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Objective: Resting-state functional magnetic resonance imaging (rs-fMRI) has become
an essential measure to investigate the human brain’s spontaneous activity and intrinsic
functional connectivity. Several studies including our own previous work have shown
that the brain controls the regulation of energy expenditure and food intake behavior.
Accordingly, we expected different metabolic states to influence connectivity and activity
patterns in neuronal networks.

Methods: The influence of hunger and satiety on rs-fMRI was investigated using
three connectivity models (local connectivity, global connectivity and amplitude rs-fMRI
signals). After extracting the connectivity parameters of 90 brain regions for each model,
we used sequential forward floating selection strategy in conjunction with a linear
support vector machine classifier and permutation tests to reveal which connectivity
model differentiates best between metabolic states (hunger vs. satiety).

Results: We found that the amplitude of rs-fMRI signals is slightly more precise than
local and global connectivity models in order to detect resting brain changes during
hunger and satiety with a classification accuracy of 81%.

Conclusion: The amplitude of rs-fMRI signals serves as a suitable basis for machine
learning based classification of brain activity. This opens up the possibility to apply this
combination of algorithms to similar research questions, such as the characterization of
brain states (e.g., sleep stages) or disease conditions (e.g., Alzheimer’s disease, minimal
cognitive impairment).

Keywords: brain functional activity and connectivity, feature selection, resting-state fMRI, hunger, satiety, support
vector machine

HIGHLIGHTS

- We compare fALFF, DC, and ReHo for classifying human metabolic states within an rs-fMRI
scan based on SVM.

- We combine an rs-fMRI based voxel-wise frequency-domain approach with sequential forward
floating selection method to identify brain areas modulated as a function of hunger/satiety.

- It turns out that fALFF is a reliable and stable index of spontaneous brain activity.
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INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI)
has been increasingly applied to study activity and connectivity
of the resting brain and involves the recording of the blood-
oxygen-level-dependent (BOLD) signal without imposing a task
(Biswal et al., 2010; X.-N. Zuo and Xing, 2014). This approach
can be used to assess intrinsic and spontaneous brain activity.
Analysis techniques of rs-fMRI have evolved rapidly over the past
few years and are based on correlation methods (Bullmore and
Sporns, 2009; Sporns, 2011; Wee et al., 2012; Jie et al., 2014),
partial correlation (Salvador et al., 2005; Marrelec et al., 2006,
2007), graph theory based analysis (Chen and Herskovits, 2007;
Bullmore and Sporns, 2009) and sparse representation methods
(Lee et al., 2011; Wee et al., 2014), among others. Because of its
simplicity (short scan time, no stimulation equipment needed, no
task requirements), the rs-fMRI method has become particularly
popular for the characterization of clinical conditions, for
example pinpointing to differences between healthy participants
and patients with Parkinson’s disease (Göttlich et al., 2013;
Tahmasian et al., 2015), Alzheimer’s disease (AD) (Sheline and
Raichle, 2013; Dennis and Thompson, 2014), bilateral vestibular
failure (Göttlich et al., 2014a), schizophrenia (Alderson-Day
et al., 2016; Hu et al., 2017), and obsessive-compulsive disorder
(Göttlich et al., 2014b; Gürsel et al., 2018), to name but a few
targeted neuropsychiatric conditions.

In neuroimaging, machine learning classifier (MLC) methods
are applied to fMRI data to detect model-free brain activity
and to use these brain activity patterns to differentiate between
groups or conditions (Cox and Savoy, 2003; Pereira et al., 2009).
The application of MLC to fMRI data is often referred to as
multi-voxel (i.e., analyzing more than one voxel at once) pattern
analysis (MVPA). MVPA is a helpful tool to investigate how a
pattern of brain activity is related to different cognitive states
(Haynes and Rees, 2006; Norman et al., 2006; Mahmoudi et al.,
2012). The process of applying the MVPA approach to fMRI
data can be broken down into three stages (Pereira et al., 2009;
Poldrack et al., 2011). First, feature extraction, which converts the
BOLD fMRI signals to the relevant variables, i.e., features, which
will be used to train and to test the classifier. Second, feature
selection, which determines features that have to be included in

Abbreviations: AAL, Automated-Anatomical-Labeling; AD, Alzheimer’s disease;
APCUN, anterior precuneus; BMI, body mass index; BOLD,
Blood-oxygen-level-dependent; CA, classification accuracy; CFS, cerebrospinal
fluid; CM, confusion matrix; DARTEL, diffeomorphic anatomical registration
through exponentiated Lie algebra; DC, degree of centrality; DPARSFA, data
processing assistant for resting-state fMRI advanced edition; EPI, echo-planar
imaging; ER, error rate; fALFF, fractional amplitude of low-frequency fluctuations;
FC, function connectivity; fMRI, functional magnetic resonance imaging; FSL,
FMRIB Software Library; GLM, general linear model; HC, healthy controls;
ICA-AROMA, independent component analysis (ICA)-based strategy for
automatic removal of motion artifacts; IFG, inferior frontal gyrus; KCC,
Kendall’s coefficient concordance; LOC, lateral occipital cortex; LOOCV,
h-out cross-validation; MCI, mild cognitive impairment; MLC, machine
learning classifier; MNI, Montreal Neurological Institute; MVPA, multivariate
voxel-pattern analysis; OLFC, olfactory cortex; ReHo, regional homogeneity; ROI,
region of interest; rs-fMRI, resting-state functional magnetic resonance imaging;
SFFS, sequential forward floating selection; SFS, sequential forward selection;
SPM, statistical parametric mapping; SVM, support vector machine; TE, echo
time; TR, repetition time.

the classifier analysis in order to improve the classification. Third,
cross-validation methods that divide the data into training and
testing samples and determine the accuracy of the classifier in
generalization to new data.

