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Electroencephalography (EEG) is a useful tool to inspect the brain activity in resting state
and allows to characterize spontaneous brain activity that is not detected when a subject
is cognitively engaged. Moreover, taking advantage of the high time resolution in EEG,
it is possible to perform fast topographical reference-free analysis, since different scalp
potential fields correspond to changes in the underlying sources within the brain. In
this study, the spontaneous EEG resting state (eyes closed) was compared between
10 young adults ages 18–30 years with autism spectrum disorder (ASD) and 13
neurotypical controls. A microstate analysis was applied, focusing on four temporal
parameters: mean duration, the frequency of occurrence, the ratio of time coverage,
and the global explained variance (GEV). Using data that were acquired from a 65-
channel EEG system, six resting-state topographies that best describe the dataset
across all subjects were identified by running a two-step cluster analysis labeled as
microstate classes A–F. The results indicated that microstates B and E displayed
statistically significant differences between both groups among the temporal parameters
evaluated. Classes B, D, E, and F were consistently more present in ASD, and class C
in controls. The combination of these findings with the putative functional significance
of the different classes suggests that during resting state, the ASD group was more
focused on visual scene reconstruction, while the control group was more engaged
with self-memory retrieval. Furthermore, from a connectivity perspective, the resting-
state networks that have been previously associated with each microstate class overlap
the brain regions implicated in impaired social communication and repetitive behaviors
that characterize ASD.

Keywords: EEG microstates, autism spectrum disorder, resting state, topographical analysis,
electroencephalography

INTRODUCTION

Autism spectrum disorder (ASD) is a developmental disorder that has an onset in early life and
is characterized by repetitive behaviors, restricted interests, and impaired social communication
(American Psychiatric Association, 2013). According to the United States Center for Disease
Control and Prevention (CDC), the diagnosis of autism at age 2 is reliable, and about 1 in
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59 children was diagnosed with ASD (Centers for Disease Control
and Prevention, Autism Spectrum Disorder [ASD], 2018).
Attempts to enhance social communication and maintain healthy
and productive social interactions in individuals with ASD have
motivated different studies, which assist in providing data that
enables researchers to model the autistic brain (Billeci et al., 2013;
Mash et al., 2018). Several approaches to evaluate and inspect the
brain networks have been taken, including investigating resting-
state and task-oriented electroencephalography (EEG).

Resting-state EEG is used to determine the brain activity when
an explicit task is not being performed (Biswal, 2012); specifically,
it may detect abnormalities that are not identified using evoked
potentials (Fox, 2010; Wang et al., 2013). In the present study, the
resting-state spontaneous EEG activity of ASD and neurotypical
individuals (controls) young adults is analyzed.

EEG microstates analysis is a well-established technique used
to study the resting state of the human brain based on the
topography of the electric potentials over the electrode array.
The principles of this method are described by Lehman and
collaborators (Lehmann et al., 1987), who observed that a specific
configuration of a global scalp map (or brain state), produced
by the electric field measured via multichannel EEG, remains
stable for around 80–120 ms and then switches to a new brain
state belonging to a limited number of dominant quasi-stable
scalp map set, which were defined considering only the electrode
localization of the extreme potentials (maximal and minimal),
ignoring polarity inversion. The spatial cluster was introduced
in the microstate analysis by Pascual-Marqui et al. (1995), where
the whole scalp topography (or scalp map) is considered, instead
of using only the position of the extreme potentials as in
(Lehmann et al., 1987). In this approach, a group of several
scalp topographies with a high spatial correlation independent
of polarity are clustered into one representative topography
(template map, spatial map, or cluster) that best describes the
variance within this group (Pascual-Marqui et al., 1995; Michel
and Koenig, 2018). The microstates are then defined by fitting
the set of template maps back to the temporal data also ignoring
polarity inversion.

