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Measuring and assessing the cognitive load associated with different tasks is crucial for

many applications, from the design of instructional materials to monitoring the mental

well-being of aircraft pilots. The goal of this paper is to utilize EEG to infer the cognitive

workload of subjects during intelligence tests. We chose the well established advanced

progressive matrices test, an ideal framework because it presents problems at increasing

levels of difficulty and has been rigorously validated in past experiments. We train classic

machine learning models using basic EEG measures as well as measures of network

connectivity and signal complexity. Our findings demonstrate that cognitive load can be

well predicted using these features, even for a low number of channels. We show that by

creating an individually tuned neural network for each subject, we can improve prediction

compared to a generic model and that such models are robust to decreasing the number

of available channels as well.
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1. INTRODUCTION

The performance of complex tasks requires the integration of various mental resources,
such as task-related knowledge, working memory, attention and decision making. However,
our brains have limited resources for processing and integrating information. The
concept of cognitive load generally refers to the relative load on these limited resources
(Sweller et al., 1998; Coyne et al., 2009).

Cognitive workload has been explored from different perspectives. Brouwer et al. (2012) refer
to workload as the working memory load in an n-back task. Mills et al. (2017) use simple true-
false questions for eliciting low workload and open-ended questions, which require more precise
memory, for eliciting high workload. Other studies have emphasized the role of skill acquisition
in modeling cognitive load (Sweller et al., 1998). Logan (1985) show that when subjects acquire a
skill and learn how to perform a task in an automatic manner, their cognitive workload decreases
(Borghini et al., 2017) . Thus, the cognitive load depends not only on task complexity but also on the
subject’s skill at the given task. A highly complex task performed by a non-skilled individual would
result in high cognitive load, whereas a simple task performed by a skilled individual would result
in low cognitive load. For example, Stevens et al. (2006) assessed subjects as they were learning to
diagnose disorders of organ systems and Mak et al. (2013) focused on performance improvement
in a visual-motor task. Both studies showed a decrease in cognitive load metrics, with an increase
in task familiarity. In all of these studies, the relative difficulty of the task is seen as a proxy for
its associated cognitive load. The difficulty was assessed using a variety of approaches, such as the
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type of questions (true-false vs. open ended), subject performance
and even participant subjective ratings. A major limitation of
many studies is that the levels of difficulty were not rigorously
defined. Here, we chose a setting in which problem difficulty was
rigorously validated and is commonly used in the psychological
literature (see below). Another limitation of previous studies is
that cognitive workload was assessed using discrete levels, often
only two or three levels (Aricò et al., 2016a,b). In the present
study, we use a continuous scale for workload.

In addition to behavioral measures, there is a growing interest
in assessing cognitive workload using physiological measures,
such as pupil diameter (Palinko et al., 2010). The focus of
this paper is on quantifying cognitive workload using measures
based on electroencephalography (EEG). Several studies have
previously developed EEG-based measures for cognitive load. In
particular, it was found that the ratio between the theta power (4–
8 Hz) and the alpha power (8–12 Hz), as well as the ratio between
the beta power (12–30 Hz) and the alpha power and several
related combinations, provided informative indices concerning
task engagement and cognitive workload (Pope et al., 1995;
Stevens et al., 2006; Mills et al., 2017). Other researchers came
to similar conclusions, namely that the relation between different
spectral features can help predict cognitive load from EEG (Gerě
and Jaušcvec, 1999; McDonald and Soussou, 2011; Conrad and
Bliemel, 2016). This study aimed to further expand these studies
and develop continuous and more accurate EEG-based measures
of cognitive load. Furthermore, we tried to examine the utility
of additional measures, in particular network connectivity and
signal complexity.

We focused on recording EEG during performance of a well-
known psychological assessment tool, the advanced progressive
matrices test (Raven, 2000), which is commonly used to measure
general intelligence. The test is composed of different problems
that involve the manipulation of shapes. Problems are presented
to subjects at increasing levels of difficulty. The difficulty of each
problem is validated across a large number of subjects (Forbes,
1964; Arthur et al., 1999), in the sense that more difficult
questions lead to a higher error rate in the population.

Here, we adopt problem difficulty as the operational definition
of cognitive load and demonstrate that it can be predicted from
the subject’s EEG readings. Specifically, we employ a variety of
EEGmeasures as input to machine-learning algorithms and train
them to predict problem difficulty.