Support vector machine (SVM; Cortes and Vapnik, 1995;
Vapnik, 2013) is a powerful method available to perform MVPA.
In contrast to alternative MVPA methods (such as linear
discriminant analyses), SVM provides better prediction accuracy,
having the advantage of being relatively insensitive to the sample
size of the training dataset (O’Toole et al., 2007; Mountrakis et al.,
2011). Furthermore, SVM has additional advantages regarding
efficiency, simplicity, robustness and is less susceptible to noise
(Mountrakis et al., 2011; Meier et al., 2012).

The application of SVM to fMRI data at group level has
several advantages over traditional univariate (i.e., individual)
voxel-based methods, like the general linear model (GLM).
For instance, SVM allows to identify voxels or brain regions
of interest that are informative for classifying groups by
accumulating the information in an efficient way across many
spatial locations. While in GLM analysis, these voxels or brain
regions could appear statistically insignificant, although they
might carry some information about differences between states
or groups (Haynes and Rees, 2006; Norman et al., 2006). Thus,
SVM provides insight into the defining differences between the
two states or groups (Cox and Savoy, 2003; Orru et al., 2012).

In many cases, fMRI data have a small number of
samples and a large number of variables or features. This
often leads to overfitting in classification, which in turn
leads to deceptive diagnostic results and poor generalization
performance (Pereira et al., 2009; Wang, 2009). To avoid the
danger of overfitting, most of the MVPA-based fMRI studies
applied both methodologies, feature-selection algorithms to
remove redundant information and MLC methods that are
less sensitive to a high dimensionality, such as linear SVM.
Finally, cross-validation analyses are performed to evaluate the
classification accuracy and generalizability for unseen data (Cox
and Savoy, 2003; Mitchell et al., 2004; Kamitani and Tong, 2005;
Zhang et al., 2005).

Rs-fMRI yields data comprise multiple data points per subject
and/or condition, among other things, raising the question of
whether it might be possible to distinguish between different
conditions (e.g., disease present or not) using classification
algorithms from the realm of machine learning. Indeed, several
recent publications have tackled this question. For example, Abós
et al. (2017) obtained functional connectomes from the rs-fMRI
in healthy controls (HC) and 70 Parkinson’s disease patients
[of which one third had a mild cognitive impairment (MCI)].
Using a SVM trained on features selected through randomized
logistic regression with leave-one-out cross-validation (LOOCV),
they could separate patients with MCI from those not having
MCI with an accuracy of about 83% in the training sample. In
a smaller validation sample of 25 Parkinson patients (8 MCI),
classification accuracy with regard to MCI was 80% using the
features found in the training sample (Abós et al., 2017). This
suggests that SVM classification based on metrics obtained from
rs-fMRI can indeed yield meaningful results. Likewise, applying a
graph theoretical approach to rs-fMRI to characterize functional
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connectivity in patients with MCI, AD and age-matched HC
(total sample n = 168), followed by SVM based classification,
Khazaee et al. (2015a) were able to accurately classify the subjects
into three groups (HC, MCI, and AD) with 88.4% accuracy. The
same research group (Hojjati et al., 2017) tried to distinguish
patients with MCI who later converted to an AD from MCI
patients who did not. Again a SVM, using features derived
from local and global graph measures, was used. This approach
yielded a specificity of 91.4% and sensitivity of 83.2% regarding
the conversion to the AD. Bi et al. (2018) attempted to classify
patients with autism spectrum disorder (ASD) from HC using
random SVM cluster and reported classification accuracy based
on the optimal feature to be 96%. These are just a few examples
illustrating that rs-fMRI derived features can be used for
classification of conditions using machine learning algorithms.
What it is less clear, however, is which method of rs-fMRI analysis
delivering the most discriminating features might be best in
distinguishing different metabolic states (hunger vs. satiety).

In the present investigation, we therefore sought to compare
the accuracies of three different connectivity parameters or
features (the predictor variables used for classification) extracted
from rs-fMRI fluctuations. These features assess local and global
functional connectivity as well as changes in the brain activity
as indicated by the amplitude of the BOLD signal, i.e., regional
homogeneity (ReHo), degree of centrality (DC), and fractional
amplitude of low-frequency fluctuations (fALFF), respectively.
Briefly, ReHo characterizes the local connectivity of a brain
voxel to its nearest neighboring brain voxels (Zang et al.,
2004; Jiang and Zuo, 2015) by determining the coherence
among spontaneous BOLD signals that might reflect spontaneous
neuronal activity (Sato et al., 2012). ReHo has been applied to
widely differing neuropsychiatric conditions (Cao et al., 2006; Liu
et al., 2006; He et al., 2007; Wu et al., 2009; Paakki et al., 2010).
DC is derived from graph theory based analysis and describes
the global connectivity (global connectedness) of a given voxel
with the voxels in the entire brain, by computing the number
of connections above a certain threshold (Buckner et al., 2009;
Bullmore and Sporns, 2009; Zuo et al., 2012). Again, DC has seen
widespread application in neuropsychiatric conditions (Buckner
et al., 2009; Beucke et al., 2013; Di Martino et al., 2013; Göttlich
et al., 2013; Hou et al., 2014). Finally, to quantify spontaneous
local brain activity, the amplitude of the BOLD signals has
been used. This can be assessed by the amplitude of low-
frequency fluctuations (ALFF) and its derivative fALFF (Zang
et al., 2007; Zou et al., 2008). While ALFF describes the local
spontaneous brain activity across the whole brain, by assessing
the amplitude in a given voxel or brain area in the low-frequency
range (0.01–0.08 Hz), fALFF is a normalized derivation of ALFF
representing the ratio of low-frequency range amplitudes (0.01–
0.08 Hz) relative to the entire frequency range (e.g., 0–0.25 if
TR=2 s) amplitudes. Both ALFF and fALFF have high temporal
stability (Küblböck et al., 2014) and test-retest reliability (X.
N. Zuo and Xing, 2014). In contrast to ALFF, fALFF has been
reported to have higher specificity in detecting local spontaneous
brain activities, especially in gray matter (Zou et al., 2008; Zuo
et al., 2010). Moreover, fALFF is recommended to be used instead
of ALFF (X.-N. Zuo and Xing, 2014), since it is more robust
against non-specific signal components, such as physiological

noise (Zuo et al., 2010). In the present study, we performed fALFF
on rs-fMRI data to describe the local spontaneous brain activities.