The microstate technique offers a collection of parameters
with physiological relevance that have been widely used in
the last 30 years to display variations across behavioral states,
personality types, and neuropsychiatric disorders (Koenig et al.,
2002; Khanna et al., 2015; Michel and Koenig, 2018), which
make it a suitable tool to evaluate the dissimilarities in these
parameters between ASD and control subjects. Indeed, a recent
study (Jia and Yu, 2019) applied the microstate analysis among
the two groups in resting state (combining eyes-open and eyes-
closed conditions), finding significant differences and indicating
that this technique may offer some intuitions into the intrinsic
activities in the autistic brain. However, the limitations stated by
the authors are the large age range, involving different periods
of development such as middle childhood and adolescence, and
a single analysis for the combined conditions. Therefore, the
goal of the current study was to compare the EEG resting-
state microstates (eyes-closed condition) between neurotypicals
and ASD in the early adulthood, concentrating the analysis on
the four well-established temporal parameters: (1) the mean

duration, (2) frequency of occurrence, (3) the fraction of total
time covered, and (4) the global explained variance (GEV).

MATERIALS AND METHODS

Participants and Data Acquisition
The data set used in this analysis was obtained in a previous study.
The experimental design and procedures, recording techniques,
and participant data are described in more detail in Hames
et al. (2016). Briefly, the EEG study had the participation of
16 neurotypical individuals (controls) and 15 autistic subjects
(ASD) between the ages of 18 and 30 years. One subject
in the ASD group is ambidextrous, and another from the
same group is left-handed. The experiment was approved by
the Human Subjects Internal Review Board at Texas Tech
University, with written informed consent from all participants,
in accordance with the Declaration of Helsinki. The study
presented by Hames et al. (2016) consists of two sessions
of different sensory tasks and one resting state (eyes closed).
In this work, only the latter is considered for the EEG
microstate analysis.

During the EEG resting-state recording, subjects were sitting
in a comfortable upright position in a soundproof and electrical-
shielded room. Participants were asked to stay as calm as
possible, keeping their eyes closed for a time varying between
2 and 4 min. The EEG was acquired with a 65-channel
monopolar EGI Hydrocel Geodesic Sensor using a sampling rate
of 500 Hz (Electrical Geodesics Inc., Eugene, United States) with
a vertex reference.

EEG Data Processing
The preprocessing is carried out using a combination of
MATLAB R2017b (The MathWorks) and the free academic
software Cartool1 (Brunet et al., 2011). Microstate analysis is
performed using only Cartool.

Preprocessing
The EEG data were band-pass filtered with half-power cutoff
frequencies of 1 and 50 Hz applying a fourth-order non-causal
Butterworth filter. The data were then visually inspected to
detect and mark artifacts and bad epochs manually. Independent
component analysis (ICA) was employed to identify and
reject components associated with oculomotor activity and
electrocardiography (ECG), as explained in Jung et al. (2000)
and Makeig et al. (1996), corresponding to their waveform and
topography. Only subjects with a number of samples greater
than 20 times the number of channels squared (to obtain reliable
decompositions) (Delorme and Makeig, 2004), after the visual
inspection was performed, were considered in the ICA stage,
reducing the number of participants to 13 neurotypicals and 10
ASD. The data were then down-sampled by a factor of 4 to 125 Hz
to reduce computational time.

Cartool’s built-in spatial filtering function, which is based on
the XYZ electrode coordinates (obtained from the manufacturer),

1https://sites.google.com/site/cartoolcommunity/
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was used to smooth the EEG signals and topographies for the
posterior analysis. Finally, segments of ± 0.5 s around peaks
with amplitudes above 100 µV, which are more associated with
artifactual components rather than neural activity, were excluded
from further analysis.

Microstate Analysis
In general, microstate analysis consists of finding the set of
the most dominant spatial maps (or template maps) from the
different scalp topographies in the time domain, and then, the
posterior labeling of the EEG data based on these dominant
template maps. Therefore, after preprocessing the data, the stages
involved in the microstate analysis are (1) segmentation of
EEG data to find the most representative template maps, which
correspond to the different classes, and (2) fitting these classes
back to the EEG data to compute the temporal parameters and
statistics. Figure 1 describes both stages with detailed steps.

