were acquired
from the publicly available Enhanced Nathan Kline Institute—
Rockland Sample (Nooner et al., 2012) which is an ongoing,
institutionally centered endeavor aimed at creating a large-
scale (N > 1000) community sample of participants across the
lifespan. We selected data of 496 individuals from this dataset
(304 females; mean age: 40.8; range 6 and 85). Institutional
Review Board Approval was obtained for this Project at the
Nathan Kline Institute(Phase I #226781 and Phase II #239708)
and at Montclair State University(Phase I #000983A and Phase II
#000983 B).Written informed consent was obtained for all study
participants. Written consent and assent was also obtained from
minor/child participants and their legal guardian.

MRI data were collected in a 3T Siemens TIM Trio scanner.
Resting fMRI data were acquired using multiband EPI with the
following parameters: voxel size=3× 3× 3mm3; matrix= 74 ×
74; field of view = 222mm; TR = 645ms; TE = 30ms;
900 volumes and 40 axial slices. For spatial normalization, an
MPRAGE image was acquired. During the resting state data
acquisition, each participant was instructed to simply rest with
eyes open. Eleven participants were excluded from analysis for
missing time points or being unable to decompress datasets.

Nathan Kline Institute—Rockland Sample (NKI-RS)

Data

This dataset consisted of 207 subjects between the ages of 4 and 85
year-old (mean age: 35.5). All subjects underwent imaging scans
in a 3T Siemens TIM Trio scanner. Images were acquired using
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an EPI sequence with the following parameters: TR = 2500ms;
TE = 30ms; voxel size= 3 × 3 × 3 mm3; matrix = 74 × 74;
field of view = 216mm; 260 volumes and 38 axial slices. A high
resolution MPRAGE image was acquired for each subject. Six
participants were excluded from analysis for missing time points
or being unable to decompress datasets.

Data Preprocessing
The Data Processing Assistant for Resting-State fMRI [DPARSF,
(Chao-Gan and Yu-Feng, 2010; Yan et al., 2016)] was used
for preprocessing for both datasets. The first 10 volumes were
removed for signal equilibrium. Then the slice timing was done
for correcting image acquisition time differences. Head motion
correction was carried out for each subject and subjects with
mean FD > 0.2mm were discarded (Jenkinson et al., 2002).
As a result, 10 subjects were excluded for further analysis
in NKI-RS-E data sets and 28 subjects were excluded from
NKI-RS data sets. MPRAGE images were co-registered to the
mean functional image after realignment. The transformed
structural images were then segmented into gray matter, white
matter and cerebrospinal fluid (Ashburner and Friston, 2005).
Normalization from individual native space to MNI space
was done by the DARTEL tool (Ashburner, 2007). Nuisance
covariates (Friston et al., 1996) (including 6 head motion
parameters, 6 head motion parameters one time point before,
and the 12 corresponding squared items) were regressed from
the data. Global signal regression (GSR) was not performed
here. Data were spatially smoothed with a Gaussian kernel
(FWHM = 4mm). Before the temporal filtering was finally
performed, fractional amplitude of low frequency fluctuations
(fALFF) was computed using the timecourses for each voxel. At
last, temporal band-pass filtering (0.01–0.1Hz) was carried out
to reduce the influence of low-frequency drifts and the high-
frequency physiological noises. Thus, the resulting time courses
were used for the brain network construction and later analysis.

Network Construction
Power-264 template (Power et al., 2011) was employed to
generate 264 nodal ROIs, and each node denoted 5-mm
radius spheres centered on previously reported coordinates. This
template were defined based on meta-analysis and functional
connectivity mapping, and has been widely used in recent
years. We obtained average time course for each node from
the preprocessed data. Pearson’s correlation coefficients between
each pair of nodes were calculated using the time course obtained
above and normalized to z scores using the Fisher transformation
to improve normality (Fisher, 1915),

z =
1

2
ln(

1+ r

1− r
)

which generated a 264 × 264 symmetric correlation matrix
M (functional connectivity matrix) for each participant. For a
control analysis, we also used another different but also widely
used brain template, consisting of 160 ROIs which was employed
by Dosenbach et al. (2010).

Principal Component Analysis and
Relationship With Age
In this section, we employed principal component analysis
on the matrices of all participants. However, we used this
method to cope with the data in a quite different way. For
functional connectivity matrix of each subject, we took the
upper triangle of it (excluding self-connections and redundant
connections) and acquired a connectivity matrix D (m × n,
n is the number of subjects, m is the length of the triangle vector)
across all subjects. Then we did the principal component analysis
on the raw data D.

T=D · P

where P is the matrix (n × n) of weights whose columns are
the eigenvectors of DTD and T is the matrix (m × n) of
principal components whose columns correspond to different
components. Principal components (PC) in T are mutually
orthogonal and extracted in decreasing order of importance, in
which the lower-order principal components account for most of
the variance in the original data. Connectivity vector D can be
reconstructed by

D=T·PT

If the first L PCs were kept and the left components which were
less important are ignored, we got the truncated transformation
of above formula

D ≈TL·P
T
L

where the matrix TL has m rows and L columns, and PTL keeps
L rows and n columns. For ith column of D (the triangle vector
of participant i),

Di =

L
∑

j=1

pijTj

where Tj is the jth PC (i.e., jth columns of matrix TL) and pij is
the coefficient. Moreover, we could transform Tj to a matrix by
setting it to be the triangle of a symmetric matrix, in which the
diagonal entries are set to be 1. The transformed matrix of the ith
PCwas represented byPCj. Therefore, the functional connectivity
matrixMi could be expressed by

Mi = pi1PC1 + pi2PC2 + . . . + piLPCL

We also defined the multi-subject matrix by calculating
correlations across the concatenated time series of all subjects
as the intrinsic resting-state network. Further we computed
the correlation between age and functional connectivity
for each ROI-pair to acquire a matrix of age effects on
functional connectivity. We compared these two matrices to the
components we had already obtained.
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Functional Connectivity Across the
Lifespan
In addition to considering functional connectivity for each edge,
we also focused on ten 10 consistently identified networks in
Power et al. (2011): SMN, sensorimotor network; CON, cingulo-
opercular network; Aud, auditory network; DMN, default mode
network; Vis, visual network; FPN, fronto-parietal network;
SN, salience network; Sub, subcortical network; VAN, ventral
attention network; DAN, dorsal attention network. Within-
network connectivity, which was represented by expressions like
Within (DMN), was calculated as mean z-value of all ROI-
ROI pairs within that network. Between-network connectivity,
e.g., Between (DMN, SMN), was acquired by calculating the
mean z-value between each node of a network and all other
nodes of all other networks likewise. We further calculated
the difference between within-network connectivity for one
network and between-network connectivity that connected it
with all other 9 networks, which was given by expressions like
Within-Between(DMN).

To explore the functional connectivity linear or quadratic
changes at both the edge-level and network-level across the
lifespan, two linear regress models were utilized with sex, motion,
and brain volume as covariates, which could be formulated
as follows:

FC = β0 + β1 × age+ β2 × sex+ β3 × FD

+ β4 × TIV + ε,

FC = β0 + β1 × age+ β2 × age2 + β3 × sex+ β4 × FD

+ β5 × TIV + ε.

FC could denote connectivity for edge, within-network, between-
network or the within-between. FD, which was included to
control for the residual effect of head motion, denoted the mean
frame-wise displacement. TIV denoted total intracranial volume
for each subject. Sex was modeled as 0–1 covariate and ε was
modeled as the random error. The p-value for the regression
model in both equations above were needed to be significant
in order to identify the linear or quadratic relationship between
age and each functional connectivity. The T-statistic was used
to measure the significance and p-values for both linear and
quadratic models were FDR corrected.

Temporal Measures Across the Lifespan
fALFF (Zou et al., 2008) is the ratio of power spectrum of low-
frequency (0.01–0.1Hz) to that of the entire frequency range
(0.01–0.25Hz). We firstly probed the correlations with age for
the fALFF values of each voxel. Then average values of fALFF
for each node within the Power-264 template were extracted
and explored their linear or quadratic relationships with age
likewise. The p-values for all the models were FDR corrected for
multiple comparisons.

