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Artifact Subspace Reconstruction (ASR) is an adaptive method for the online or
offline correction of artifacts comprising multichannel electroencephalography (EEG)
recordings. It repeatedly computes a principal component analysis (PCA) on covariance
matrices to detect artifacts based on their statistical properties in the component
subspace. We adapted the existing ASR implementation by using Riemannian geometry
for covariance matrix processing. EEG data that were recorded on smartphone in
both outdoors and indoors conditions were used for evaluation (N = 27). A direct
comparison between the original ASR and Riemannian ASR (rASR) was conducted for
three performance measures: reduction of eye-blinks (sensitivity), improvement of visual-
evoked potentials (VEPs) (specificity), and computation time (efficiency). Compared to
ASR, our rASR algorithm performed favorably on all three measures. We conclude that
rASR is suitable for the offline and online correction of multichannel EEG data acquired
in laboratory and in field conditions.
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INTRODUCTION

Brain-Computer Interfaces (BCIs) translate brain signals into control signals and this translation
is typically based on detecting different brain states in near real-time (Zander and Kothe, 2011;
Yger et al., 2015). Non-invasive BCIs often rely on electroencephalography (EEG) for brain signal
acquisition. EEG has the advantage that it can be recorded with small, unobtrusive and wireless
hardware, incorporating off-the-shelf smartphones. Accordingly, portable EEG technology can
bring BCI applications closer to real-life applications (Gwin et al., 2010; De Vos et al., 2014;
Gramann et al., 2014; Debener et al., 2015; Jungnickel and Gramann, 2016; Bleichner and Debener,
2017; Blum et al., 2017). Moreover, EEG can be acquired while walking freely outdoors (Piñeyro
Salvidegoitia et al., 2019) or indoors on treadmills (Solis-Escalante et al., 2012; Wagner et al.,
2012; Seeber et al., 2015). However, while such recordings allow for the investigation of human
behavior during motion and in natural environments, the resulting EEG signals are contaminated
with even more artifacts than traditionally recorded, stationary EEG. In our previous studies, for
instance, we observed that eye movements are more prominent in outdoors mobile compared to
indoors stationary conditions. In the present paper, we considered stationary and mobile EEG
data, recorded indoors and outdoors. Specifically, we evaluated two versions of an EEG artifact
attenuation approach which can be applied online, that is, it can clean-up EEG artifacts in near
real-time, a necessity for advancing BCI applications.
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A widely used approach for artifact attenuation is independent
component analysis (ICA) (e.g., Makeig et al., 1996; Delorme
et al., 2007). Some studies show that ICA can be used online
(Akhtar et al., 2012; Hsu et al., 2014; Pion-Tonachini et al., 2018),
but it is computationally demanding and designed for offline use.
ICA decomposes the EEG data into a set of maximally temporally
independent components each representing different brain and
non-brain sources. Components representing artifacts can either
be removed manually or automatically (Campos Viola et al., 2009;
Bigdely-Shamlo et al., 2013; Pion-Tonachini et al., 2018). ICA
may not deal with all types of artifacts equally well, this holds in
particular for non-biological artifacts that are difficult to model,
such as cap movement or cable movement (Campos Viola et al.,
2009; Chang et al., 2018). However, these artifact sources may
compromise mobile EEG signal quality in particular.

Mullen et al. (2015) proposed an EEG artifact attenuation
algorithm aimed at correcting anomalies in artifact-
contaminated EEG data online. The ASR approach learns a
statistical model on clean calibration data and attenuates (in
theory any type of) artifact by decomposing short segments
of EEG data and contrasting them to calibration data in the
component subspace. ASR, like other statistical anomaly
detection methods (Chandola et al., 2009; Islam et al., 2016),
assumes that non-brain signals induce a large amount of variance
in the EEG data and can therefore be detected based on their
deviant statistical properties in the principal component analysis
(PCA) subspace. Similar to ICA, data containing artifacts are
reconstructed using an unmixing matrix to recover EEG data.
ASR has been designed for online and offline use. In both cases,
the data are processed in chunks of 500 ms. As a result, ASR has
a very short processing delay and relatively low computational
complexity. It is well-suited for online applications and it has
been shown to perform very well on EEG data in different
recording conditions (Arad et al., 2018; Kim and Kim, 2018;
Plechawska-Wojcik et al., 2019).