The aim of feature selection algorithms is to reduce the
dimensionality of feature space and computation time, as well
as to enhance the accuracy of optimization methods by ignoring
redundant, irrelevant or noisy features (Tang et al., 2014; Jović
et al., 2015). In general, the feature selection algorithms are
classified in two categories, according to the type of objective
functions that one chooses to work with: filter methods and
wrapper methods (Pereira et al., 2009; Mwangi et al., 2014). Filter
methods select the feature subsets based on statistical properties
(such as interclass distance, mutual information, entropy or
statistical independence) of the features to filter out poorly
informative ones without employing any classification algorithm.
In contrast, wrapper methods rate the feature subsets based
on their predictive accuracy to improve the performance of
classification when applying a particular classifier (such as SVM
or the k-nearest neighbor). Filter methods are advantageous
because they perform quickly, afford a more general solution
and tend to select large feature subsets. Wrapper methods are
expensive because they need more time to train the classifier of
each subject many times (i.e., cross-validation), but often do not
deteriorate from the problem of overfitting (Burrell et al., 2007)
and provide more accurate results comparable to filter methods
(Guyon and Elisseeff, 2003; Maldonado and Weber, 2009).

There are several strategies to apply wrapper methods
(Mwangi et al., 2014). For instance, sequential forward selection
(SFS) and sequential forward floating selection (SFFS) are easy
to execute and are assumed to provide useful results. Although
the SFFS strategy requires massive computational resources, it
performs better and is more effective for solving small- and
medium-scale problems than simpler strategies like SFS (Kudo
and Sklansky, 2000). However, the SFS strategy reduces the
computational costs for the feature subset selection. Accordingly,
Burrell et al. (2007) concluded that SFS was a reasonable
alternative to select a small subset of features for fMRI data. In
this work, we compared between SFS and SFFS strategies for
creating feature subsets to distinguish different metabolic states.

The emphasis of the present work is on the ability to classify
the metabolic states (hunger vs. satiety) by the MVPA approach.
Therefore, we first estimate and compare the prediction accuracy
of classification (hunger vs. satiety) based on different features of
rs-fMRI data (ReHo, DC and fALFF). Second, we identify brain
regions containing discriminating information between different
metabolic states. To this end, we apply supporting linear SVM
as a classifier and two feature selection strategies (SFS and SFFS)
to identify those brain regions that most efficiently differentiate
between hungry and satiated states based on rs-fMRI data.
Finally, we employ a cross-validation scheme and permutation
tests to validate the reliability of classifier and significance testing,
respectively (see Figure 1 for classification procedure).

MATERIALS AND METHODS

Experimental Design
We investigated 24 healthy male volunteers aged 20 to 30 years
(mean ± SEM: 24.5 ± 0.6 years) with a body mass index (BMI)
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FIGURE 1 | Full analysis procedure of hunger classification based on rs-fMRI data.

within the normal weight range of 20–25 kg/m2 (mean ± SEM
in kg/m2: 23.4± 0.3), recruited from the University and the local
population of Lübeck, Germany.

Each subject was investigated in two sessions (i.e., two
metabolic states), once under fasting (36 h fasting) and once
under standardized eating conditions (five meals throughout
36 h). The order of the two sessions was randomized across
participants, with a break of at least 1 week between sessions.

In the hunger condition, subjects fasted (no food or
beverages, except water) from 11 pm the night before the
examination started until the end of the rs-fMRI recording. In
the satiety condition, three standardized meals per day were
provided. Standardized meals were served according to the
recommendations of the clinical diabetes counseling department
at the University Medical Campus Schleswig-Holstein (UMCSH):
Breakfast (25% protein, 50% carbohydrate and 25% fat), lunch
(20% protein, 63% carbohydrate and 17% fat) and dinner (22%
protein, 60% carbohydrate and 18% fat) were provided at 9 am,
12 pm and 7 pm, respectively. In both sessions, subjects arrived at
the sleep lab at 8 am. The first blood sample for defining the blood
glucose levels was taken at 8:45 am. More details on the exact
timing for obtaining blood samples can be found in our previous
work (please see the experimental design and Figure 1 in Al-
Zubaidi et al., 2018). All subjects stayed and slept overnight in the
laboratory at the UMCSH. On the next morning, blood samples
were drawn at 8:45 am and at fixed time points throughout
noon until the MRI was performed at 1 pm for the rs-fMRI
recording (duration 6 min). Subjects were instructed to lie still
inside the scanner having the eyes closed and trying to avoid any
particular cognitive activity. For each condition, subjects rated
hunger feelings 20 min before the MRI sessions started. This was
done by using a visual analog scale from 0 (not hungry at all) to
9 (very hungry).

Blood sugar levels were lower while feelings of hunger were
more intense during hunger compared to satiety before the
rs-fMRI scans (Figure 2). These findings confirm the success of
our fasting treatment. Results of blood sugar levels and hunger
ratings can be found in Al-Zubaidi et al. (2018).

Image Acquisition
We used a 3-T Philips Achieva scanner (Philips Medical Systems,
Best, Netherlands) and a standard eight-channel phased array
head coil to record structural and functional images. Anatomical
scans consisting of 180 sagittal slices were acquired by applying
a T1-weighted 3D turbo gradient-echo sequence with SENSE
(image matrix 240 × 240; voxel dimensions 1 × 1 × 1 mm;
field of view 240 × 240 mm2; 1 mm slice thickness; 9◦ flip

FIGURE 2 | Average blood glucose levels (A) and rating of hunger feeling (B)
per experimental condition. ∗ and ∗∗∗ represent the significant differences
between conditions, at a threshold of p < 0.01 and p < 0.0001, respectively.
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angle). For the rs-fMRI recording (duration 6 min), subjects were
instructed to lie still inside the scanner with their eyes closed
and to not engage in any particular cognitive activity. Further,
178 whole-brain fMRI volumes were acquired in an interleaved
fashion with a T2∗-weighted single-shot gradient-echo EPI
sequence (TR = 2000 ms; TE = 28 ms; voxel dimensions
3 × 3 × 3 mm; field of view 192 × 192 mm2; 80◦ flip
angle; 40 slices).