Feature Selection/Reduction Method
There are always two stages to create a predictive model
(Pereira et al., 2009; Brown and Hamarneh, 2016): firstly feature
selection/extraction and reduction is performed, and then the

regression model for continuous variables or classification model
for discrete variables would be constructed. A variety of studies
have shown that reducing the number of features can not only
speed up computation, but also improve predictive performance
(De Martino et al., 2008; Pereira et al., 2009; Esterman et al.,
2010). Based on the sections above, three different methods were
proposed in this feature extraction/selection section: network-
based method, edge-based method and temporal feature method.
For the network-based feature selection method, as functional
connectivity matrix for each subject could be expressed by a
combination of principal components, the coefficients across the
components were extracted as predictor variables and regression
models was learned later to make prediction of chronological age.
As for temporal features extraction method, average values of
fALFF for each node within the Power-264 template were used
as feature for age prediction.

With regards to edge-based feature selection and reduction
method, the functional connectivity for each ROI pair was treated
as feature. What we needed to do would be to transform the
high-dimensional FC space into a lower-dimensional FC space.
A new feature reduction method was defined and employed here.
Define X as the transposed matrix ofD (D is defined as in section
Principal Component Analysis and Relationship With Age) and
Y (n × 1 vector, n is the number of subjects) as response vector
representing age of the subjects. Feature reduction method is
described as bellows:

(1) At first, both X and Y are standardized, where X (n × m,
n is the number of subjects, m is the length of the triangle
vector) is the connectivity matrix and Y (n × 1) is the
age vector.

(2) Assume that u1 = Xp1 and maximize Cov(u1,Y), s.t.,
||p1||= 1, where p1 is the loading vector and u1 is the
component vector. In this step, we get the component
u1 by maximizing covariance between u1 and Y , which
combines variance of X maximization and correlation with
Y maximization simultaneously.

(3) Then do regression analysis, X = u1c
T
1 + E, Y = u1r1 + F,

where E is residual matrix, F is residual vector, c1 is the
projection vector on component u1 for connectivity matrix
X and r1 is the projection value on u1 for age vector Y .

(4) Regard E as the new X and F as the new Y , do analysis as
above iteratively until the first l loading vectors p1, p2, . . . , pl
and first l component vectors u1, u2, . . . , ul are acquired.

(5) Define P to be the loading matrix with columns
p1, p2, . . . , pl and U to be the component matrix with
columns u1, u2, . . . , ul. Apparently, U is the feature matrix
to be used as predictor variables after feature reduction and
the dimensionality of edge feature is reduced to l fromm.

Prediction Model of Chronological Age
Based on the three feature selection/reduction methods
described above, three different predictive models, ordinary
linear regression (i.e., OLS regression) , support vector
regression (SVR) and Least absolute shrinkage and selection
operator (Lasso) regression were chosen in the present work
and the prediction performance was compared between
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all these predictive models. Assume that the feature space
X= {xi : xi ∈ R

d} is a real vector space with dimensionality
d after the feature selection/reduction methods have been
conducted. For any regression models, what we need to do is to
determine the parameters for the basic regression function via
minimizing the corresponding loss function:

yi = β · xi + β0

where parameters β0 and β are a scalar and a vector respectively
and β ∈ R

d.
For ordinary linear regression, the loss function has the

following form:

L
(

y, x
)

=

n
∑

i=1

(yi − β0 − β · xi )
2

where n is the number of feature vectors. The method of OLS
is a classical method for parameter estimation and provides
minimum-variance mean-unbiased estimation. However, when
number of predictor variables is much higher than the
number of observations or there exists multicollinearity among
the predictor variables, the least Square estimates might
become unreliable.

Lasso (Tibshirani, 1996) is a regression analysis method which
can perform both variable selection and regularization in order to
enhance the prediction accuracy and interpretability. The basic
loss function for Lasso method is as follows:

L
(

y, x
)

=
1

2n

n
∑

i=1

(yi − β0 − β · xi )
2
+ λ

p
∑

j=1

∣

∣βj

∣

∣ )

where λ is a nonnegative regularization parameter. L1 penalty is
introduced in Lasso compared with OLS method, thus forcing
certain coefficients to be set to zero and effectively choosing a
simpler model.

As to SVR, it is an extension of the classical SVMmethod and
has been widely used in neuroscience research (Ben-Hur et al.,
2008; De Martino et al., 2008; Bray, 2009; Esterman et al., 2009;
Dosenbach et al., 2010; Rubinov and Sporns, 2010; Ullman et al.,
2014). Its loss function is described as follows:

L
(

y, x
)

=
1

2
| |β| |2 + C

n
∑

i=1

lǫ(yi − β0 − β · xi )

where lǫ (z) =

{

0, if |z| ≤ ǫ;

|z| − ǫ, otherwise.
, L2 penalty and

constant C are introduced to trade off the empirical risk and
model complexity.

The three regression methods were conducted to learn the
predictive model, NKI-RS-E dataset was used as the internal
dataset and K-fold cross-validation was performed (K = 10).
During K-fold, each fold was designated as the test samples
in turns while the remaining k − 1 folds were used to train
the predictive model. The model learned from the training
samples was then used to make a real-valued prediction about the

test samples. Predictive models trained in the entire NKI-RS-E
dataset were applied to NKI-RS dataset for external validation.

After K-fold cross-validation had been completed, the
accuracies for all K-fold rounds were averaged together to
generate the prediction accuracy of internal validation. Both the
external and internal accuracies were reported. The prediction
performance was quantitatively evaluated by two statistical
criterions: Pearson correlation coefficient r and mean absolute
error (MAE). Pearson correlation coefficient is a measure of the
linear correlation between two variables X and Y and has been
used to evaluate predictions of a continuous variable in a variety
of fMRI literature (Ullman et al., 2014; Shen et al., 2017). In our
research, Pearson correlation coefficient r was used to measure
the strength of linear correlation between chronological age
and predicted brain age. Larger Pearson correlation coefficient
r means better predictive performance. As for the MAE, it
was adopted to measure the average magnitude of the residuals
between chronological ages and predicted ages. Both statistical
criterions are described as follows:

r =

∑n
i=1 (xi − x)

(

yi − y
)

√

∑n
i=1 (xi − x)2

√

∑n
i=1

(

yi − y
)2

MAE =

∑n
i=1

∣

∣xi − yi
∣

∣

n

where xi is the chronological age, yi is the predicted brain age,
x is the average of chronological ages across the subjects, y is
the average of predicted ages and n is the number of subjects in
the dataset.

Control Analysis for Predictive Model
On one hand, we utilized the method proposed in Dosenbach
et al. (2010) to our datasets and made a comparison with our
models in prediction results. On the other hand, to investigate
the effect of brain parcellation on the prediction performance,
another different but widely used brain template (Dosenbach
et al., 2010) was employed, in which feature selection/reduction
methods and regression models in our study were adopted.
The prediction performance based on different templates was
also compared.

Significant Edges and Networks in
Predictive Model
In order to explore which edges or networks drive accurate
prediction in our predictive models, we performed 10,000
permutations to probe edges with statistically significant
weights in the three regression models combined with
edge-based feature selection/reduction method. Ages were
randomly shuffled across subjects in each permutation, i.e.,
assigning ages to different subjects to break the true brain–
age relationship, and then different regression models were
learned. Beta coefficients of the regression models for each
edge were obtained in any permutation. The distribution
of the test statistic was acquired from the permutations
and significance for each edge was determined by whether
its real beta value differed from the empirical distribution
(two-tailed p < 0.001).
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FIGURE 1 | Principal component analysis results. (A) Variance explained by the first 10 components. (B) Variance explained by the first 100 components. (C) The first

ten components which were most closely correlated with age. (D) The coefficients of PC 4 across subjects (y-axis) vs. ages of subjects (x-axis) fitted by a linear

regression model.

RESULTS

Principal Component Analysis and
Relationship With Age
The principal component analysis was performed on the FC

matrices across all the subjects. As we can see in Figure 1, the
first PC of the analysis accounted for approximately 36%, and PC
2, PC 3, PC 4, and PC 5 accounts for 3.7, 1.9, 1.4, and 1.3% of the
inter-subject FC matrix variance, respectively (Figure 1A). The
first 100 PCs accounted for more than 70% of the total variance
(Figure 1B). Next we investigated the relationships between PC
and age by calculating the Pearson correlation between the
coefficients of each PC and age vector (Figure 1C), and observed
that the PC coefficients of the fourth PC had a correlation
coefficient as high as 0.69 to age vector. Then a linear regression
model was applied further to probe the relationship between age
and coefficient of PC 4 across subjects (Figure 1D). Adolescents
and young people under age 40 have negative coefficient, while
older people aged over 40 tend to have positive coefficient of PC 4.