In its original implementation, ASR decomposes covariance
matrices of the EEG data for the detection of artifacts using
traditional Euclidean geometry. Due to their mathematical
properties though, covariance matrices should be processed
using methods applicable for curved, high-dimensional data
spaces (Moakher and Batchelor, 2006; Yger et al., 2015; Lotte
et al., 2018). For such computations, Riemannian geometry
has been shown to be more precise than Euclidean methods
(Barachant et al., 2012, 2013; Kalunga et al., 2015; Yger
et al., 2015; Horev et al., 2017; Lotte et al., 2018) and
has been used in online artifact detection and correction
previously (Barthélemy et al., 2017, 2019). Therefore, we
speculated that a Riemannian-adapted ASR could outperform
the original ASR algorithm. In this report, we describe
the implementation and evaluation of a Riemannian version
of ASR, hereafter referred to as rASR. Specifically, we
compared rASR to ASR and to uncorrected EEG data.
As measures of artifact reduction sensitivity, we evaluated
the performance by which ASR and rASR reduce eye-blink
amplitudes and topographies. As measures of artifact reduction
specificity, we calculated and compared visual-evoked potential
(VEP) signal-to-noise ratios (SNR) and amplitudes. Moreover,

computation times for each procedure were measured to assess
computational efficiency.

We used 24-channel EEG data recorded from N = 27
participants performing a memory experiment similar to the one
described in Piñeyro Salvidegoitia et al. (2019). EEG acquisition
and experimental control were implemented on a smartphone,
and artifact correction performance was evaluated for two
conditions, standing and walking outdoors on the university
campus, and standing and walking indoors on a treadmill.

MATERIALS AND METHODS

The Original ASR Algorithm and the
EEGLAB Plugin clean_rawdata
The ASR algorithm is explained in detail in Chang et al.
(2018), Mullen et al. (2015), and Pion-Tonachini et al. (2018)
and is available as part of the open source EEGLAB plugin
clean_rawdata1. Briefly, ASR learns statistical properties of
clean calibration data and compares these statistics during the
processing with statistics of new data, potentially containing
artifacts. It is recommended that the calibration data have a
length of at least 1 min and be recorded from the respective
participant during rest under comparable recording conditions
as the subsequent processing. The ASR algorithm consists of two
parts, the calibration and the processing. During the calibration,
data are filtered, then a robust covariance matrix U, ∈ Rc×c,
with c being the number of channels, is computed using
the L1-median of subsequent sample covariance matrices of
the incoming data segment. The geometric median, or L1-

median is defined as U = argminU
n∑

i=1
||XiXT

i − U||2, where

argmin minimizes the Euclidean distance of X to U and n
denotes the amount of covariance matrices computed so far
during the calibration. The single sample covariance matrices
are computed as Cov (s) = X (s) X (s)T , Cov (s) ∈ Rc×c, with
c being the channel number, X (s) ∈ Rt×c the data segment,
s consisting of c channels and t samples. U is then used to
compute the mixing matrix M ∈ Rc×c such that MMT

= U.
While learning the statistical model, this mixing matrix M is
decomposed using PCA to obtain V ∈ R1×c and D ∈ R1×c,
the eigenvectors and eigenvalues of the mixing matrix. At the
end of the calibration phase, data is projected into component
space where statistical properties of each component are
computed. These statistics are used to determine a threshold
operator T = µ+ k × σ, T ∈ Rc×c, with µ, σ being mean
and standard deviation of the components and k a tuning
parameter, evaluated in Chang et al. (2018). The threshold matrix
T defines the limits of normal data during the processing.
During the processing, the current covariance matrix Cov (s)
is averaged with the recording from the previous data segment
s that was being processed. Those matrices are temporally
smoothed, U (s) = f (Cov (s) , U (s− 1)) where U (s) ∈ Rc×c

depends on the chosen step size parameter for the data
segment s and f is a weighted Euclidean average function.

1https://sccn.ucsd.edu/wiki/EEGLAB_Extensions
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The amount of covariance matrices in U that are decomposed
in succession depends on the window length parameter and
the amount of samples currently in the method: range =
sampling rate ∗ windowlength (500 ms by default). range defines
the size of U : C × C × range, the update interval used for
decomposition is defined by range

stepsize which translates to several
thousand iterations of decomposition and reconstruction for
every data segment in the ASR method. During this main
processing loop, U is indexed in chunks of size stepsize, those
U (s) ∈ Rc×c are used to detect and reconstruct artifacts. In
component space, data are reconstructed using the mixing matrix
M from the calibration and a portion of the eigenvectors Vclean of
U (s), namely those of the clean components determined by the
threshold operator T: Xclean = M

(
VT

cleanM
)+ VTX. As a result,

the artifact is removed from the data. For a complete description
of implementation details, please refer to the asr_process function
in the clean_rawdata plugin.