In this work, the segmentation stage was carried out
by running a two-step spatial cluster analysis, illustrated in
Figures 1A–G, based on a modified version of the classical
k-means algorithm (Pascual-Marqui et al., 1995), with the first
step being run at the individual level (for each participant
separately) (see Figures 1A–E) and the second step across all
subjects (see Figures 1F,G; Murray et al., 2008; Tomescu et al.,
2014; Gschwind et al., 2016). Although additional techniques
are available to compute the segmentation stage (Poulsen et al.,
2018; Von Wegner et al., 2018), a recent study reported that the
underlying dynamics of the EEG signal seem to be independent of
the initial clustering algorithm (Von Wegner et al., 2017, 2018).

To find each subject’s most dominant template maps, the
global field power (GFP) was calculated for each sample time
according to Equation (1), where N is the number of sensors in
each scalp map, ui is the voltage at a specific electrode, and ū is the
average voltage of the electrodes at the respective sample time.

GFP =

√∑N
i=1 (ui − ū)2

N
(1)

The GFP is a reference-free measure that represents the field
strength at a global level (Lehmann and Skrandies, 1980). The
local peaks of the artifact-free GFP curve represent moments
of high global neuronal synchronization (Skrandies, 2007) and
the scalp topographies around them remain stable, maximizing
the signal-to-noise ratio (SNR) (Koenig et al., 2002; Michel
et al., 2009; Michel and Koenig, 2018). The scalp maps at
sample times with a local GFP maximum (see Figure 1C) were
submitted to a spatial k-means clustering algorithm to determine
a subject’s most dominant template maps ignoring polarity
inversion (see Figure 1E). The number of the dominant clusters
was selected by a meta-criterion method described by Custo et al.
(2017), which applies the information of seven different criteria
from the literature.

To accomplish the second step in the two-step spatial cluster
analysis, the dominant template maps for all subjects (ASD and
controls) were submitted together to a spatial k-means group-
cluster analysis to find the most representative maps across
subjects, also denoted as classes. The number of classes was

selected also ignoring polarity inversion based on the same meta-
criterion as in step 1, resulting in the six microstate classes shown
in Figure 1G.

Once the microstate classes were identified, they were fitted
back to the individual EEG data in the temporal domain
to define the microstates, as follows: each time frame (or
sample point) of the original data was labeled with one
microstate, considering the highest spatial correlation between
the instantaneous scalp topography and every microstate class
(winner-takes-all) (Murray et al., 2008; Michel and Koenig, 2018),
but only if its correlation was above 0.5. In the fitting process,
other temporal smoothing parameters such as strength 10 on a
window half-size 3 [Besag factor λ = 10 and b = 3 in (Pascual-
Marqui et al., 1995)] were applied to avoid interruptions in
the EEG sequence associated with the same microstate. The
microstate sequence is displayed color-coded in Figure 1H, and
it is used, for every subject, to compute the different temporal
parameters and the statistical analysis.

Temporal Parameters and Statistical
Analysis
The six microstate classes (A, B, C, D, E, and F) were computed
considering the cluster analysis throughout all subjects to be
able to compare the statistics between the ASD and controls,
calculating the following temporal parameters for each class and
every participant:

- Mean duration: This refers to the average
duration, in milliseconds, that a microstate class is
continuously presented.

- Frequency of occurrence: This indicates how often
a microstate class is present per time interval and
independent of the duration and is computed by taking
the number of segments labeled with a microstate
class divided by the total duration in seconds of
the analyzed EEG.

- Fraction of time covered: This represents the proportion
of the total time a microstate is present during the whole
time considered for analysis.

- GEV: This parameter gives a metric of how well the
selected template maps describe the whole dataset,
calculated for a specific microstate class by summing
the squared spatial correlations between the microstate
specific template map and its corresponding labeled scalp
maps at each time weighted by the GFP using Equation
(2) (Murray et al., 2008) as follows: GFPu (t) is the GFP of
the EEG data assigned to microstate class u at the labeled
time t, and Cu,Tt corresponds to the spatial correlation
previously described.