Preprocessing
Part of the preprocessing of the functional images was carried out
using FSLv5.01 to implement independent component analysis
(ICA)–based strategy for automatic removal of motion artifacts
(ICA-AROMA) for head motion correction (Pruim et al., 2015a).
It has been reported that ICA-AROMA improves the specificity
(i.e., the signals of interest) and sensitivity (i.e., motion-
related noise) of rs-fMRI activation and connectivity analyses
(Pruim et al., 2015a). To improve inter-subject alignment (Klein
et al., 2009; McLaren et al., 2010), the spatial preprocessing
of the data was performed with the statistical parametric
mapping 12b (SPM12b).

The rs-fMRI images were preprocessed as follows: (i)
we discarded the first eight functional volumes from each
participant’s two runs to allow steady-state tissue magnetization;
(ii) we manually reoriented all functional volumes to the
anterior commissure; (iii) we implemented head movement
correction on data by realigning all volumes to the middle
time-point volume using MCFLIRT (Jenkinson et al., 2002);
(iv) we applied ICA-AROMA to the data in order to identify
and remove motion-related components using four spatial and
temporal features (Pruim et al., 2015b). Briefly, functional
images were submitted to the MELODIC toolbox for running
a probabilistic independent component analysis (PICA) with
automatic estimation of the number of hidden independent
components (i.e., source signals) to find a set of components
for each participant per recording individually (Beckmann and
Smith, 2004). A predetermined classifier was then applied on
independent components to represent the motion-related artifact
components, which were identified at least by assessing each
component to one of the following criteria: (1) maximum
correlation with realignment parameters, (2) high-frequency
temporal content >35%, (3) spatial content in edge voxels and
cerebrospinal fluid (CSF) >10%. Finally, we removed the motion-
relevant components from rs-fMRI data that had been realigned
by using a linear regression approach. The structural and
denoised functional images were further preprocessed with data
processing assistant for resting-state fMRI (DPARSF) toolbox
as follows (Yan, 2010): (v) we co-registered the T1 structural
image to the mean functional image; (vi) we ran a segmentation
protocol to distinguish gray matter, white matter and CSF; (vii)
we applied bias correction and spatial normalization of the T1
structural image and adjusted them to the MNI template using
DARTEL algorithm (Ashburner and Friston, 2005); (viii) we
performed nuisance regression (including white matter and CSF
signals) to reduce the impact of undefined physiological effects

1http://fsl.fmrib.ox.ac.uk/fsl/

on rs-fMRI signals (Liu, 2016); (ix) we spatially normalized
functional images and gray matter images to the MNI-template
using the normalization parameters estimated by DARTEL
algorithm with a 3 mm isotropic voxel size; (x) we performed
spatial smoothing with a 6 mm full width at half maximum
(FWHM) Gaussian kernel. Rs-fMRI signals were smoothed after
calculating ReHo (Zang et al., 2004) not before (see ReHo
paragraph); (xi) we applied temporal band-pass filtering (0.01–
0.08 Hz) on the rs-fMRI signal to reduce the effect of low-
frequency drift, such as respiratory, and high-frequency noise,
such as heart activity. As suggested by Zou et al. (2008) no such
band-pass filter was used when computing the fALFF (see fALFF
paragraph); (xii) finally, we masked all functional images with
a gray matter mask. The gray matter mask was calculated by
averaging the grey matter images of all subjects. To generate
the binary mask, we defined the common voxels between the
average gray matter image and the gray matter template (without
cerebellar lobules) derived from the Automated-anatomical-
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) by using the
xjView toolbox2. In some subjects we were not able to measure the
whole cerebellum. Therefore, the cerebellar cortex was excluded
from the gray matter mask and regions of interest (ROIs).

Feature Extraction From rs-fMRI Data
Feature extraction is used to reduce the dimension of the original
data space to a new feature space. This new feature space helps to
minimize the training time taken by the classifier (Chen et al.,
2010). To encompass different aspects of rs-fMRI fluctuations,
we extracted and compared three of the most common features
according to their accuracy to select those brain regions that
best distinguish different metabolic states by using linear SVM
together with feature selection strategies. In the beginning, we
submitted the preprocessed data to the DPARSF toolbox (Yan,
2010) and extracted three features from each subject per section
as described in the following paragraphs. Then, those features
were analyzed as explained in Section of Feature Selection.

First, local connectivity of brain regions was described using
ReHo (for regional homogeneity), which is a measure of the
temporal homogeneity among brain voxels and the neighboring
brain voxels within the low-frequency range of rs-fMRI signals
(Zang et al., 2004). The rationale behind ReHo is based on
the assumption that the BOLD signal has characteristics that
depend on neuronal activities, and therefore, the time series
of neighboring voxels in a functional brain area will be highly
similar or synchronized when that area supports specific goals
or representations (Jiang and Zuo, 2015). The ReHo index for
a particular voxel is calculated by using Kendall’s coefficient
concordance (KCC) approach. In this study, the KCC was
calculated using the following formula (Zang et al., 2004):

KCC =
∑n

i=1(Ri)
2
− n(R)2

1
12 K2(n3 − n)

where KCC is the ranging coefficient, from 0 to 1 (no to maximal
coherence), of a given voxel in relation to its nearest neighbors,

2http://www.alivelearn.net/xjview8
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Ri represents the rank sum of i th time point as Ri =
∑k

j=1 rijand
rij is the rank of the i th time point of the j th voxel. R refers to
the average of the Ri and n represents the length of the time series
(here n = 170 time points). K is the number of voxels within the
targeted clusters (here K = 27, the given voxel (which is the center
voxel) plus its 26 immediate neighbors). The KCC value was then
put to the center voxel of the respective cluster. From the KCC of
all voxels, the so-called ReHo map can be constructed. Thus, an
individual ReHo map was computed for each subject per session.