Overview of Riemannian Geometry for
EEG Data
The central step in both ASR and rASR is the computation
and decomposition of covariance matrices using an
eigendecomposition. Data is thereby represented on a new
set of axes which fulfill a statistical criterion (Clifford, 2008).
In the case of eigendecomposition of covariance matrices, this
criterion is variance. Covariance matrices are symmetric positive
definite (SPD) matrices which lie in the space M (n) of all n x n
real matrices (Lang, 1999), which is a differentiable Riemannian
manifold (e.g., Barachant et al., 2012). In this space, they belong
to a subset which forms a convex cone (Dattorro, 2017). Several
studies have shown the beneficial effects of using Riemannian
distance and average measures, as well as geometry-aware PCA
methods, such as principal geodesic analysis (PGA) (Fletcher
et al., 2004; Horev et al., 2017). Since the space of SPD matrices
is a (negatively) curved space, the use of traditional Euclidean
geometry, which implies that distances are computed along
straight lines in the data space, turns out to be disadvantageous.
Riemannian geometry has shown to be more efficient and yields
more precise results in the analysis of EEG data (Shyu et al.,
2006; Kalunga et al., 2015; Yger et al., 2015; Congedo et al., 2017;
Horev et al., 2017; Barthélemy et al., 2019).

The rASR Algorithm: Geometry
Aware Methods
The rASR algorithm differs from original ASR in all
computations or decomposition of covariance matrices
during the processing. In rASR, a sample covariance matrix
is computed as a robust, unbiased estimator of the covariance
matrix of the current data segment (Kalunga et al., 2015). It is
defined as: U = 1

t−1 XXT, where t is the number of samples in
the current data segment and X ∈ Rt×c is the current channel
matrix consisting of t samples and c channels (Barachant et al.,
2012; Barthélemy et al., 2019). By computing an estimator of
the covariance matrix of the current data segment held in the
method, the rASR method omits the necessity of computing
individual covariance matrices for every small chunk of the

data defined by stepsize, as described in the ASR paragraph. As
a result, instead of decomposing several thousand covariance
matrices, this expensive operation is only done once on the
estimator covariance matrix. The reconstruction of the data
segment is then done successively in small chunks, the same
as in the original ASR method. Here, the stepsize parameter
is set to a smaller value in rASR to ensure a good coverage of
reconstruction and counterbalance the less-sensitive covariance
matrix computation. To ensure a robust covariance matrix for
successive data segments, the currently computed covariance
matrix is, both in rASR as well as in ASR, averaged with the
covariance matrix computed with the previous data segment. The
running mean averaging method used in ASR potentially induces
imprecisions in the result because of the so-called swelling effect,
which can occur when using Euclidean geometry in non-linear
spaces (Horev et al., 2017). In rASR, the method of averaging
the current and previous covariance matrices was therefore
exchanged by a geometry-aware averaging method, namely the
Riemannian center of mass method, also known as Karcher mean

(Horev et al., 2017): U (s) = argminU
N∑

i=0
d (Cov(s− i), U)2,

where d is the geodesic (Riemannian) distance which is
minimized, the analogous concept to Euclidean distance in
the arithmetic mean. In rASR, the computation of the sample
covariance matrices is therefore done differently and in addition,
it is done less often because the sample covariance estimator
is used instead of covariance matrices of many samples of
the current data segment. Further, the eigendecomposition is
computed using a PGA instead of a PCA, described in Fletcher
et al. (2004) and Horev et al. (2017) and implemented in the
Manopt toolbox (Boumal et al., 2013). PGA extends PCAs
dimensionality reduction to SPD matrices. The goal in PGA is
to project data into a lower dimensional subspace which best
preserves the variance, analogous to PCA. In PGA, the data are
projected to geodesic submanifolds which are computed such
that they maximize the projected variance of the data. Distances
between submanifolds are given by geodesics, the analogous
of a straight line in curved space. Variance is defined as the
Riemannian distance from the mean, linear subspaces from
PCA are now extended to geodesic manifolds (an extensive
explanation of PGA can be found in Fletcher et al. (2004)). These
distances between components are especially large when data
contain artifacts and component matrices differ considerably
from each other, as assumed in the case of an artifactual data
segment, leading to large distances on the manifold. In this case,
PGA preserves more variance than PCA (Horev et al., 2017).