GEVu =

∑t max
t=1

(
GFPu (t) ·Cu,Tt

)2∑t max
t=1

(
GFP2

u (t)
) (2)

The statistical analysis was performed using R version
3.4.3 (The R Foundation for Statistical Computing, 2017).
Separate post hoc two-tailed Mann–Whitney–Wilcoxon tests
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FIGURE 1 | Microstate analysis. (A) Preprocessed EEG recordings down-sampled at 125 Hz, illustrating 2 s of data for one subject (vertical gray lines represent
intervals of 0.5 s). Black curves correspond to 14 out of the N = 64 channels; the blue curve shows the global field power (GFP). Moreover, a 0.5-s interval is
highlighted in the gray shaded area to display a zoom-in of the topographical data. (B) Sixty-three scalp maps from the 0.5-s interval, i.e., one per time frame.
(C) Identification of the local peaks, displayed as vertical black lines, at the GFP curve within the 0.5-s interval. (D) The scalp maps corresponding to the local GFP
peaks were submitted to a spatial k-means cluster analysis. (E) The most dominant template maps for the subject were selected based on the meta-criterion.
(F) Steps (A) to (E) were repeated at individual level to obtain the set of the most dominant spatial maps for every subject. The individual sets with the dominant
spatial maps for all subjects were submitted together to a group clustering analysis. (G) The six classes are the most dominant template maps after the group
clustering spatial k-means across all subjects. The number of clusters was selected based on the meta-criterion. (H) A microstate sequence for the same subject as
in (A). The six classes are fitted back to the original EEG data of every subject, labeling each time frame with only one microstate, which is selected considering the
highest spatial correlation between the scalp topography and every class (winner-takes-all). The microstate sequence is used, for every subject, to extract the
temporal parameters and statistical analysis.
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were conducted pairwise between the two groups for each
microstate class in every temporal parameter to identify
statistically significant differences. Subsequently, the results
were corrected for multiple comparisons by applying the
false discovery rate (FDR), setting the significance at a 5%
level (α = 0.05).

RESULTS

The first step in the two-step spatial cluster analysis identified
between four and seven template maps, selected by the meta-
criterion method, for each subject as illustrated in Figure 1F.
The second step (group cluster) was firstly performed for each
group separately to compare the different topographies. Based on
the meta-criterion, the number of clusters that best described the
dataset was seven for controls and six for ASD. Similarly, when
the grand-clustering was run across all subjects, the best number
of dominant maps was six. Figure 2A illustrates the GEV as a
function of the number of maps when the group-cluster analysis
was implemented only in autistics (blue curve), controls (red
curve), and all subjects (black curve). As illustrated, considering
the same number of maps, until eight, the GEV was slightly
higher for the neurotypicals. Figure 2B depicts the six template
maps that described more than 80% of the global variance in all
three cases, following the same three approaches, i.e., all subjects
(top row), only ASD (middle row), and controls (bottom row).

Since the resulting template maps showed high similarity
regardless of the approach, the selected temporal parameters are
computed using the same six topographies obtained from all
subjects for both groups to enable direct comparisons. Separate
two-tailed Mann–Whitney–Wilcoxon tests were performed
pairwise between ASD and controls for each microstate class
in every temporal parameter to identify statistically significant
differences and then corrected for multiple comparisons by
applying the FDR.

Table 1 is divided into four major sections to illustrate the
results of the microstate analysis. Each division, containing
four rows, is labeled with the respective temporal parameter,
summarizing the mean values and the standard deviation of

every microstate class (the six columns) for the ASD and control
groups in the first and second row, respectively; the p-value
(pairwise) and the corrected p-value for multiple comparisons
are displayed in the third and fourth row, respectively. The
statistically significant differences (p < 0.05) in the last two rows
are marked with an asterisk. It was observed that microstate
classes B, C, and E exhibited significant group differences in some
of the temporal parameters after the pairwise comparison, but
only classes B and E demonstrated statistical significance at a 5%
level after the correction for multiple comparisons.

- Microstate class A did not exhibit significant differences
in any of the four temporal parameters (p-pairwise > 0.7;
p-corrected > 0.7). However, it was the only class in which
the parameters did not display a consistently increased
presence in a specific group.