We defined the multi-subject FC matrix by calculating
correlations across the concatenated time series of all subjects
and found that the multi-subject matrix and the first principal
component were highly similar (Figure 2A, r= 0.98, p< 0.0001).
Then a regression model was applied to explore the relationship

between PC 1 and multi-subject matrix, and connectivity
of edges in multi-subject matrix could be accurately fitted
by values of edges in PC 1 using a quadratic regression
model (Figure 2A, t = −66.7, p < 0.0001). To further
explore the correlation of the PC 4 to age, we acquired a
matrix of age effects on functional connectivity by computing
the correlation between age and functional connectivity for
each ROI-pair. As we expected, the PC 4 and the age-
effect matrix were highly similar (Figure 2B, r = 0.88,
p < 0.0001). Values of age-effect matrix were fitted well by
values of PC 4 using a linear regression model (Figure 2B,
t = 343.3, p < 0.0001).

We next investigated which connections and networks were
prominent in PC 1 and 4 and the results were shown in
Figure 3. Based on 10 networks identified in Power et al.
(2011), we calculated the within-network value and between-
network value of PC 1 and 4 as we did in Section Functional
Connectivity Across the Lifespan. Meanwhile, the edges with
higher absolute value were also extracted and plotted in Figure 3.
As shown in Figure 3A and Supplementary Figure 4, the within-
network connectivity or value was larger than between-network
value for each network and between-network values of DMN
with other networks such as CON and DAN were negative,
which was highly consistent with functional networks identified
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FIGURE 2 | Further analysis of principal component 1 and principal component 4. (A) PC 1 (left panel), multi-subject matrix by calculating correlations across the

concatenated time series of all subjects (middle panel) and the quadratic association between values of PC 1 (x-axis) and values of multi-subject matrix (y-axis) (right

panel). PC 1 and multi-subject matrix are highly correlated (r = 0.98). (B) PC 4 (left panel), the matrix of age effects on edges by computing the correlation between

age and functional connectivity for each edge (middle panel) and the linear association between values of PC 4 (x-axis) and values of age-effect matrix (y-axis) (right

panel). PC 4 and age-effect matrix are highly correlated (r = 0.88).

by Power et al. (2011). As for PC 4, within-network values
including CON, Aud, Sub and VAN, and between-network
values including CON-Aud, Aud-Sub, SMN-CON, and CON-
Sub were negative. Within-network value of FPN, and between-
network values including SMN-Vis, Aud-Vis, Vis-FPN, Vis-VAN,
Vis-DAN, FPN-SN, FPN-VAN, and VAN-DAN were positive
(Figure 3B and Supplementary Figure 5). Relationship between
values of age-effect matrix and values of PC 4 was fitted nicely
by a linear model with a negative intercept (Figure 2B), which
might explain why there were seemingly more positive values in
PC 4 (Figure 3B).

We used another distinct brain template defined by
Dosenbach et al. (2010) for a control analysis. The results of
principal component analysis on the 160×160 FCmatrices across
all the subjects were quite similar (Supplementary Figures 1, 2).
The first 100 principal components accounted for more than
70% of the total variance and coefficients of the fourth principal
component across subjects were highly correlated with age
vector (r = 0.59, p < 0.0001). The correlations between the first
principal component and multi-subject matrix, and between the
fourth principal component and age-effect matrix were as high
as 0.99 (p < 0.0001) and 0.81 (p < 0.0001) respectively.

Functional Connectivity Changes Across
the Lifespan
We employed the functionally defined atlas and resting-
state FC community in Power et al. (2011) and mainly

focused on 10 subnetworks (Figure 4, color coded by different
networks). At the edge-level, both linear and quadratic changes
(p < 0.0001, FDR corrected) over age had been revealed
across the functional connections (Figures 4, 5). Linear decreases
with age were mainly found in within-network functional
connections including CON, DMN and Aud, and between-
network connections among DAN-Aud, SN-DMN, SMN-Vis,
and DMN-Vis (Figure 4A). Linear increases with age were found
in some within-network connections of SMN, and between-
network connections including DMN-SMN, DMN-SN, DMN-
Sub and SMN-SN, and connections between networks were
more than within networks (Figure 4B). There were a small
percentage of within-network connections in SMN, and between-
network connections, including DMN-CON, SM-Aud, SM-
Vis, and DMN-DAN, showing negative quadratic changes with
age (Figure 5A). These connections showed early age-related
increases and late age-related decreases (inverted U-shaped).
Positive quadratic changes with age were mainly found in
quite a small number of within-network connections in Sub as
well as between-network connections among Vis-DMN, Sub-
FPN, and Aud-Sub (Figure 5B). These connections showed early
decreases and late increases (U-shaped) in life. Much more
connections decreased with age linearly compared with the other
three cases.

At the network-level, linear and quadratic regression models
were also employed to explore the associations of age with
within-network, between-network and within-between network
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FIGURE 3 | Networks and edges in PC 1 and PC 4. (A) Mean value of edges within and between networks in PC 1(left panel), and edges with absolute value higher

than 12 in PC 1 (right panel) which are chosen for convenient viewing. (B) Mean value of edges within and between networks in PC 4 (left panel), and edges with

absolute value higher than 1.8 in PC 4 (right panel).

connectivity (Figure 6). Six networks, including CON, Aud,
DMN, SN, VAN, and DAN, displayed linear decreases with
age within network despite differing in the degree of age-
related change (Figure 6A). Between-network connectivity, such
as CON-Aud, CON-Sub, Aud-Sub, DMN-VAN, and SN-CON,
also decreased with age (Figure 6A). Within-network of SMN
demonstrated negative quadratic changes (inverted U-shaped)
and Sub displayed positive quadratic changes (U-shaped) with
age, respectively (Figure 6B). The above results were quite
similar with findings in Figures 4, 5. While taking the difference
between within-network and between-network connectivity for
each network into consideration, it showed linear decrease with
age in a number of networks, such as the difference between
within-network of CON and between-network of CON and SMN
which might be expressed by Within(CON)-Between(CON,
SMN) (Figure 6C). Examples of the six types of changes with age
were exhibited in Figure 7.

Temporal Measures Across the Lifespan
For each subject, we computed and acquired their fALFF maps,
after which we calculated the correlations between age and
fALFF values for each voxel. The resultant correlation maps
for fALFF are depicted in Supplementary Figure 3. The p-
values for fALFF correlation maps were FDR corrected for
multiple comparisons (FDR p < 0.05). Apart from some
regions in SN, DMN, Sub and Aud, the majority of the brain

showed statistically significant negative correlations between
fALFF and age. Complementarily, we explored the linear or
quadratic relationships between age and average values of
fALFF for each node within the template we employed. For
fALFF map, two types of typical changes with age were found
(Supplementary Figure 3B). Positive quadratic changes with age
were found in some nodes of DMN, DAN, Sub, CON and SMN,
though the majority of nodes showed linear decreases with age
(FDR p-value < 0.001).

Prediction Results
In the present work, three feature selection/reduction methods
and three regression models, were constructed based on the
datasets. The models were tested in the dataset NKI-RS-E
using K-fold cross-validation method. Models trained in the
entire NKI-RS-E data set were further validated externally
in NKI-RS dataset. The predictive performance was assessed
by two statistical criterions Pearson correlation coefficient
and MAE between the predicted ages and chronological ages
across subjects.

In the data set NKI-RS-E, K-fold cross-validation was
performed and the accuracies for allK-fold rounds were averaged
together to generate the internal accuracy of prediction. Twelve
models were trained as displayed in Tables 1, 2. In the network-
based feature selection section, the number of PCs was set to 150
for higher number than 150 did not change the performance. In
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FIGURE 4 | Linear relationship between functional connectivity and age at the edge level (p < 0.0001, FDR corrected). (A) Significant edges linearly decreasing with

age. (B) Significant edges linearly increasing with age. Different color refers to different networks. If two nodes of the edge have same color, that is, they belong to the

same network, the edge will be set as the same color. Otherwise the edge will be colored gray. The edge size is scaled by its T-statistics.

the Lasso regression training process, we went through parameter
λ to get the best penalization parameter. As for the SVR, different
kernel functions were employed and the one which had the
best prediction performance was picked each time the SVR
predictive model was trained. The best prediction results for
12 predictive models are displayed in Tables 1, 2. The brain
age of subjects in the datasets was accurately estimated using
all the predictive models. Lasso regression model combined
with network-based feature extraction method provided a better
prediction result: Pearson correlation coefficient r = 0.910
(p < 0.0001) and MAE = 6.5 years for internal validation,
r = 0.838 (p < 0.0001) and MAE = 8.8 years for external
validation. Compared with network-based method and edge-
based method, the temporal feature method did not show a
comparative prediction performance (Steiger test, p < 0.05). The
chronological age vs. predicted age acquired by three regression
models combined with network-based feature extraction method
were plotted in Figure 8.