Experimental Design and Procedure
An unpublished data set recorded for a different purpose was
used in the present report (Jacobsen, unpublished). This study
followed a previous work of our group investigating the neural
correlates of episodic memory formation outdoors (Piñeyro
Salvidegoitia et al., 2019). The study was approved by the local
ethics committee, participants provided their written informed
consent prior to participation. We recorded EEG data from 27
subjects (7 male, 20 female, mean age 23 years, ± 2.5 years
SD) recorded in two conditions, one indoors and one outdoors.
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A smartphone (“Sony Xperia Z1,” model: C6903; OS: Android
5.1.1) running the recording application Smarting (version
1.6.0, mBrainTrain, 2016 Fully Mobile EEG Devices) and a
24-channel mobile EEG cap (Easycap, Herrsching, Germany)
were used to collect and record EEG data. The Presentation
mobile app (Version 1.2.1, Neurobehavioral Systems Inc.,
Albany, CA, United States, RRID:SCR_002521) controlled
experimental events. In the outdoors condition, participants
were instructed to walk naturally next to the experimenter
who guided them to different locations on the university
campus. Indoors, participants walked on a mechanic treadmill
at their preferred speed. In both conditions, words that subjects
had to remember were presented on the smartphone display.
The experimental design involved self-initiated presentation of
those words, subjects first stopped walking and then pressed
a button on the screen to start a trial. Outdoors, participants
stopped walking when indicated by the experimenter, indoors,
participants stopped walking when indicated by a cue on the
smartphone display. Note that the data used for the analyses
of the VEP elicited by the word on the screen were therefore
recorded when subjects stood still and looked at the smartphone
screen. Eye-blink data on the other hand were extracted from
the entire indoor and outdoor dataset, containing data recorded
while participants were walking and while they were standing.
In the beginning of each block, 1 min of resting EEG was
recorded which served as calibration data for ASR and rASR.
Matlab [Version 9.0 (2016a), The Mathworks Inc., Natick,
MA, United States, RRID:SCR_001622] and EEGLAB (Version
13.6.5b, Delorme and Scott, 2004, RRID:SCR_007292) were used
for all analyses. The rASR toolbox was developed by the first
author of this report (SB) and is freely available alongside all
processing scripts used for our analyses2.

Preprocessing
All data were recorded with a sampling rate of 250 Hz, digitized
data recordings had a resolution of 24 bit. Passive Ag/AgCl
electrodes were used and arranged according to the international
10/20 setup (reference: FCz, DRL: AFz). Impedances were kept
below 10 k�. EEG data, experimental events and additional
sensor readings from the smartphone and IMUs in the amplifier
were recorded into an xdf file on the smartphone3. For
subsequent analyses, the EEG data were low-pass filtered at
40 Hz (FIR, filter order 166) and high-pass filtered at 0.25 Hz
(FIR, filter order 3300). Data were then submitted to a subset
of functions from the clean_rawdata toolbox which contains
the ASR algorithm (version 0.34). rASR is implemented in
its own plugin which is identical to clean_rawdata in all but
the two core methods asr_calibrate and asr_process. Figure 1
shows the toolbox and its wrapper and preprocessing functions
for the ASR algorithm. The ASR algorithm is implemented
in the core functions asr_calibrate and asr_process which are
therefore the only functions that were changed to develop a
Riemannian-adapted ASR algorithm. In Figure 1, adapted parts
in rASR indicated by dashed outlines. During the processing,

2http://github.com/s4rify/rASRMatlab
3https://github.com/sccn/xdf/wiki/Specifications