- Microstate class B illustrated a consistently higher
presence in ASD, showing statistically significant
differences, before or after correction for multiple
comparisons, in the frequency of occurrence (p-
pairwise = 0.008; p-corrected = 0.030), ratio of time
coverage (p-pairwise = 0.021; p-corrected = 0.063), and
GEV (p-pairwise = 0.018; p-corrected = 0.054).

- Microstate C was the only class that displayed a
consistently higher presence in controls, showing
statistically significant differences, before or after
correction for multiple comparisons, in the main duration
(p-pairwise = 0.026; p-corrected = 0.156), ratio of time
coverage (p-pairwise = 0.042; p-corrected = 0.084),
and GEV (p-pairwise = 0.049; p-corrected = 0.098).
Furthermore, class C was systematically the most
dominant in each group.

- Microstate class D exhibited a consistently increased
presence in ASD, but without statistically significant
differences (p-pairwise > 0.13; p-corrected > 0.26).

- Microstate class E displayed an increased presence
in ASD, showing statistically significant differences,
before or after correction for multiple comparisons,
in the frequency of occurrence (p-pairwise = 0.010;
p-corrected = 0.030), ratio of time coverage

FIGURE 2 | (A) GEV vs. number of template maps using three different approaches in the cluster analysis: considering only autistics (blue curve), only controls (red
curve), and all subjects (black curve). (B) Template topographies of the six classes of microstates using three approaches: all subjects (top row), autistics (middle
row), and controls (bottom row).
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TABLE 1 | Temporal parameters in the microstate analysis of the ASD and control groups.

Microstate classes

Class A Class B Class C Class D Class E Class F

Mean duration [milliseconds]

ASD (mean ± SD) 76.29 ± 6.08 80.60 ± 4.45 87.16 ± 8.67 77.59 ± 6.94 74.26 ± 5.21 75.17 ± 6.23

Controls (mean ± SD) 78.79 ± 6.54 76.40 ± 7.70 103.35 ± 19.40 74.71 ± 11.76 71.87 ± 10.89 74.18 ± 7.29

P-value (pairwise) 0.738 0.077 0.026∗ 0.410 0.115 0.446

Corrected P-value 0.738 0.230 0.156 0.535 0.230 0.535

Freq. of occurrence [counts/second]

ASD (mean ± SD) 1.73 ± 0.36 2.10 ± 0.41 2.24 ± 0.47 1.81 ± 0.38 1.33 ± 0.38 1.58 ± 0.46

Controls (mean ± SD) 1.71 ± 0.43 1.60 ± 0.40 2.54 ± 0.60 1.50 ± 0.64 1.01 ± 0.60 1.49 ± 0.47

P-value (pairwise) 0.927 0.008∗ 0.186 0.131 0.010∗ 0.522

Corrected P-value 0.927 0.030∗ 0.279 0.262 0.030∗ 0.626

Ratio of time coverage

ASD (mean ± SD) 0.152 ± 0.043 0.196 ± 0.046 0.232 ± 0.075 0.162 ± 0.046 0.111 ± 0.038 0.138 ± 0.049

Controls (mean ± SD) 0.157 ± 0.050 0.142 ± 0.044 0.345 ± 0.137 0.136 ± 0.083 0.088 ± 0.082 0.128 ± 0.053

P-value (pairwise) 0.976 0.021∗ 0.042∗ 0.208 0.008∗ 0.446

Corrected P-value 0.976 0.063 0.084 0.312 0.048∗ 0.535

Global explained variance (GEV)

ASD (mean ± SD) 0.077 ± 0.029 0.102 ± 0.035 0.156 ± 0.076 0.078 ± 0.024 0.055 ± 0.027 0.060 ± 0.026

Controls (mean ± SD) 0.081 ± 0.040 0.064 ± 0.026 0.274 ± 0.140 0.061 ± 0.044 0.038 ± 0.038 0.055 ± 0.029

P-value (pairwise) 0.976 0.018∗ 0.049∗ 0.131 0.010∗ 0.483

Corrected P-value 0.976 0.054 0.098 0.197 0.054 0.580

The p-value (pairwise) row corresponds to the result of the pairwise post-hoc Mann–Whitney–Wilcoxon tests. The corrected p-value row was obtained by applying the
false discovery rate (FDR) correction for multiple comparisons. Statistically significant differences (p < 0.05) after the tests are marked with an asterisk.