Based on the Lasso regression model combined with network-
based feature extraction method, we performed z-test on the

external predictive results, which showed no significant gender-
related differences (z = 1.45 < 1.96). Then we correlated the
MAE values with age across subjects, resulting in a correlation of
0.469 (t = 6.77, p <0.001) and suggesting significant age-related
prediction differences.

Control Analysis for Predictive Model
We used another distinct template (Dosenbach et al., 2010)
to test whether the choice of templates had an effect on the
prediction performance. Different feature selection/reduction
methods were conducted, and the three regression models were
learned: ordinary linear regression (OLS regression), SVR, and
Lasso. The prediction models displayed a comparable prediction
performance with the Power-264 template (average correlation
r > 0.8) and the results are shown in Supplementary Tables 3, 4.
Similarly, Lasso regression model combined with network-based
feature extraction method showed a better accuracy: r = 0.895
(p < 0.0001) and MAE = 6.8 years for internal validation,
r = 0.821 (p < 0.0001) and MAE = 9.3 years for external
validation. Meanwhile, we also employed the method proposed
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FIGURE 5 | Quadratic relationship between functional connectivity and age at the edge level (p < 0.0001, FDR corrected). (A) Significant edges showing negative

quadratic changes with age. (B) Significant edges showing positive quadratic changes with age. Different color refers to different networks. If two nodes of the edge

have same color, that is, they belong to the same network, the edge will be set as the same color. Otherwise the edge will be colored gray. The edge size is scaled by

its T-statistics.

in Dosenbach et al. (2010) to our datasets and the prediction
performance was presented in Supplementary Table 5: r= 0.724
(p < 0.0001) and MAE = 12.1 years for internal validation,
r = 0.621 (p < 0.0001) and MAE = 17.7 years for
external validation. Then we compared its performance with the
prediction result of network-based Lasso model using Steiger’s
z-test, which indicated the later was significantly more accurate
(Steiger’s z = 7.35, p < 0.001).

Significant Edges and Networks in
Predictive Model
Permutations were performed to explore edges with statistically
significant weights in the three regression models combined
with edge-based feature selection/reduction method (two-tailed
p< 0.001, Figure 9 and Supplementary Figures 6–9with greater
clarity). We found that 41 common edges with significant
positive weights, 24 common edges with significant negative
weights in three regression models to predict brain age and
these significant edges were distributed across the brain. Then

we estimated the relative contributions of particular networks
to age prediction by summing up the weights of edges in
three predictive models within network and between networks
(Figure 10). At the network level, three regression models,
OLS, SVR, and Lasso, displayed quite similar results. Edges
within CON, Aud, DMN, SN and Sub, and between-network,
including DMN-Vis, exhibited negative weights (trending to
predict younger ages). Within-network connectivity, including
SMN, and between-network connectivity, including SMN-Vis,
SMN-DAN, DMN-CON, and DMN-Sub, displayed positive
weights (trending to predict older ages).

DISCUSSION

Cognitive functioning performance is closely related to age
and much work has been done trying to disclose how aging
affects integration of information within and between functional
networks (Song et al., 2014; Geerligs et al., 2015a; Bassett and
Sporns, 2017; Damoiseaux, 2017; Grayson and Fair, 2017). In
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FIGURE 6 | Linear and quadratic relationship between functional connectivity and age at the network-average level. (A) Significant networks showing linear changes

with age in both within and between network connectivity. (B) Significant networks showing quadratic changes with age in both within-network and between-network

connectivity. (C) Significant networks showing linear changes with age in within-between network connectivity.

TABLE 1 | Comparison of prediction performance using different predictive

models.

Feature method Network-based Edge-based

Regression model NKI-RS-E

(K-fold)

NKI-RS

(external)

NKI-RS-E

(K-fold)

NKI-RS

(external)

OLS Pearson’s

correlation

0.846

(p < 0.0001)

0.786

(p < 0.0001)

0.867

(p < 0.0001)

0.828

(p < 0.0001)

MAE

(years)

7.9 9.8 6.7 9.3

SVR Pearson’s

correlation

0.868

(p < 0.0001)

0.769

(p < 0.0001)

0.890

(p < 0.0001)

0.832

(p < 0.0001)

MAE

(years)

7.5 9.9 7.1 9.4

LASSO Pearson’s

correlation

0.910

(p < 0.0001)

0.838

(p < 0.0001)

0.896

(p < 0.0001)

0.835

(p < 0.0001)

MAE

(years)

6.5 8.8 6.9 9.2

Feature selection methods: network-based method and edge-based method; regression

model: ordinary linear regression (OLS method), SVR and Lasso.

the present study two independent datasets were employed and
functional connectivity network was constructed based on the
preprocessed fMRI data. Network-based principal component
analysis on the FC matrices across all the subjects and we

TABLE 2 | Prediction performances of models combined with temporal feature

extraction methods (fALFF) and regression models.

fALFF

Regression model Pearson’s correlation MAE (years)

OLS 0.668

(p < 0.0001)

14.2

SVR 0.753

(p < 0.0001)

11.4

LASSO 0.817

(p < 0.0001)

9.2

probed the acquired components in a detail way. Apart from
coefficients across PCs, edges of functional connectivity and
temporal measures, fALFF, were also included as features,
and linear and quadratic regression models were applied to
explore the correlations with age of these features. Based on
different types of features, feature selection/reduction methods
were proposed and three regression models were adopted. The
predictive models were trained on the datasets and displayed
good prediction performance.

In the network-based principal component analysis, the PC
1 was not only similar with individual’s FC matrix (mean
correlation r = 0.59, p < 0.0001), but highly correlated with the
multi-subject matrix (correlation r= 0.98, p< 0.0001) which was
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FIGURE 7 | The typically developmental trajectories of functional connectivity at the network-average level. (A) Linear decrease with age in Within (CON) connectivity.

(B) Negative quadratic change with age in Within (SMN) connectivity. (C) Positive quadratic change with age in Within (Sub) connectivity. (D) Linear decrease with age

in Within (SN)-Between (SN, FPN) connectivity. The curve fits are shown by the dark lines.

FIGURE 8 | Graphical representation of the age prediction results. (A) Chronological age (x-axis) vs. predicted age (y-axis) acquired by OLS regression model. (B)

Chronological age (x-axis) vs. predicted age (y-axis) acquired by SVR regression model. (C) Chronological age (x-axis) vs. predicted age (y-axis) acquired by Lasso

regression model. The curve fits are shown by the dark lines.

defined by calculating correlations across the concatenated time
series within nodes of all subjects. Thus, we could regard PC 1
as the intrinsic component. We also observed that the principal
component coefficients of the PC 4 had a correlation coefficient as
high as 0.69 (p < 0.0001) to age vector. What’s more, the fourth
principal component was highly similar (r = 0.88, p < 0.0001)
with the age-effect matrix which was acquired by computing
the correlation between age and functional connectivity for

each ROI-pair, suggesting that PC 4 could be treated as the
age-related component. Therefore, the resting state functional
architecture for one subject is mainly shaped by intrinsic
component, age-related component and other components.
The first principal component of the analysis accounted for
approximately 36% of the total variance in inter-subject network
architecture, while the fourth component accounted for less than
2% of the total variance, which indicates that the age-related
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FIGURE 9 | Edges with significant weights in predictive models combining three regression models with edge-based feature selection method. (A) Edges with

significant weights in OLS regression model. (B) Edges with significant weights in SVR regression model. (C) Edges with significant weights in Lasso regression

model. (D) Common edges with significant weights in all three models. Edges with positive significant weights are shown in orange, whereas edges with negative

weights are shown in green.