Second, DC (for degree centrality) is used to investigate the
global connectivity of brain regions, which is defined as the
number of connections of one voxel in the brain to whole brain
voxels (Buckner et al., 2009). This measure depends on graph
theoretical approaches. The individual DC map was generated
by correlating the time course of each voxel in the brain with
all other voxels in the brain and calculating the number of
connections above a definite threshold (Buckner et al., 2009;
Al-Zubaidi et al., 2018). The temporal connection between two
voxels was defined by applying Pearson’s correlation coefficient
(r) approach. Then, the individual correlation coefficients were

used to generate a correlation matrix=

 r11 ... r1j
...

. . .
...

ri1 · · · rij

, 1 = i,j = N,

where N is the number of voxels within the whole-brain mask and
rij is the temporal Pearson’s correlation of time series between i
th and j th voxels measuring the similarity between two voxels.
The correlation matrix was thresholded at 0.25 to build a binary
undirected and unweighted network matrix dij as follows

dij =

{
0, rij < 0.25
1, rij ≥ 0.25

The binary connectivity matrix dij was used to define the degree
centrality of voxel Di by the following

Di =

N∑
j=1

dij

Third, fALFF was employed to provide information on the
magnitude of the BOLD signals, which reflects the neural activity
of each brain voxel or region within a network of interest
(Fujino et al., 2017; Al-Zubaidi et al., 2018). It refers to the
ratio of rs-fMRI signal fluctuation in the low-frequency range
proportional to the entire frequency range (Zou et al., 2008).
DPARSF toolbox has a built-in fast Fourier transform (FFT)
to convert time series for each voxel to the frequency domain
and compute the power spectrum. This procedure estimates
the amplitude of each frequency as the square root of the
power spectrum. The total amplitude of the low-frequency
range (0.01–0.08 Hz) was divided by that of the full frequency
range 0–0.25 Hz.

Feature Selection for Hunger/Satiety
Status Classification
After generating ReHo, DC and fALFF maps from rs-fMRI data
for each subject per condition, we used the AAL atlas to define the

ROIs. The AAL atlas is a well-established anatomical parcellation
of the brain into 45 ROIs per hemisphere when excluding the
cerebellar lobules. Mean values of ReHo, DC and fALFF were
calculated for each ROI and used to create a feature (region)
vector, i.e., R[1, ..., 90], with 90 dimensions for each map. Those
features are listed in Table 1.

In the classical classification problem, the goal of feature
selection is to automatically search and select the best feature
subset for the classification purpose. Here, we applied sequential
feature selection algorithms to select the optimal feature
subset (region subset) that best captured differences between
hunger and satiety. This type of selection algorithm contains
two components. The first element is a sequential search
strategy to select and establish the best future subset, which
evaluates additional features by a criterion function. In this
study we used two strategies, namely SFS and SFFS. The
SFS procedure starts by identifying the first feature with the
highest classification rate and feeds it to a new empty candidate
set. Other features are selected sequentially by adding a local
feature to the first feature or the last subset of features in the
candidate set, and testing a new feature combination until the
highest classification rate (objective function) is achieved. The
processing continues until further features do not enhance the
objective function. However, the SFS algorithm is suboptimal
and suffers from the “nesting effect” (Pudil et al., 1994), while
SFFS offers the flexibility to discard features that were earlier
selected and to re-evaluate features that had been discarded
previously. This theoretical advantage notwithstanding, Burrell
et al. (2007) showed that the computationally less demanding
SFS could provide a reasonable alternative to SFFS to select
features for discriminating between epileptic and non-epileptic
activity of epileptic patients, indicating that both strategies
had similar difficulties to separate patterns of functional and
dysfunctional brain activities in epileptic patients. In this
study, we compared SFS and SFFS strategies in order to
figure out if SFS already provides near-optimal results. SFS
and SFFS strategies were performed using the “sequential”
function in MATLAB and sequential floating feature selection
toolbox3, respectively.

The second component in the feature selection strategy is
an objective (criterion) function to evaluate over all possible
feature subsets. In this work, the misclassification rate of the
linear SVM classifier was set as an objective function (Guyon
and Elisseeff, 2003). The combination of SFFS and SVMs has
previously been used, for example to assess Gabor features for
classification of Parkinson’s disease risk assessment based on
transcranial sonography images (Al-Zubaidi et al., 2013). To
evaluate the feature subset, the data were divided into test
and training samples using a LOOCV scheme. Accordingly,
independent samples were used for training and testing. For each
LOOCV loop, the training samples were submitted to train an
SVM model, and the test sample was applied to that model to
evaluate the feature subset. In the end, the average of the values
returned by LOOCV loops was calculated and used to assess each
candidate’s feature subset (Kohavi and John, 1997).

3http://splab.cz/en/download/software/software-pro-sekvencni-selekci-priznaku
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TABLE 1 | List of the anatomical regions (AAL atlas) of interest and their labels in the region vector.