(p-pairwise = 0.008; p-corrected = 0.048), and GEV (p-
pairwise = 0.010; p-corrected = 0.054). Furthermore, class
E was systematically the least dominant in each group.

- Microstate class F illustrated a consistently higher
presence in ASD, but without statistically significant
differences (p-pairwise > 0.44; p-corrected > 0.53).

DISCUSSION

In this study, we applied the microstate analysis to investigate
the differences in four temporal parameters (mean duration,
frequency of occurrence, time coverage, and GEV) between 10
autistic and 13 neurotypical young adults in resting state (eyes
closed) data. We found that the EEG microstates lasted, on
average, for around 75–105 ms, which is in line with the duration
reported by different literature reviews (Khanna et al., 2015;
Michel and Koenig, 2018).

The two-step cluster analysis combined with the meta-
criterion revealed that six template maps best described the
entire dataset explaining ∼83% of the global variance. Among
these six topographies, it is possible to match the first four
maps with the canonical microstates reported in different
literature reviews (Khanna et al., 2015; Michel and Koenig,
2018) (classes A, B, C, and D); the other two maps also
correspond to classes E and F reported in Bréchet et al.
(2019) and Custo et al. (2017). Moreover, considering the

four canonical topographies, ∼76% of the global variance is
explained. Although predetermining the number of microstates,
e.g., to four for the four canonical maps, has shown stable
topography maps and is useful to compare or complement
results across different studies, we believe that there is not a
correct fixed number of classes, and it has been recommended
that the number of clusters should be determined specifically
for every dataset, based on the explained global variance and
functionality, which depends on the conditions within the
experiments (Michel and Koenig, 2018).

For the temporal parameters analyzed, microstates C and
E were systematically the most and least dominant classes,
respectively, during the eyes-closed resting-state analysis.
Furthermore, classes B, C, and E exhibited significant group
differences in some of the parameters after the pairwise
comparison, but only B and E demonstrated statistical
significance at a 5% level after the correction for multiple
comparisons. However, note that the FDR correction might yield
to conservative results, and therefore, the physiological relevance
of microstate C is also considered.

Although microstate A did not exhibit any statistically
significant difference, interestingly, it was the only class in which
the temporal parameters did not display a consistently higher
occurrence in a specific group, that is, despite having an increased
frequency of occurrence in ASD, the mean duration, GEV, and
time coverage were higher in the controls. These results are
in line with the study conducted by Jia and Yu (2019), but
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the authors reported a significant difference in this class. This
discrepancy might be mainly due to the key differences between
the two studies: age range and the combination of eyes-open
and eyes-closed conditions incorporated Jia and Yu (2019).
However, according to Tomescu et al. (2018), the development
of microstate class A across age does not reveal a statistically
significant difference in neurotypical subjects; still, this has not
been explored in ASD yet.

Microstate class B displayed a systematically higher presence
in the ASD group, being consistent with the results reported
in Jia and Yu (2019). Specifically, it illustrated a significant
higher frequency of occurrence than the control group. However,
the ratio of time coverage and GEV also exhibited statistically
significant differences between both groups after the Mann–
Whitney–Wilcoxon pairwise tests (see Table 1). Microstate B has
been related to the visual network in resting-state (Britz et al.,
2010) and verbal processing (Milz et al., 2016). Consequently,
the increased frequency of occurrence and time coverage
in the ASD might be due to their enhanced inter-network
connectivity reported in Morgan et al. (2019). Particularly, the
authors reported a significant increased functional connectivity
between the language (LAN) and visual (VIS) networks in
resting-state fMRI, which is associated with the communication
impairment that characterizes ASD. Moreover, a recent study
(Bréchet et al., 2019) associates this class with the scene-
reconstruction subsystem. Therefore, the combination of these
findings with the higher presence of this class observed
in the ASD group in this work indicates that autistics
were more engaged with visual scene-reconstruction memories
during resting state.