segments of raw EEG data are corrected in several steps which
have all been adapted in the rASR algorithm. The covariance
matrix computation and decomposition now use geometry-
aware methods, the choice of clean components and the
reconstruction are called in different order but have not been
methodologically adapted. This rearrangement and replacement
of parts of the ASR algorithm requires different parameters in
the call of clean_asr for ASR and rASR, whereby rASR needs
substantially more aggressive values in particular because of the
scarcer update of the covariance matrix. For both ASR and rASR,
we cleaned the calibration data recorded at the beginning of
the experimental blocks using ASR or rASR before submitting
them to processing. Data from each block were then processed
using clean_flatlines, clean_drifts, and finally clean_asr using
the dedicated cleaned calibration data. Since we are aiming
for an online artifact cleaning solution, we refrained from
using clean_channels, a powerful, yet computationally expensive
and time-consuming method which cannot be used in online
processing of EEG data. ASR was first used with the pre-defined
default parameters, but after cleaning of the calibration data
before submitting it to the processing, these parameters yielded
results of clear overcorrection, so they were set to less aggressive
parameters. Parameters for both methods were evaluated before
starting the analysis by means of maximizing SNR and preserving
morphology and are specified hereafter with name (value for
rASR, value for ASR): flatline (1, 5), hp [(0.25, 0.95), (0.25, 0.95)],
channel (0.9,−1), noisy (3,−1), burst (2,−1), window (0.3, 0.5),
cutoff (1, 5), stepsize (16, 32), maxdims (1, 0.66). All remaining
parameters were used with their default values.

Apart from the artifact attenuation step, the analysis pipeline
was identical for both methods. Data were epoched according
to events in the data, either stemming from experimental
events (VEP) or from detected artifact events (eye-blinks).
For comparison reasons, we also included data which were
temporally filtered the same way as the artifact-corrected data
sets but otherwise not further processed. These data are further
referred to as uncorrected data.

Specificity Analysis: VEP
An artifact correction method that reduces the overall data
amplitude will inevitably reduce artifact amplitudes, as well as
the amplitudes of any signal of interest. In order to examine
whether a signal of interest is retained in the corrected EEG
data, we analyzed the amplitude and the SNR of VEPs. We
compared ASR, rASR and uncorrected data for both indoors
and outdoors data. We focused our analyses on VEPs elicited by
words appearing on the smartphone screen. These onset/offset
VEPs evoked by a static stimulus have a distinct morphology
in time and space (Odom et al., 2016). We analyzed data
recorded by occipital channels O1 and O2, referenced to the
analog reference (located at FCz). Furthermore, every subject’s
average VEP was used to determine individual indices for
the latencies of the early positive deflection and the following
negative deflection. The SNR was computed by dividing the ERP
peak amplitude by a pre-baseline noise estimator of the standard
deviation in the pre-stimulus interval (200 ms before stimulus
trigger). SNR is reported in decibel (dB) throughout this paper:
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FIGURE 1 | The EEGLAB toolbox methods are listed on the left (in gray) and include the two core functions of ASR and rASR that are called by the function
clean_asr. Parts of the algorithm that were adapted using geometry-aware methods are marked by dashed sections. The toolbox consists of several preprocessing
and correction functions that together comprise artifact correction for multi-channel EEG data. Some of the functions marked in square brackets are computationally
expensive and profit from many data, but they are typically not used for online applications, we therefore refrained from using them herein. When using the toolbox,
all functions are called once, clean_asr is then calling the calibration and subsequently the processing repeatedly with short segments of the uncorrected data. The
procedure is the same for the online and offline use of ASR and rASR.

dB = 10∗ log10

(
signal
noise

)
. To compare the specificity in retaining

the signal of interest for the artifact attenuation procedures, VEP
SNR values and amplitudes were statistically analyzed using a
2 × 3 repeated measures analysis of variance (ANOVA) with the
factors condition (indoors, outdoors) and method (uncorrected,
ASR, rASR) and followed up by paired t-tests where appropriate.

Sensitivity Analysis: Eye-Blink Reduction
In order to objectively identify eye-blinks, we used the freely
available Blinker toolbox (Kleifges et al., 2017) to detect eye-
related artifacts on data from the combined frontal channels
Fp1, Fp2. Time indices of detected eye-blinks were added to the
data sets as eye-blink events and were then used to create eye-
blink epochs. The average number of eye-blinks per subject was
1165 during the outdoors condition (range: 642 to 2013) and 962
indoors (range: 361 to 1813). Blink amplitudes were statistically
analyzed using a 2 × 2 repeated measures ANOVA with factors
condition (indoors, outdoors) and method (ASR, rASR) to assess
whether one method outperformed the other, and whether this
was the case for both indoors and outdoors data. Significant
ANOVA effects were followed up by paired t-tests.

In addition to the eye-blink amplitude analysis, we also
evaluated eye-blink topography residual variance. Assuming
spatial orthogonality between ongoing EEG and eye-blinks, a
complete reduction of eye-blinks should reduce the correlation
of eye-blink topographies before and after the correction to a
minimum, whereas an incomplete (or over complete) correction
would be indicated by residual absolute correlation between
topographies of uncorrected and corrected data. Accordingly,
we calculated average eye-blinks for each condition and derived
the topography at eye-blink peak latency in uncorrected and
corrected data sets. Pearson correlation values were Fisher
z-transformed and submitted to a 2× 2 ANOVA with the factors
condition (indoors, outdoors) and method (ASR, rASR).