Label Anatomical Label Anatomical Label Anatomical

1 L. Amygdala 31 R. Sup. Frontal Med. 61 L. Sup. Parietal Gyrus

2 R. Amygdala 32 L. Sup. Frontal Orbital 62 R. Sup. Parietal Gyrus

3 L. Angular Gyrus 33 R. Sup. Frontal Orbital 63 L. Postcentral Gyrus

4 R. Angular Gyrus 34 R. Superior Frontal 64 R. Postcentral Gyrus

5 L. Calcarine Fissure 35 L. Fusiform Gyrus 65 L. Precentral Gyrus

6 R. Calcarine Fissure 36 R. Fusiform Gyrus 66 R. Precentral Gyrus

7 L. Caudate Nucleus 37 L. Heschl Gyrus 67 L. Precuneus

8 R. Caudate Nucleus 38 R. Heschl Gyrus 68 R. Precuneus

9 L. Ant. Cingulate Cort. 39 L. Hippocampus 69 L. Putamen

10 R. Ant. Cingulate Cort. 40 R. Hippocampus 70 R. Putamen

11 L. Mid. Cingulate Cort. 41 L. Insula 71 L. Rectus gyrus

12 R. Mid. Cingulate Cort. 42 R. Insula 72 R. Rectus gyrus

13 L. Pos. Cingulate Cort. 43 L. Lingual Gyrus 73 L. Rolandic Operculum

14 R. Pos. Cingulate Cort. 44 R. Lingual Gyrus 74 R. Rolandic Operculum

15 L. Cuneus 45 L. Inf. Occipital Gyrus 75 L. Supplementary Motor Area

16 R. Cuneus 46 R. Inf. Occipital Gyrus 76 R. Supplementary Motor Area

17 L. Inf. Frontal Oper. 47 L. Mid. Occipital Gyrus 77 L. Supramarginal Gyrus

18 R. Inf. Frontal Oper. 48 R. Mid. Occipital Gyrus 78 R. Supramarginal Gyrus

19 L. Inf. Frontal Orbital 49 L. Sup. Occipital Gyrus 79 L. Inf. Temporal Gyrus

20 R. Inf. Frontal Orbital 50 R. Sup. Occipital Gyrus 80 R. Inf. Temporal Gyrus

21 L. Inf. Frontal Triang. 51 L. Olfactory Cortex 81 L. Mid. Temporal Gyrus

22 R. Inf. Frontal Triang. 52 R. Olfactory Cortex 82 R. Mid. Temporal Gyrus

23 L. Med. Frontal Orbital 53 L. Pallidum 83 L. Mid. Temporal Pole Gyrus

24 R. Med. Frontal Orbital 54 R. Pallidum 84 R. Mid. Temporal Pole Gyrus

25 L. Frontal Middle 55 L. Paracentral Lobule 85 L. Sup. Temporal Pole Gyrus

26 L. Frontal Mid. Orbital 56 R. Paracentral Lobule 86 R. Sup. Temporal Pole Gyrus

27 R. Mid Frontal Orbital 57 L. Parahippocampal 87 L. Sup. Temporal Gyrus

28 R. Middle Frontal 58 R. Parahippocampal 88 R. Sup. Temporal Gyrus

29 L. Superior Frontal 59 L. Inf. Parietal Gyrus 89 L. Thalamus

30 L. Frontal Sup. Med. 60 R. Inf. Parietal Gyrus 90 R. Thalamus

AAL, automated-anatomical-labeling; Ant, anterior; Cort, cortex; Inf, inferior; L, left; Med, ledial; Mid, middle; Oper, opercular; Pos, posterior; R, right; Sup, superior; Triang,
triangular.

The classification accuracy (CA) was derived using a
LOOCV strategy with confusion matrix (CM) and calculation of
classification error rate (ER). In our study, the CM comprises
information about the actual and predicted classifications
generated by linear SVM. By comparing the results of the
SVM classifier (hunger or satiety) with the reference data, we
documented the outcomes of the CM in the present study as
given in Table 2. For significance testing (Pereira et al., 2009), we
estimated the empirical distribution by calculating the error rate
10,000 times for random label permutations in a cross-validation
procedure. P < 0.05 implies that classification results differ
significantly from chance.

RESULTS

The experiments showed that fALFF was marginally better than
ReHo and DC in distinguishing between hunger and satiety
states in the healthy brain (Table 3). The region subset obtained
by SFFS resulted in higher classification accuracy than SFS,
both higher than no feature selection (90 regions). Using a

TABLE 2 | Confusion matrix.

Reference data

Hunger Satiety

Classified data Hunger TP FP
[ ]

Satiety FN TN

True positive (TP): The number of participants that were correctly classified in
hunger condition. False positive (FP): The number of participants that were
incorrectly classified in hunger condition. False negative (FN): The number of
participants that were incorrectly classified in satiety condition. True negative (TN):
The number of participants that were correctly classified in satiety condition.

linear SVM classifier with an LOOCV strategy, we observed
that the fALFF region subset selected by SFFS identified the
hunger state with the highest classification accuracy of 81%
and with the most balanced overall performance. In our SFFS
results (Table 3), the regions 45 and 46 are the left and
right inferior occipital lobe (Table 1), respectively, and region
50 is the right superior occipital lobe. Also, regions 5 and
35 are medial (Calcarine) and inferior (Fusiform) surfaces
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of the occipital lobe, respectively. Furthermore, regions 17
and 18 are left and right frontal gyrus, respectively, region
52 is the right Olfactory cortex, region 56 is the right
Paracentral lobule and region 73 is the left Rolandic operculum.
SFFS-identified brain regions, which distinguished best between
hunger and satiety for each rs-fMRI feature, are shown in
Figure 3. Furthermore, SFFS fALFF (Figure 4) was most
stable in the permutation test (ER = 0.19 / p = 0.0001)
closely followed by DC (ER = 0.21/p = 0.0004) and ReHo
(ER = 0.29/p = 0.0068).

DISCUSSION

The primary goal of the present research was to assess the ability
to classify different brain states by applying a MVPA approach,
i.e., feature selection strategies and linear SVM, on various
features, i.e., connectivity parameters, derived from rs-fMRI
data. This approach was carried out on a data set comprising
two conditions (hungry and satiated) in a repeated measures
design. As the two metabolic states, i.e., hunger and satiety, were
induced for a rather long time (36 h), experimental conditions
can be treated as the ground truth to compare and evaluate the
classification scheme.