Microstate class C has a systematically larger occurrence in
the temporal parameters for both groups, and it is expected to
decrease during visualization (Milz et al., 2016). Additionally,
it was the only class that exhibited a higher presence for all
the temporal parameters in the control group. However, the
significant differences obtained by applying the Mann–Whitney–
Wilcoxon pairwise tests in the mean duration, frequency of
occurrence, and GEV were not significant at the 5% level after
the FDR correction. According to some authors (Michel and
Koenig, 2018), microstate class C reflects a portion of the default
mode network (DMN), a network where the brain areas involved
decrease their activity during attention-demanding tasks (Raichle
et al., 2001; Raichle, 2015). This hypothesis is consistent with
the observations made by Custo et al. (2017) where the
underlying sources associated with microstate C overlap a
portion of the DMN, and the significant reduction observed
in math conditions (Bréchet et al., 2019) and visualization
(Milz et al., 2016) when compared to resting state. The higher
presence of microstate class C in the control group might be
addressed from the functional perspective. Some studies have
found a hypo-connectivity in the posteromedial cortex in ASD
(Lynch et al., 2013; Bi et al., 2018), and more importantly, the
connectivity within the DMN not only helps in differentiating
between ASD and neurotypicals (Assaf et al., 2010; Yao et al.,
2016; Morgan et al., 2019) but also might explain the ASD
social impairment due to the decreased functional connectivity
between the precuneus and medial prefrontal cortex/anterior

cingulate cortex (Assaf et al., 2010; Yao et al., 2016), which are
regions associated with the resting-state networks in microstate
class C (Britz et al., 2010).

A recent study (Bréchet et al., 2019) investigated the resting
state compared to conditions of cognitive tasks involving
self-related memories (memory condition) and arithmetic
calculations (math condition). The study reported that compared
to resting state, there is a significant reduction in the incidence
of microstate C for the math condition, and no statistically
significant difference in the presence of microstate C for memory
conditions. Hence, the increased presence of class C in the control
group could also imply that the neurotypicals were more focused
on self-memory retrieval during the resting state.

Microstate class E was systematically the least dominant in
the four temporal parameters analyzed, showing a significant
difference between both groups in the frequency of occurrence
and time coverage. Very few studies have reported the microstate
E presence (Custo et al., 2017; Serrano et al., 2018; Wei et al.,
2018; Bréchet et al., 2019), and its functional significance has
not been explored. However, the brain regions associated with
microstate E reported in Bréchet et al. (2019) and Custo et al.
(2017) include the anterior cingulate cortex (ACC), which is also
a brain area implicated, among others, in the repetitive behaviors
in ASD (Amaral et al., 2008).

The EEG microstates analysis technique is applied over
a broad frequency band. The presence and interpretation of
microstate classes within narrower frequency bands and the
relationship of these states to EEG rhythms, while outside of the
scope of the research presented here, are an important topic and
a worthy focus of future research to evaluate the impact on the
different temporal parameters.

CONCLUSION

The main purpose of this study was to compare the EEG resting
state between neurotypicals and ASD young adults applying
microstate analysis, focusing on the analysis of mean duration,
the frequency of occurrence, the ratio of time coverage, and
the GEV. The grand-cluster analysis revealed that across all
subjects, six template maps best described the complete dataset
with ∼83% of the global variance. We suggest that unless a
study is aimed to compare or complement previous reports,
the number of microstates classes should be selected for each
dataset individually, considering the explained global variance
and the significance of the classes, depending on the conditions
within the experiment.

We performed this study considering resting state only,
finding important differences between both groups, and
these results should be contemplated as a reference for
further assessments comparing the different classes and both
groups under task-oriented experiments. Specifically, (1) since
microstate class C was the only one that exhibited a consistently
increased incidence in controls, it would be interesting to
quantify the decreasing presence compared to the ASD group
once the subjects start being cognitively engaged, and (2) evaluate
if microstate class E is still present under certain types of tasks.
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