FIGURE 10 | Average weights of edges within and between networks in predictive models combining three regression models with edge-based feature selection

method. (A) Average weights within and between networks in OLS model. (B) Average weights within and between networks in SVR model. (C) Average weights

within and between networks in Lasso model.

changes are relatively small but functionally important. To
further probe into PC 4, a simple linear regression model was
applied to explore the relationship between edge value in PC
4 and resting state FC matrix (Figure 2B) and another linear
regression model to probe the relationship between age and
coefficient of PC 4 across subjects (Figure 1D). For the loading
coefficients of PC 4, coefficient of PC 4 at age around 40
was about 0, children, adolescents and young people under
age 40 have negative coefficient, while older people tend to
have positive coefficient of PC 4. Thus the PC 4 might be
considered as the component which accounts for the majority
of the linear changes between resting-state brain network of

subjects aged around 40 and other age groups. As for the
edge value in PC 4, the larger the absolute values of edge in
PC 4, the more influence age will exert on the corresponding
edge in resting state FC network (either positive or negative,
while negative dominant). What’s more, Chi-square test was
performed to test whether there might be significant differences
between the number of inter-hemispheric and the number
of intra-hemispheric edges. Compared with inter-hemispheric
edges, there seem to be significantly more intra-hemisphere
edges in PC 4. Especially decreased intra-hemisphere edges
were found within functional networks like SMN, DMN, and
Aud, which is consistent with linear reduced within-network
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functional connectivity in these networks Iin our findings of
edge-based method.

At the edge-level, a number of edges within DMN displayed
linear decrease with age in functional connectivity, which is
consistent with previous findings (Mevel et al., 2011; Tomasi
and Volkow, 2011; Hafkemeijer et al., 2012; Douaud et al., 2014;
Geerligs et al., 2015a). DMN might be the most investigated
resting state network and is linked to a variety of cognitive
processes such as episodic memory, self-referential processing,
and mind wandering (Christoff et al., 2009; Andrews-Hanna,
2012; Raichle, 2015). Thus, age-related decreases in functional
connectivity within DMN might explain worse performance on
cognitive tasks like memory of older people. Linear reduced
functional connectivity in edges were also found within CON
and this is consistent with previous research (Geerligs et al.,
2015a). Among edges which showed linear increases with age,
more were found in between-network connections than within-
network, especially between networks of Vis, SMN and Aud, and
this is consistent with the finding that participation coefficients
of visual and Somato-motor networks were increased in older
adults in Geerligs et al. (2015a). A variety of edges within
SMN showed negative quadratic changes with age, which is also
strengthened by finding at the network-level (Figure 5B). Edges
of this kind exhibited increases in functional connectivity in
adolescents and younger adults, whereas decreases in elderly.
Studies have revealed age-related differences in sensorimotor
cortex (Wu et al., 2007; Heuninckx et al., 2008) and indicated
compensatory mechanism in aging brain as not only classical
motor coordination regions, but also higher-level sensorimotor
regions, and frontal regions are activated in the older adults
(Heuninckx et al., 2008). Chan et al. (2014) found that age
function for sensory-motor network was fit significantly only by
a linear model, which is inconsistent with our finding of negative
quadratic changes with age in SMN. The difference in datasets
as well as methodology might explain this discrepancy, subjects
aged under 20 were not included and nuisance regressors such
as head motion and brain volume were not regressed out in the
regression model in Chan et al. (2014).

At the network-average level, six networks out of ten,
including CON, Aud, DMN, SN, VAN and DAN, exhibited
linear reduced within-network functional connectivity. This is
consistent with previous findings (Chan et al., 2014; Spreng
et al., 2016). Spreng et al. (2016) found reduced within-network
functional connectivity across DMN and DAN networks in older
adults compared to younger people. Chan et al. (2014) employed
networks identified in Power et al. (2011) likewise, calculated
the within-network functional connectivity of ten networks and
found linear decreases with age. Between-network functional
connectivity was also found to increase with age in Chan et al.
(2014), Damoiseaux (2017), however, that is not the case in our
research. Although edges with increased functional connectivity
between networks were found at the edge-level (Figure 4), we did
not find significantly increased between-network connectivity
at the network-level. This discrepancy might arise in part
from differences in methodology, for instance, gender, total
intracranial volume and head motion had been considered as
nuisance regressors and regressed out in our case. To make

it clear how between-network connectivity correlated with age,
we further calculated the difference between within-network
connectivity for one network and between-network connectivity
which connected it with all other nine networks, and applied
linear regression model to explore the associations with age. As
we expected, linear decreases with age in within-between network
connectivity had been discovered among almost all networks.
This means within-network connectivity decreases with age
more rapidly than between-network connectivity and leads to
decreasing network segregation, a measure of between-network
connectivity relative to within-network connectivity defined in
Chan et al. (2014). Thus the elderly seem to have lower brain
network segregation and specialization, which is consistent with
earlier findings (Tomasi and Volkow, 2011; Chan et al., 2014;
Grady et al., 2016; Damoiseaux, 2017).

We performed permutations to find edges with significant
weights in three predictive models with edge-based feature
reduction method. Sixty-Five common edges with significant
weights were found in all three models, while 41 edges with
positive weights and 24 edges with negative weights. We
calculated the predictive power of nodes by summing up the
weights of all the connections to and from that node and found
that one node in the region of Cingulate Gyrus had the highest
relative predictive power. We then compared the 65 common
edges with significant weights in predictive models with edges
showing significant linear or quadratic changes with age in
regression models. Beyond our expectation, only 24 out of 65
edges displayed significant developmental trajectories across the
lifespan, which signifies that edges with significant weights to
predictions of age do not necessarily display significant linear
or quadratic changes over age at the individual-edge level and
vice versa. One explanation might be multicollinearity is so
prevalent in the tremendous number of edges and some edges are
redundant with respect to others.What’s more, high-dimensional
functional connectivity space was transformed to a feature space
with lower dimension through the edge-based feature reduction
method which takes not only correlation with age but also
variance maximization into consideration simultaneously, thus
edges would be assigned weights in predictive model more subtly.
We also summed the weights of edges in all three models both
within and between networks, showing quite similar results
and indicating that edge-based feature reduction process exerts
more influence on the predictive performance than subsequent
regression models like OLS or SVR. In Dosenbach et al. (2010)
it was found that majority of within-network connections had
positive weights, whereas between-network displayed negative
weights, which is quite different from results in present research
(Figure 9). There might be two reasons for this disparity. On
one hand, dataset only included subjects aged 7 to 30 years in
Dosenbach et al. (2010) while it is more difficult to learn the
complicated development model of brain. On the other hand,
there are considerable differences in methodology especially the
feature selection methods.

Models trained on temporal features (fALFF) did not have
expected and comparable prediction performances with the
other two feature selection/reduction methods (Steiger test,
p < 0.05). One reason that might lead to this is that fALFF do
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not contain enough information related with age as functional
connectivity does. Moreover, fALFF identifies the proportion
of the observed signal in the low frequencies (0.01–0.1Hz)
compared to the entire range of BOLD frequencies, suggesting
that it is specific to low frequencies. However, studies have
shown that multiple frequency bands of BOLD signals provide
meaningful information (Chen and Glover, 2015; Gohel and
Biswal, 2015; Yue et al., 2015). Age-related changes across
multiple frequency bands need to be considered in the future.

The predictive performance in external validation seems not
to be as good as in the internal validation. There might be three
reasons which lead to the divergence between predicted ages and
chronological ages. Firstly, variations between internal dataset
and external dataset could introduce additional prediction error.
The internal dataset, i.e., NKI-RS-E dataset, provides data sets
with faster repetition time (0.645 s) and higher resolution than
external NKI-RS dataset (TR = 2.5 s) (Nooner et al., 2012). The
time for resting state fMRI scan is 10min for both datasets,
thus shorter TR means larger number of volume of RS-fMRI
images (900 vs. 260 volumes). In our future study, dataset with
higher-quality data, such as provided by the Human Connectome
Project, would be included to assess the error introduced by
the inter-dataset variance. Secondly, the predicted brain age for
a subject may differ from his/her chronological age because of
inter-individual variations in experience, health and gene, which
can lead to a systemic error. For example, people with age-
associated brain disease might deviate from healthy brain-aging
trajectories. Thirdly, there might exist some complex age-related
changes with age that all the learning models in our study have
not accounted for. Although performance of external validation
is not as good as the internal validation, our research does
suggest that sufficient information could be extracted from RS-
fMRI data to make prediction about individual brains’ functional
development level.