RESULTS

Specificity: Visual-Evoked Potential
Figure 2 shows the averaged single subject VEPs together with
the grand averaged VEP P1 and N1 topographies for both

conditions, uncorrected data and ASR and rASR corrected
data. We observed typical bilateral occipital VEP topographies
in corrected and uncorrected data. As can be seen, ASR and
rASR did not affect VEPs very much. The similarity of VEPs
between indoor and outdoor conditions complements previous
reports on outdoor ERP acquisitions (Debener et al., 2012;
De Vos et al., 2014) and suggests that VEPs can be obtained
from visual stimuli presented on smartphone, even in otherwise
uncontrolled outdoor conditions. ASR and rASR preserved the
morphology of the VEP and reduced the standard deviation
of the signal. The VEP maps revealed the expected early
positive and late negative occipital activation in both conditions,
indoors and outdoors. The amplitudes of the VEP N1 peaks
were lower in ASR corrected data sets than in uncorrected
and rASR corrected data sets (uncorrected: −8.5 µV indoors,
−10.35 µV outdoors, ASR:−8.1 µV indoors,−9.56 µVoutdoors,
rASR: −10.44 µVindoors, −10.61 µV outdoors). A 2 × 3
ANOVA of the N1 peak amplitude with the two within subjects
factors, condition (indoors, outdoors) and method (uncorrected,
ASR, rASR) yielded a significant main effect for condition
[F(1,26) = 5.33, p = 0.03, ηp2 = 0.01]. VEP amplitudes
were smaller indoors (−9.11 µV) than outdoors (−10.4 µV).
We found no evidence for a difference between methods
[F(2,52) = 1.49, n.s.]. A comparable 2× 3 ANOVA of the N1 SNR
with two within subjects factors, condition (indoors, outdoors),
and method (uncorrected, ASR, rASR) yielded no significant
results, neither for the main effect condition [F(1,26) = 1.19,
n.s.], nor for the main effect method [F(2,52) = 1.25, n.s.]. The
interaction effect missed significance as well [F(2,52) = 2.91,
p = 0.06, n.s.] and was therefore not further examined.

Sensitivity: Blink Amplitudes
Figure 3 shows the ASR and rASR comparison to uncorrected
data for the analysis of the blink amplitudes. As expected, the
blink amplitude of uncorrected data were orders of magnitudes
larger than typical EEG signals of interest with a mean
of 254.92 µV indoors and 289.02 µV outdoors. A 2 × 2
repeated measures ANOVA with two within subject factors
condition (indoors, outdoors) and method (ASR, rASR) yielded
a significant main effect for condition. The residual blink
amplitude was significantly smaller indoors (2.33 µV) than
outdoors [5.37 µV, F(1,26) = 8.28, p = 0.008, ηp2 = 0.07]
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FIGURE 2 | Single subject (gray lines) and grand average (black lines) visual-evoked potentials, shown for uncorrected data (left) and following correction with ASR
and rASR (center column and right). VEPs are shown for indoors and outdoors data and show the arithmetic mean of occipital channels O1 and O2, referenced to a
central reference near Cz. The voltage maps show the averaged single subject topographies at subject-specific latencies for the early P1 and the later N1 response,
all topographies are scaled identically. Individual latencies are indicated by red (P1) and blue (N1) dots. In the uncorrected data, one channel (right temporal T8) was
interpolated for the voltage map.

but no significant difference between methods was found
[F(1,26) = 2.56, p = 0.12].

In addition to the blink amplitude on the frontopolar channels
alone, we also evaluated blink topographies, similar to Campos
Viola et al. (2009) and Bigdely-Shamlo et al. (2013), following the
notion of a multidimensional description of artifacts (Tamburro
et al., 2018). Figure 4 shows similarity values (R2), reflecting
the shared variance between blink topographies of uncorrected
and corrected data sets. This was calculated separately for
indoors and outdoors conditions and both artifact correction
methods. Statistical evaluation was performed with Fisher z
correlation values of corrected and uncorrected topographies.
The corresponding 2× 2 ANOVA with two within subject factors
(indoors, outdoors) and method (ASR, rASR) yielded a main
effect for method [F(1,26) = 10.42, p = 0.003, ηp2 = 0.08]:
the average similarity value was significantly higher for the
ASR method (mean R2 = 0.283) than for the rASR method
(meanR2 = 0.15). The main effect of condition was not
significant [F(1,26) = n.s.], however, the interaction between
method and condition was significant [F(1,26) = 0.83, p = 0.004,
ηp2 = 0.06], indicating a significant difference of methods
outdoors [t(26) = −4.51, p = 0.00012, d = 1.03] but not
indoors [t(26) = n.s.].