An advanced preprocessing, including ICA-AROMA, was
carefully applied, ensuring the removal of motion artifacts and
other structured noise from the data [e.g., cardiac pulsation
artifacts (Pruim et al., 2015b)]. Thus, classification in the current
case is deemed to reflect true brain differences rather than
extracerebral differences (e.g., motion) between the conditions.

A critical question with regard to classification is the selection
of the best approach for feature selection. The inclusion
of all possible features and the computation of all possible
combinations of features is computationally not feasible at
present. Therefore, sequential search techniques have gained
some popularity. These work by choosing the best individual
feature and then adding a second feature that yields the best

FIGURE 3 | Brain regions that provided relevant information to distinguish
between hunger and satiety states in healthy lean participants. The
performance of these regions was evaluated by linear SVM classifier and
SFFS algorithm. All images are in neurological orientation, i.e., right = right and
left = left.
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FIGURE 4 | Empirical distributions of incorrect classification generated via 10000 times of random label permutations for region sets selected by SFFS. Red line
shows the actual classification error.

classification accuracy in combination with the first feature.
This procedure is repeated for a third and any subsequent
features until the addition of further features does not yield
an improvement of classification rates. Alternatively, the user
can predetermine the maximum number of features. The
SFFS method tries to optimize feature selection by adding an
elimination step to this sequential search process. Concretely, at
each level, it is examined whether the classification rates improve,
if any of the selected features are eliminated. If this happens, the
feature set is reduced by this feature. Then, the search continues
based on the new set. Jain and Zongker (1997), who compared
14 different methods for feature selection applying them to
the problem of handwriting recognition. In this case, the SFFS
method outperformed other feature selection schemes. It has
to be pointed out, however, that conventional feature selection
approaches, including SFS and SFFS as well as filter approaches
(Kira and Rendell, 1992; Almuallim and Dietterich, 1994), have
recently been supplemented by metaheuristic methods for feature
selection. In this regard, Zhu et al. (2007) have suggested a genetic
algorithm combined with local search in a hybrid wrapper and
filter feature selection algorithms. Others, like Neshatian and
Zhang (2009) and Gu et al. (2018), proposed new optimizations
methods including such advanced feature selection procedures.
Applying genetic algorithms and new optimization functions on
rs-fMRI data are beyond the scope of this study and will be
considered in future work.

In the present study, the subset of regions obtained by
the SFFS algorithm provided the highest classification
rate for all rs-fMRI maps (Table 3). Using fALFF, SFFS
and SVM classification, we were able to demonstrate
that patterns of amplitude BOLD signals in five
brain regions [paracentral lobule, Rolandic operculum,
olfactory cortex, lateral occipital (inferior division) gyrus,
and inferior frontal (opercular) gyrus; Figure 3] can
distinguish between metabolic states (hunger vs. satiety)
with 81% accuracy.

The Rolandic operculum, which belongs to somatosensory
regions, is activated during the anticipation and consumption

of food (Stice et al., 2008; Stice and Yokum, 2016), in
response to palatable food receipt (Stice et al., 2013) and has
been associated with the processing of high- and low-caloric
food pictures (Stice et al., 2010). Among many functions,
paracentral gyrus is known to respond to highly rewarding
stimuli (Stice and Yokum, 2016). A study using independent
component analysis to estimate functional connectivity (FC)
parameters showed that the connectivity strength of the
paracentral gyrus in the sensorimotor network was increased
during hypoglycemia relative to euglycemia (Bolo et al., 2015).
Furthermore, Van Duinkerken et al. (2012) reported that the
change of sensorimotor FC was associated with basal glycemic
levels in type 1 diabetes mellitus patients. Thus, the paracentral
lobule seems to be part of the reward system and the sensorimotor
network. The olfactory cortex (OLFC), whose activity was
modulated by metabolic states as well, is involved in the
experience and processing of negative affective states, including
anxiety and depression (Krusemark et al., 2013). Consistent with
that, a rs-fMRI study in rodents demonstrated that ReHo of the
OLFC is increased in stress-exposed rats compared to a control
group (Li et al., 2018). In our study, the fasting for 36 h might
have led to a stress increase, which might be reflected in an
increase in OLFC activity. Moreover, the satiety state might have
reduced peripheral hunger signals compared to the hunger state,
and accordingly, might have influenced brain regions related to
somatosensory processes, such as Rolandic operculum, and parts
of the sensorimotor network like the paracentral lobule.

The inferior frontal gyrus (IFG) has been suggested to be
involved in cognitive control (Hare et al., 2009; Sundermann and
Pfleiderer, 2012). IFG activation during response inhibition has
been associated with a reduced desire for food and with successful
impulse regulation (Gabrieli et al., 2015; Hollmann et al., 2012;
Lopez et al., 2014). In addition, stronger IFG activity in response
to orosensory stimulation was found in successful weight loss
maintainers compared to people who were obese or normal
weighted (Sweet et al., 2012). In our experiment, participants
had to refrain from eating during the hunger state and from
overfeeding during the satiety state, which may have contributed
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to the finding that the IFG is partially important for classifying
between different metabolic states.

The lateral occipital cortex (LOC) is part of the visual
association cortex and is activated in response to the perception
of emotionally salient stimuli, such as food, which is thought to be
a correlate of heightened attention (Killgore and Yurgelun-Todd,
2007; van der Laan et al., 2011). For instance, a recent rs-fMRI
study using SVM on graph theory analysis indicates that the LOC
is partly important for classification between high-caloric (potato
chips) vs. low-caloric (zucchini) food ingestion on the brain of
healthy subjects (Mendez-Torrijos et al., 2018). Furthermore, it
has been suggested that the processing of visual salience of a
stimulus depends on the affective state of the individual and
the motivational value of a stimulus (Killgore and Yurgelun-
Todd, 2007). Considering the general role of the LOC in the
visual processing of food stimuli, this region might potentially
facilitate the detection/perception of such cues in a deprived state.
Note that these interpretations are based on reverse inference of
resting-state data and should thus be taken with caution.