There are also some limitations which need to be considered
in the future study. Firstly, all the data included here was
acquired under the resting state for RS-fMRI data was the
easier to collect and aggregate across subject populations and
sites. However, functional connectivity also depends on the
individual’s mental state (Cole et al., 2014; Geerligs et al.,
2015b; Dubois, 2016; Bassett and Sporns, 2017). Thus, future
work should take task-based fMRI data into consideration to
test how the age-state interaction affects individual’s functional
architecture and whether different mental states have an effect
on the performance of the predictive models. Secondly, a variety
of studies have analyzed the complex dynamic characteristics
of functional connectivity, challenging the assumption that
functional connectivity between brain regions is static during
the duration of the resting time (Hutchison and Morton, 2015;
Davison et al., 2016; Battaglia et al., 2017; Preti et al., 2017;
Tian et al., 2018). We will test whether the principal component
analysis results and prediction performance still hold while using
dynamic functional connectome methods. Finally, even though

age range of all the subjects included in the present work was
across the lifespan, the fMRI data was usually acquired within

1 day and there exists few longitudinal studies investigating
lifespan changes of functional connectivity. Recent studies have
shown that human brain structure and function not only vary
across individuals but also across time at different time scales
(Bassett and Sporns, 2017; Peña-gómez et al., 2017; Preti et al.,
2017; Shine and Poldrack, 2017). We still do not have a fully
understanding of how the brain undergo changes over months,
years or even across the lifespan for an individual. Future work
should pay more attention to the longitudinal research.

In conclusion, we performed principal component analysis
to a large sample size of dataset and acquired meaningful
components. Then three different feature selection/reduction
methods were proposed and regression models, OLS, SVR,
and Lasso were trained based on the feature extraction results.
The learned predictive models provided a comparatively
accurate prediction of age for individuals, meaning sufficient
information could be extracted from resting state fMRI
data to model brain development across lifespan. Based
on our prediction results of different regression models
combined with distinct feature selection/reduction methods,
edge-based feature selection/reduction method might be a
better choice in feature extraction stage as learned models
based on it exhibited more robust prediction results. As
for SVR and Lasso, models based on Lasso do not reveal
significant advantages over SVR, but Lasso might be a
preferred regression model for it not only provides a
comparable prediction performance if not better but also is
more time-efficient.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was supported by National Natural Science
Foundation of China (11171302) and National Natural Science
Foundation of China (11671354).

ACKNOWLEDGMENTS

This study was supported by National Natural Science
Foundation of China. Moreover, we thank all the investigators of
the 1000 Functional Connectome Project for sharing the dataset.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2019.00062/full#supplementary-material

Frontiers in Human Neuroscience | www.frontiersin.org 15 February 2019 | Volume 13 | Article 62

https://www.frontiersin.org/articles/10.3389/fnhum.2019.00062/full#supplementary-material
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Zhai and Li Predicting Brain Age

REFERENCES

Andrews-Hanna, J. R. (2012). The brain’s default network and its

adaptive role in internal mentation. Neuroscientist 18, 251–270.

doi: 10.1177/1073858411403316

Ashburner, J. (2007). A fast diffeomorphic image registration

algorithm. Neuroimage 38, 95–113. doi: 10.1016/j.neuroimage.2007.

07.007

Ashburner, J., and Friston, K. J. (2005). Unified segmentation.

Neuroimage 26, 839–851. doi: 10.1016/j.neuroimage.2005.

02.018

Bassett, D. S., and Sporns, O. (2017). Network neuroscience. Nat. Neurosci. 20,

353–364. doi: 10.1038/nn.4502

Battaglia, D., Thomas, B., Hansen, E. C., Chettouf, S., Daffertshofer, A., McIntosh,

A. R., et al. (2017). Functional connectivity dynamics of the resting state across

the human adult lifespan. bioRxiv 107243. doi: 10.1101/107243

Ben-Hur, A., Ong, C. S., Sonnenburg, S., Schölkopf, B., and Rätsch, G. (2008).

Support vector machines and kernels for computational biology. PLoS Comput.

Biol. 4:e1000173. doi: 10.1371/journal.pcbi.1000173

Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X. N., and Sporns, O.

(2014). Changes in structural and functional connectivity among resting-

state networks across the human lifespan. Neuroimage 102 (Pt 2), 345–357.

doi: 10.1016/j.neuroimage.2014.07.067

Bray, S. (2009). Applications of multivariate pattern classification analyses in

developmental neuroimaging of healthy and clinical populations. Front. Hum.

Neurosci. 3:32. doi: 10.3389/neuro.09.032.2009

Brown, C. J., and Hamarneh, G. (2016). Machine learning on human connectome

data from MRI. Arxiv Prepr. Available online at: http://arxiv.org/abs/1611.

08699

Cao, M., Wang, J., Dai, Z., Cao, X., Jiang, L., Fan, F., et al. (2014).

Developmental cognitive neuroscience topological organization of the human

brain functional connectome across the lifespan. Accid. Anal. Prev. 7, 76–93.

doi: 10.1016/j.dcn.2013.11.004

Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., and Wig, G. S. (2014).

Decreased segregation of brain systems across the healthy adult lifespan. Proc.

Natl. Acad. Sci. U.S.A. 111, E4997–5006. doi: 10.1073/pnas.1415122111

Chao-Gan, Y., and Yu-Feng, Z. (2010). DPARSF: a MATLAB toolbox for

“pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4:13.

doi: 10.3389/fnsys.2010.00013

Chen, J. E., and Glover, G. H. (2015). BOLD fractional contribution to

resting-state functional connectivity above 0.1Hz. Neuroimage 107, 207–218.

doi: 10.1016/j.neuroimage.2014.12.012

Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., and Schooler, J. W. (2009).

Experience sampling during fMRI reveals default network and executive system

contributions to mind wandering. Proc. Natl. Acad. Sci. U.S.A. 106, 8719–8724.

doi: 10.1073/pnas.0900234106

Cole, J. H., and Franke, K. (2017). Predicting age using neuroimaging:

innovative brain ageing biomarkers. Trends Neurosci. 40, 681–690.

doi: 10.1016/j.tins.2017.10.001

Cole, J. H., Poudel, R. P. K., Tsagkrasoulis, D., Caan, M. W. A., Steves, C., Spector,

T. D., et al. (2017). Predicting brain age with deep learning from raw imaging

data results in a reliable and heritable biomarker. Neuroimage 163, 115–124.

doi: 10.1016/j.neuroimage.2017.07.059

Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., and Petersen, S. E. (2014).

Intrinsic and task-evoked network architectures of the human brain. Neuron

83, 238–251. doi: 10.1016/j.neuron.2014.05.014

Daffner, K. R. (2010). Promoting successful cognitive aging : a comprehensive

review. J. Alzheimer’s Dis. 19, 1101–1122. doi: 10.3233/JAD-2010-1306

Damoiseaux, J. S. (2017). Effects of aging on functional and structural brain

connectivity. Neuroimage 160, 32–40. doi: 10.1016/j.neuroimage.2017.01.077

Davison, E. N., Turner, B. O., Schlesinger, K. J., Miller, M. B., Grafton, S. T.,

Bassett, D. S., et al. (2016). Individual differences in dynamic functional

brain connectivity across the human lifespan. PLoS Comput. Biol. 12, 1–29.

doi: 10.1371/journal.pcbi.1005178

De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., and Formisano,

E. (2008). Combining multivariate voxel selection and support vector machines

for mapping and classification of fMRI spatial patterns. Neuroimage 43, 44–58.

doi: 10.1016/j.neuroimage.2008.06.037

Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A.,

et al. (2010). Prediction of individual brain maturity using fMRI. Science 329,

1358–1361. doi: 10.1126/science.1194144

Douaud, G., Groves, A. R., Tamnes, C. K., Westlye, L. T., Duff, E. P., Engvig,

A., et al. (2014). A common brain network links development, aging, and

vulnerability to disease. Proc. Natl. Acad. Sci. U.S.A. 111, 17648–17653.

doi: 10.1073/pnas.1410378111

Dubois, J. (2016). Brain age: a state-of-mind? On the stability of functional

connectivity across behavioral states. J. Neurosci. 36, 2325–2328.

doi: 10.1523/JNEUROSCI.4312-15.2016

Dubois, J., and Adolphs, R. (2016). Building a science of individual differences

from fMRI. Trends Cogn. Sci. 20, 425–443. doi: 10.1016/j.tics.201

6.03.014

Esterman, M., Chiu, Y.-C., Tamber-Rosenau, B. J., and Yantis, S. (2009). Decoding

cognitive control in human parietal cortex. Proc. Natl. Acad. Sci. U.S.A. 106,

17974–17979. doi: 10.1073/pnas.0903593106

Esterman, M., Tamber-Rosenau, B. J., Chiu, Y. C., and Yantis, S. (2010). Avoiding

non-independence in fMRI data analysis: leave one subject out.Neuroimage 50,

572–576. doi: 10.1016/j.neuroimage.2009.10.092

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun,

M. M., et al. (2015). Functional connectome fingerprinting: identifying

individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671.

doi: 10.1038/nn.4135

Fisher, R. A. (1915). Frequency distribution of the values of the correlation

coefficient in samples from an indefinitely large population. Biometrika 10,

507–521.