Following eye-blink correction we observed small post eye-
blink deflections that could either indicate residual artifact or eye-
blink related cortical potentials. As indicated by topographical
inspection, a negative deflection approximately 132 ms post
eye-blink peak latency was evident. Similar effects have been
described before (Berg and Davies, 1988; Heuser-Link et al., 1992)
as indicating a cortical response to the lid closure. Since this effect
was unpredicted, we did not follow it up statistically.

Computation Time
Matlab was used to measure the processing time to correct the
data sets using the different methods, once including all toolbox
calls and once regarding only the core functions (i.e., the ones
that were adapted). As illustrated in Figure 5, when measuring
the computation time including all wrapper and preprocessing
functions contained in the toolbox, rASR took 44.5% less time
to process 158 data sets (27 participants with 4 to 6 blocks of
recording) than ASR (mean rASR = 5.6 s, SD = 0.7 s, mean
ASR = 10 s, SD = 1.5 s per data set). When only measuring
the time for the core algorithm, rASR was even more efficient.
This is because this measurement only includes those functions
that contained the Riemannian adaptation. Here, rASR took
82% less time to process the data sets than ASR (mean time
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FIGURE 3 | Blink artifact topographies and time courses for all methods and conditions. Note the different y-axis scale for uncorrected and corrected data. The bold
black lines show the grand average blink signal, the thin gray lines show single subject averages. Eye-blink potentials were measured as the mean between channels
Fp1 and Fp2, marked as white points in the voltage maps. Blink potentials and blink voltage maps illustrate eye-blink morphologies and topographies before (left)
and after (center, right) artifact correction. Smaller maps show the voltage distribution 132 ms post eye-blink maximum. In uncorrected data, the map reflects
residual eye-blink activity, in corrected datasets, it is compatible with the interpretation of eye-blink generated event-related brain potentials.

rASR = 1.4 s, SD = 0.1 s, mean time ASR = 7.7 s, SD = 1.1 s
per data set). A paired t-test confirmed significant differences
between the methods, both for the complete computation time
[t(157) = −55.15, p < 0.01, d = 4.39] and the minimal
computation time [t(157) =−77.51, p < 0.01, d = 6.17].

DISCUSSION

Fast and powerful artifact correction methods are needed for
EEG applications, especially for mobile recordings. This requires
a computationally efficient procedure and an approach that
can deal with the complexity of EEG recorded in mobile
conditions, such as walking outdoors. We have extended the
original ASR algorithm with Riemannian geometry. The use of
Riemannian methods in the computations involving covariance
matrices proved to be beneficial, rASR was faster than ASR and
corrected blink artifacts favorably to ASR. At the same time, rASR
preserved the signal of interest, here the visually-evoked potential
VEP. However, the following issues require consideration.

Regarding artifacts, we focused on eye-blinks and disregarded
other physiological or non-physiological artifacts. The reason
for this choice was that eye-blinks have a strong impact
on event-related EEG analysis quality as they have a large

amplitude, dominating multi-channel recordings at time of
occurrence. Moreover, eye-blinks have been well characterized
physiologically and tools exist that can automatically detect eye-
blinks with reasonably good accuracy. We used the Blinker
toolbox (Kleifges et al., 2017) to identify eye-blinks and created
eye-blink artifact related epochs, in order to evaluate eye-blink
correction quality. By focusing on automatically detected, we may
have missed non-stereotypical blinks that were not detected by
the Blinker toolbox because a coherent blink template could not
be learned for them. We did not evaluate how well ASR and
rASR perform on these non-stereotypical eye-related artifacts.
While future work may benefit from improved blink detection
procedures (Barthélemy et al., 2017; Jas et al., 2017) and the
inclusion of other EEG artifacts to provide a more complete
picture, the current analyses suggest that rASR implements
eye-artifact correction very successfully for common eye-blinks,
regardless of whether they were recorded indoors or outdoors.