However, some studies have used rs-fMRI to investigate
changes in baseline brain activity of lean or obese participants
during both hunger and satiety states. For instance, Lohmann
et al. (2010) showed increased centrality, which was measured
by eigenvector centrality analysis, of the anterior precuneus
(APCUN) during the hunger state relative to the satiety state
of 22 normal volunteers. Consistent with that, our previous
study (Al-Zubaidi et al., 2018) revealed that the fALFF was
increased in the APCUN and posterior cingulate cortex (PCC)
when comparing hunger against satiety states. Additionally,
Wright et al. (2016) used seed-based connectivity analysis
to estimate the FC parameters of 19 healthy participants.
They reported that the FC between the posterior insula and
superior frontal gyrus, and between the hypothalamus and
IFG, were enhanced during the hunger state. Furthermore, it
has been found that both 20 lean and 20 obese subjects had
increased ReHo connectivity from hunger to the satiety
state in the orbitofrontal cortex and inferior temporal
lobe (Zhang et al., 2015). These studies reported different
brain regions that might be related to the changes in the
metabolic state compared to the results of the current
study, except IFG. These inconsistencies here might be
associated with the different experimental paradigms and
neuroimaging modalities.

Importantly, the statistical analysis at group levels of
the studies mentioned above was computed by using GLM
approaches to define the significant brain regions at baseline
activity that are sensitive to changes in metabolic state. In
GLM approaches, the p-values are the successful statistical
tests to represent significant brain regions that show different
brain activities in the average sense of one or more brain
features when compared between different groups and/or
experimental conditions. On the other hand, SVM classifier
aims to automatically classify each subject into one of the
groups or experimental design in the study. Thus, the overall
classification accuracy is usually used to measure the success
of the studies. In general, it is easier to demonstrate group or
experimental condition differences compared to predict a single

subject (Arbabshirani et al., 2017). Furthermore, the significant
variables or features that show the difference between group or
experiment do not necessarily have high classification accuracy
and vice versa (Lo et al., 2015; Arbabshirani et al., 2017).
Hence, brain regions that showed significant differences between
hunger and satiety states in previous studies do not necessarily
mean that these regions can predict the subject class with high
accuracy and vice versa.

Furthermore, our results indicate that fALFF analysis is more
informative than ReHo and is slightly more precise than DC
for classification of resting brain changes during hunger and
satiety, probably because fALFF is an index of the power of the
BOLD signal. Against this, ReHo and DC parameters refer to
dynamics of BOLD connectivity, either with some (in this case,
26) neighboring voxels (ReHo) or with all voxels (DC) in the gray
matter of the brain.

One other important question is, whether SFFS based
classification is superior to simply trying to classify states using
statistically significant group differences. Baker et al. (2012)
answered this question on an EEG data set from AD patients,
MCI patients and HC. They used an SFFS algorithm and a t-test
to classify patients and found that the SFFS technique resulted
in improved classification rates compared to the t-test for four
feature types (average power, coherence, correlation, and phase
synchrony). They concluded that the SFFS algorithm selects
reliable features for classification where statistically significant
features fail in classification.

The sample size of most fMRI studies is often relatively
small due to the high costs of scanning time and subject
stamina (Poldrack et al., 2017). However, sample size impacts
the trade-off between accuracy and generalizability (Schnack
and Kahn, 2016). For instance, in the context of rs-fMRI
features and SVM classification methods, several studies reported
high classification accuracies (92 ± 9%) with relatively small
sample sizes (20 ± 5 subjects per group), when classifying
groups of brain disease patients and healthy subjects (Lord
et al., 2012; Tang et al., 2012; Fekete et al., 2013; Wang et al.,
2013; Wei et al., 2013; Cheng et al., 2015; Khazaee et al.,
2015b). Here, the high classification accuracy is driven by
the heterogeneity between groups (Schnack and Kahn, 2016;
Arbabshirani et al., 2017). In contrast, studies with large sample
sizes are assumed to result in classification models with a
higher degree of generalizability, allowing for a better prediction
in samples drawn from other populations. Their classification
models capture a more complete picture of disease patterns,
but at the cost of lower accuracy, which is likely due to
the within-group heterogeneity (Anderson and Cohen, 2013;
Krystal et al., 2013; Guo et al., 2014; Schnack and Kahn, 2016;
Arbabshirani et al., 2017).

One limitation of the present study is the ability to
generalize, since the sample size of 24 subjects is relatively
small. Accordingly, larger samples are needed to confirm our
findings. However, we would like to argue that our results are not
driven by the heterogeneity between samples, because we have
chosen a within-subject design in a well-controlled experimental
setting. Also, we evaluated whether the rs-fMRI features in
conjunction with sequential feature selection strategies were
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sufficiently reliable to predict the subject’s metabolic state using
the LOOCV scheme. Thus, independent training and testing
samples were used to estimate the SVM model parameters and
to validate the classification model. In this case, the CA was
derived by averaging the resulting classification accuracies over
all samples. All in all, the homogeneity of our samples and
the high CA results in an increased validity of our findings,
determining brain patterns that are able to discriminate between
different metabolic states.

As rs-fMRI has received widespread attention over the past
10 years, the possibility of reliable classification of disease
conditions or subject states (e.g., sleep stages) paves the way
for using rs-fMRI as a diagnostic tool on an individual
patient/subject level. In addition the applications mentioned
in the introduction, such as the prediction of conversion of
MCI to AD (Hojjati et al., 2017), many other diagnostic
and research questions lend themselves to this approach, e.g.,
the differentiation of typical Parkinson’s disease from atypical
Parkinsonian syndromes (c.f., Tang et al., 2010). From our data,
we conclude that fALFF, in combination with SFFS based feature
selection, is a useful and straightforward way to proceed in
tackling such research questions.
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