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., and Turner, R. (1996).

Movement-related effects in fMRI time-series.Magn. Reson. Med. 35, 346–355.

doi: 10.1002/mrm.1910350312

Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., and Lorist, M. M. (2015a).

A brain-wide study of age-related changes in functional connectivity. Cereb.

Cortex 25, 1987–1999. doi: 10.1093/cercor/bhu012

Geerligs, L., Rubinov, M., Cam-Can., and Henson, R. N. (2015b). State and

trait components of functional connectivity : individual differences vary

with mental state. J Neurosci. 35, 13949–13961. doi: 10.1523/JNEUROSCI.132

4-15.2015

Gohel, S. R., and Biswal, B. B. (2015). Functional integration between brain

regions at rest occurs in multiple-frequency bands. Brain Connect. 5, 23–34.

doi: 10.1089/brain.2013.0210

Grady, C., Sarraf, S., Saverino, C., and Campbell, K. (2016). Age differences

in the functional interactions among the default, frontoparietal

control and dorsal attention networks. Neurobiol. Aging 41, 159–172.

doi: 10.1016/j.neurobiolaging.2016.02.020

Grayson, D. S., and Fair, D. A. (2017). Development of large-scale functional

networks from birth to adulthood: a guide to the neuroimaging literature.

Neuroimage 160, 15–31. doi: 10.1016/j.neuroimage.2017.01.079

Hafkemeijer, A., van der Grond, J., and Rombouts, S. A. (2012). Imaging the default

mode network in aging and dementia. Biochim Biophys Acta 1822, 431–441.

doi: 10.1016/j.bbadis.2011.07.008

Han, C. E., Peraza, L. R., Taylor, J., and Kaiser, M. (2014). “Predicting age

across human lifespan based on structural connectivity from diffusion tensor

imaging,” in 2014 IEEE Biomedical Circuits and Systems Conference. (Cleveland,

OH) 1–4.

Heuninckx, S., Wenderoth, N., and Swinnen, S. P. (2008). Systems

neuroplasticity in the aging brain : recruiting additional neural resources

for successful motor performance in elderly persons. J. Neurosci. 28, 91–99.

doi: 10.1523/JNEUROSCI.3300-07.2008

Hutchison, R. M., and Morton, J. B. (2015). Tracking the brain’s functional

coupling dynamics over development. J. Neurosci. 35, 6849–6859.

doi: 10.1523/JNEUROSCI.4638-14.2015

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved

optimization for the robust and accurate linear registration and

motion correction of brain images. Neuroimage 17, 825–841.

doi: 10.1006/nimg.2002.1132

Kobuti, L., and Busatto, G. F. (2013). Neuroscience and biobehavioral

reviews resting-state functional connectivity in normal brain aging.

Neurosci. Biobehav. Rev. 37, 384–400. doi: 10.1016/j.neubiorev.2013.

01.017

Frontiers in Human Neuroscience | www.frontiersin.org 16 February 2019 | Volume 13 | Article 62

https://doi.org/10.1177/1073858411403316
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1038/nn.4502
https://doi.org/10.1101/107243
https://doi.org/10.1371/journal.pcbi.1000173
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.3389/neuro.09.032.2009
http://arxiv.org/abs/1611.08699
http://arxiv.org/abs/1611.08699
https://doi.org/10.1016/j.dcn.2013.11.004
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.1016/j.neuroimage.2014.12.012
https://doi.org/10.1073/pnas.0900234106
https://doi.org/10.1016/j.tins.2017.10.001
https://doi.org/10.1016/j.neuroimage.2017.07.059
https://doi.org/10.1016/j.neuron.2014.05.014
https://doi.org/10.3233/JAD-2010-1306
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1371/journal.pcbi.1005178
https://doi.org/10.1016/j.neuroimage.2008.06.037
https://doi.org/10.1126/science.1194144
https://doi.org/10.1073/pnas.1410378111
https://doi.org/10.1523/JNEUROSCI.4312-15.2016
https://doi.org/10.1016/j.tics.2016.03.014
https://doi.org/10.1073/pnas.0903593106
https://doi.org/10.1016/j.neuroimage.2009.10.092
https://doi.org/10.1038/nn.4135
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1093/cercor/bhu012
https://doi.org/10.1523/JNEUROSCI.1324-15.2015
https://doi.org/10.1089/brain.2013.0210
https://doi.org/10.1016/j.neurobiolaging.2016.02.020
https://doi.org/10.1016/j.neuroimage.2017.01.079
https://doi.org/10.1016/j.bbadis.2011.07.008
https://doi.org/10.1523/JNEUROSCI.3300-07.2008
https://doi.org/10.1523/JNEUROSCI.4638-14.2015
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1016/j.neubiorev.2013.01.017
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Zhai and Li Predicting Brain Age

Koutsouleris, N., and Sauer, H. (2013). BrainAGE in mild cognitive impaired

patients : predicting the conversion to Alzheimer’ s disease. PLoS ONE

8:e67346. doi: 10.1371/journal.pone.0067346

Lancaster, J., Lorenz, R., Leech, R., and Cole, J. H., (2018). Bayesian optimization

for neuroimaging pre-processing in brain age classification and prediction.

Front Aging Neurosci. 10:28. doi: 10.3389/fnagi.2018.00028

Li, H., Satterthwaite,T. D., and Fan, Y. (2018). Brain Age Prediction Based on

Resting-State Functional Connectivity Patterns Using Convolutional Neural

Networks. 2018:101–104. doi: 10.1109/ISBI.2018.8363532

Liégeois, R., Laumann, T. O., Snyder, A. Z., Zhou, J., and Yeo, B. T. T. (2017).

Interpreting temporal fluctuations in resting-state functional connectivityMRI.

Neuroimage 163, 437–455. doi: 10.1016/j.neuroimage.2017.09.012

Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Kharabian, S., Huntenburg,

J. M., et al. (2017). Predicting brain-age from multimodal imaging

data captures cognitive impairment. Neuroimage 148, 179–188.

doi: 10.1016/j.neuroimage.2016.11.005

Lin, L., Jin, C., Fu, Z., Zhang, B., Bin, G., and Wu, S. (2015). Predicting

healthy older adult’s brain age based on structural connectivity networks

using artificial neural networks. Comput Methods Programs Biomed. 5, 8–17.

doi: 10.1016/j.cmpb.2015.11.012

Luders, E., Cherbuin, N., and Gaser, C. (2016). Estimating brain

age using high-resolution pattern recognition : younger brains

in long-term meditation practitioners. Neuroimage 134, 508–513.

doi: 10.1016/j.neuroimage.2016.04.007

Mevel, K., Chételat, G., Eustache, F., and Desgranges, B. (2011). The default

mode network in healthy aging and Alzheimer’s disease. Int. J. Alzheimer’s Dis.

2011:535816. doi: 10.4061/2011/535816

Mwangi, B., Hasan, K. M., and Soares, J. C. (2013). Prediction of

individual subject’s age across the human lifespan using diffusion

tensor imaging : a machine learning approach. Neuroimage 75, 58–67.

doi: 10.1016/j.neuroimage.2013.02.055

Nooner, K. B., Colcombe, S. J., Tobe, R. H., Mennes, M., Benedict, M. M.,

Moreno, A. L., et al. (2012). The NKI-Rockland sample: a model for

accelerating the pace of discovery science in psychiatry. Front. Neurosci. 6:152.

doi: 10.3389/fnins.2012.00152

Onoda, K., Ishihara, M., and Yamaguchi, S. (2012). Decreased functional

connectivity by aging is associated with cognitive decline. J Cogn Neurosci. 24,

2186–2198. doi: 10.1162/jocn_a_00269

Peña-gómez, C., Avena-koenigsberger, A., Sepulcre, J., and Sporns, O.