Interestingly, eye-blink correction did not result in isoelectric
activity, even after averaging over a larger number of eye-
blink epochs. This suggests that either the correction procedure
applied under- or overcorrected the artifact, or that an
event-related brain potential in response to eye-blinks was
found. The topographical analysis as illustrated in Figure 3
supports the latter interpretation. Blink-related event-related
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FIGURE 4 | Similarity values (R2) of eye-blink topographies obtained by
correlating uncorrected and corrected topographies. A low R2 value reflects
very little residual topographical influence of blinks, thereby indicating better
artifact suppression. Comparison of correlation values between uncorrected
and ASR-corrected topographies (x-axis) and between uncorrected and
rASR-corrected topographies (y-axis). The diagonal line marks the border
between favorable values for rASR (lower section) and favorable values for
ASR (upper section). rASR showed lower similarity values than ASR.

potentials have been reported before (Berg and Davies, 1988;
Heuser-Link et al., 1992) but did not receive much attention
lately. However, eye-blinks provide information about cognitive
processing (Wascher et al., 2015) and, in combination with a
thorough analysis of blink-generated event-related potentials,
may provide a rich source of information in applied fields,
such as neuroergonomics.

It is worth noting that ASR and rASR benefit from the
recording of suitable calibration data. One minute of resting EEG
containing few artifacts is recommended (Mullen et al., 2015).
In our experience the quality of the calibration data plays an
important role in the quality of ASR-based artifact reduction,
and this probably also holds for the modified version of rASR.
However, it was beyond the scope of this paper to compare the
role of the calibration data on ASR and rASR performance. We
recommend using proper calibration data, that is, calibration
data taken from the same recording session and based on resting
conditions. ASR performance on attenuating particular artifacts,
such as free walking-related artifacts may critically depend on
the same artifact being absent in the calibration data. In a future
project, it would be very interesting to specifically investigate
the artifact reduction capabilities of rASR on movement-related
artifacts in general and walking-related artifacts in particular
(Gwin et al., 2010; Oliveira et al., 2016). The mobile EEG system
used in the present study features the concurrent recording of
24-channel EEG, 3D gyroscope signals from the head and 3D

FIGURE 5 | Artifact correction computation times per method and extend of
used functions for the two artifact-correction procedures, measured on a
laptop running Matlab 2016a, Intel R© i7 (quadcore) processor and 16GB RAM.
The median is shown by the line which divides the boxes, outliers are
indicated by crosses outside the whiskers. The core functions contained the
Riemannian adaptation and therefore show the biggest difference in
computation time. When computation time for all preprocessing functions was
measured, the difference was less pronounced since these functions include
unchanged computations.

accelerometer signals from the smartphone, and these motion
sensor signals, in particular when located at the feet, may be
instrumental for gait-artifact detection evaluation (Hwang et al.,
2018). The current gold standard in EEG artifact reduction seems
to be ICA, which was shown in a number of studies to perform
favorably when compared to other artifact reduction procedures
(Hoffmann and Falkenstein, 2008; McMenamin et al., 2010)
and with suitable parameters (Winkler et al., 2015). However,
only few attempts were made to apply ICA online (Akhtar
et al., 2012; Hsu et al., 2014; Pion-Tonachini et al., 2018). These
particular approaches are computationally expensive and require
careful validation of block size and sensitivity measures. To our
knowledge, previously presented online EEG artifact suppression
procedures appear to be more complex and computationally
more demanding than ASR and rASR. Accordingly, it is not
clear whether these procedures could be operated on handheld
devices such as smartphones. The rASR algorithm presented
here is computationally less expensive than ASR and introduces
only a small processing lag. We are therefore convinced that
future mobile EEG applications will benefit from efficient online
artifact correction. Of course, online artifact correction may not
perform well under any circumstances, therefore it should be
good practice to apply state-of-the-art artifact correction offline
and compare the results. This requires software solutions to
save both artifact-corrected as well as uncorrected raw data.
To support a widespread use of online artifact correction, the
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original ASR artifact correction method was implemented
in Java and will be included in SCALA (Blum et al.,
2017), a fully mobile framework for BCI applications on
smartphone. SCALA is freely available on GitHub for
download and is considered an open beta. It uses the
Lab Streaming Layer (Swartz Center for Computational
Neuroscience and Kothe, 2015) to receive raw data and event
markers. SCALA classifies incoming time series such as EEG
online and returns a classification result via LSL. The rASR
algorithm presented here will be included into SCALA in
the near future.
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