(2017). Spatiotemporal network markers of individual variability in

the human functional connectome. Cereb. Cortex 28, 2922–2934.

doi: 10.1093/cercor/bhx170

Pereira, F., Mitchell, T., and Botvinick, M. (2009). Machine learning

classifiers and fMRI: a tutorial overview. Neuroimage 45, S199–S209.

doi: 10.1016/j.neuroimage.2008.11.007

Petrican, R., Taylor, M. J., and Grady, C. L. (2017). Trajectories of

brain system maturation from childhood to older adulthood :

implications for lifespan cognitive functioning. Neuroimage 163, 125–149.

doi: 10.1016/j.neuroimage.2017.09.025

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A.,

et al. (2011). Functional network organization of the human brain. Neuron 72,

665–678. doi: 10.1016/j.neuron.2011.09.006

Power, J. D., Schlaggar, B. L., and Petersen, S. E. (2014). Studying brain

organization via spontaneous fMRI signal. Neuron 84, 681–696.

doi: 10.1016/j.neuron.2014.09.007

Preti, M. G., Bolton, T. A., and Van De Ville, D. (2017). The dynamic functional

connectome: state-of-the-art and perspectives. Neuroimage 160, 41–54.

doi: 10.1016/j.neuroimage.2016.12.061

Raichle, M. E. (2015). The brain’s default mode network. Annu Rev Neurosci. 38,

433–447. doi: 10.1146/annurev-neuro-071013-014030

Rosenberg, M. D., Finn, E. S., Scheinost, D., Papademetris, X., Shen, X., Constable,

R. T., et al. (2016). A neuromarker of sustained attention from whole-brain

functional connectivity. Nat. Neurosci. 19, 165–171. doi: 10.1038/nn.4179

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain

connectivity: uses and interpretations. Neuroimage 52, 1059–1069.

doi: 10.1016/j.neuroimage.2009.10.003

Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., Papademetris,

X., et al. (2017). Using connectome-based predictive modeling to predict

individual behavior from brain connectivity. Nat. Protoc. 12, 506–518.

doi: 10.1038/nprot.2016.178

Shine, J. M., and Poldrack, R. A. (2017). NeuroImage principles of dynamic

network recon fi guration across diverse brain states. Neuroimage 180(Pt B),

396–405. doi: 10.1016/j.neuroimage.2017.08.010

Song, J., Birn, R. M., Boly, M., Meier, T. B., Nair, V. A., Meyerand, M.

E., et al. (2014). Age-related reorganizational changes in modularity and

functional connectivity of human brain networks. Brain Connect. 4, 662–676.

doi: 10.1089/brain.2014.0286

Spreng, R. N., Stevens, W. D., Viviano, J. D., and Schacter, D. L. (2016).

Neurobiology of aging attenuated anticorrelation between the default and

dorsal attention networks with aging : evidence from task and rest. Neurobiol.

Aging 45, 149–160. doi: 10.1016/j.neurobiolaging.2016.05.020

Tian, L., Li, Q., Wang, C., and Yu, J. (2018). Changes in dynamic

functional connections with aging. Neuroimage 172, 31–39.

doi: 10.1016/j.neuroimage.2018.01.040

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat.

Soc. Ser. B (Methodol.). 58, 267–288. Available online at: https://www.jstor.org/

stable/2346178

Tomasi, D., and Volkow, N. D. (2011). Aging and functional brain networks.Mol.

Psychiatry. 17, 549–558. doi: 10.1038/mp.2011.81

Ullman, H., Almeida, R., and Klingberg, T. (2014). Structural

maturation and brain activity predict future working memory

capacity during childhood development. J. Neurosci. 34, 1592–1598.

doi: 10.1523/JNEUROSCI.0842-13.2014

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., and

Ugurbil, K. (2013). The WU-Minn human connectome project: an overview.

Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.05.041

van Horn, J. D., Grafton, S. T., and Miller, M. B. (2008). Individual variability in

brain activity: a nuisance or an opportunity? Brain Imaging Behav. 2, 327–334.

doi: 10.1007/s11682-008-9049-9

Wang, L., Su, L., Shen, H., and Hu, D. (2012). Decoding lifespan changes of

the human brain using resting-state functional connectivity MRI. PLoS ONE

7:e44530. doi: 10.1371/journal.pone.0044530

Wu, T., Zang, Y., Wang, L., Long, X., Hallett, M., Chen, Y., et al. (2007). Aging

influence on functional connectivity of the motor network in the resting state.

Neurosci. Lett. 422, 164–168. doi: 10.1016/j.neulet.2007.06.011

Xia, M., and He, Y. (2017). Functional connectomics from a “big data” perspective.

Neuroimage 160, 152–167. doi: 10.1016/j.neuroimage.2017.02.031

Yan, C. G.,Wang, X. D., Zuo, X. N., and Zang, Y. F. (2016). DPABI: data processing

and analysis for (resting-state) brain imaging. Neuroinformatics 14, 339–351.

doi: 10.1007/s12021-016-9299-4

Yang, Z., Chang, C., Xu, T., Jiang, L., Handwerker, D. A., Castellanos,

F. X., et al. (2014). NeuroImage connectivity trajectory across lifespan

differentiates the precuneus from the default network. Neuroimage 89, 45–56.

doi: 10.1016/j.neuroimage.2013.10.039

Yue, Y., Jia, X., Hou, Z., Zang, Y., and Yuan, Y. (2015). Frequency-

dependent amplitude alterations of resting-state spontaneous fluctuations

in late-onset depression. Biomed Res. Int. 2015:505479. doi: 10.1155/2015/

505479

Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., and Cao, Q. J. (2008).

An improved approach to detection of amplitude of low-frequency fluctuation

(ALFF) for resting-state fMRI : fractional ALFF. J Neurosci Methods 172,

137–141. doi: 10.1016/j.jneumeth.2008.04.012

Zuo, X. N., He, Y., Betzel, R. F., Colcombe, S., Sporns, O., and Milham, M. P.

(2017). Human connectomics across the life span. Trends Cogn. Sci. 21, 32–45.

doi: 10.1016/j.tics.2016.10.005

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Zhai and Li. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 17 February 2019 | Volume 13 | Article 62

https://doi.org/10.1371/journal.pone.0067346
https://doi.org/10.3389/fnagi.2018.00028
https://doi.org/10.1109/ISBI.2018.8363532
https://doi.org/10.1016/j.neuroimage.2017.09.012
https://doi.org/10.1016/j.neuroimage.2016.11.005
https://doi.org/10.1016/j.cmpb.2015.11.012
https://doi.org/10.1016/j.neuroimage.2016.04.007
https://doi.org/10.4061/2011/535816
https://doi.org/10.1016/j.neuroimage.2013.02.055
https://doi.org/10.3389/fnins.2012.00152
https://doi.org/10.1162/jocn_a_00269
https://doi.org/10.1093/cercor/bhx170
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1016/j.neuroimage.2017.09.025
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1016/j.neuron.2014.09.007
https://doi.org/10.1016/j.neuroimage.2016.12.061
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1038/nn.4179
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1038/nprot.2016.178
https://doi.org/10.1016/j.neuroimage.2017.08.010
https://doi.org/10.1089/brain.2014.0286
https://doi.org/10.1016/j.neurobiolaging.2016.05.020
https://doi.org/10.1016/j.neuroimage.2018.01.040
https://www.jstor.org/stable/2346178
https://www.jstor.org/stable/2346178
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1523/JNEUROSCI.0842-13.2014
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1007/s11682-008-9049-9
https://doi.org/10.1371/journal.pone.0044530
https://doi.org/10.1016/j.neulet.2007.06.011
https://doi.org/10.1016/j.neuroimage.2017.02.031
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.1016/j.neuroimage.2013.10.039
https://doi.org/10.1155/2015/505479
https://doi.org/10.1016/j.jneumeth.2008.04.012
https://doi.org/10.1016/j.tics.2016.10.005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Predicting Brain Age Based on Spatial and Temporal Features of Human Brain Functional Networks
	Introduction
	Materials and Methods
	Subjects and Imaging Protocols
	Enhanced Nathan Kline Institute—Rockland Sample (NKI-RS-E) Data
	Nathan Kline Institute—Rockland Sample (NKI-RS) Data

	Data Preprocessing
	Network Construction
	Principal Component Analysis and Relationship With Age
	Functional Connectivity Across the Lifespan
	Temporal Measures Across the Lifespan
	Feature Selection/Reduction Method
	Prediction Model of Chronological Age
	Control Analysis for Predictive Model
	Significant Edges and Networks in Predictive Model

	Results
	Principal Component Analysis and Relationship With Age
	Functional Connectivity Changes Across the Lifespan
	Temporal Measures Across the Lifespan
	Prediction Results
	Control Analysis for Predictive Model
	Significant Edges and Networks in Predictive Model

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