As mentioned above, previous studies of EEG-based measures
of cognitive load were limited in several ways. In particular,
they relied mostly on spectral features and produced a simple
discrete measure of either low or high load. In contrast, this paper
models cognitive load in a continuous manner. In addition, we
go beyond basic spectral features and examine how measures of
network connectivity and signal complexity affect the prediction
of cognitive load. To measure network connectivity, we used
complex network analysis (CNA), which provides measures to
examine functional connectivity in the brain (Bullmore and
Sporns, 2009; Fekete et al., 2014). Features of neural complexity
are often computed using measures of entropy, reflecting the
proportion of ordered patterns that can be detected in a
signal (Bullmore et al., 2009). To measure neural complexity, we

focused on Lempel-Ziv (Tononi and Edelman, 1998) complexity,
Multi Scale Entropy (MSE) (Abásolo et al., 2006) and Detrended
Fluctuation Analysis (DFA) (Rubin et al., 2013).

The results of this paper demonstrate the applicability of using
EEG andmachine learning for quantifying cognitive load in well-
validated problem-solving tasks. In particular, as EEG and other
measures of brain activity become more pervasive, quantitative
cognitive load measures could be used to facilitate the design of
domains involving real-time problem-solving, such as e-learning,
psychometric exams, military training, and more (Ikehara and
Crosby, 2005; Mills et al., 2017).

2. METHODS

We recorded EEG from subjects while they solved the Advanced
Progressive Matrices set II (Raven test). The 36 problems in the
test were presented in increasing levels of difficulty. The raw
EEG data were then passed through an artifact removal pipeline
(see details below) before extracting EEG-based measures of
spectral activity, neural complexity and network connectivity.
These measures served as input to machine learning algorithms,
which were trained to predict problem difficulty.

2.1. Participants
Fifty-two subjects (26 female and 26 male; age range 21–28,
Mean = 24.55 years, SD = 1.76 years) participated voluntarily in
the experiment, provided written informed consent and received
compensation for participating. The experiment was approved
by the Ben-Gurion University ethics committee. All subjects
reported that they are right-handed, have normal or corrected
vision, and that they have never completed any sort of intelligence
test in the past. Four participants were excluded from the study
because they required 10 min or less to solve the entire test or
answered correctly 16 problems or less. An additional participant
was excluded due to a compromised recording (several electrodes
did not record any signal throughout the entire session).

2.2. Experimental Paradigm
Subjects performed the Raven’s APM Set II problems (36
items in increasing difficulty level), and instructions were
delivered before the test started (see Figure 1 for an example
problem). The test was run with no time limit, with all
the key requirements and administration instructions carefully
following the manual (Raven et al., 1998). Subjects sat in
a comfortable chair facing a computer screen 60 cm away.
The test was conducted by displaying the problems on the
computer screen (23′′, 1,920 × 1,080 resolution, with a 2.3◦

visual angle between each answer’s corners), where the subjects
were required to press a keyboard key (with their right hand) in
accordance with their chosen answer number. The experiment
was programmed in MATLAB ( www.mathworks.com, version
2015), using the Psychophysics Toolbox extensions (Brainard
and Vision, 1997; Pelli, 1997; Kleiner et al., 2007). Each trial lasted
from the presentation of the corresponding problem until subject
response, and thus trial duration was variable.

EEG was recorded through the whole session using the g.Tec
HIamp system (g.Tec, Austria) with 64 gel-based electrodes
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FIGURE 1 | Illustration of Raven’s set II Example Problem. The subject is asked to choose the missing shape from the 8 possible options. The correct answer here is

option 8.

(AgCl electrolyte gel). Electrodes were positioned according
to the standard 10/20 system with linked ears reference. An
impedance test and adjustment were carried out at the beginning
of the session, and impedances of all electrodes were kept below
5 k�. The signal was sampled at 256 Hz with a high-pass filter
of 1 Hz. The data were recorded using Matlab Simulink g.Tec
plug-ins.

2.3. Feature Extraction
Data were analyzed using a combination of the EEGLAB Matlab
toolbox (Delorme and Makeig, 2004) routines and custom
code. Data were first high-pass filtered (cut-off 1 Hz), then a
customized adaptive filter was applied to suppress line-noise.
This was followed by Artifact Subspace Reconstruction (Mullen
et al., 2015), re-referencing to the mean, and low-pass filtering
(cutoff 60 Hz). Next, Infomax ICA was carried out (Bell and
Sejnowski, 1995). The resulting ICs were evaluated automatically
for artifacts by combining spatial, spectral and temporal analysis
of ICs. ICs identified as containing ocular, muscular or cardiac
artifacts were removed from data.

Various features were extracted from the EEG data:

• Power spectrum metrics (PS) - The power in 5 frequency
bands (delta [1–4 Hz], theta [4–8 Hz], alpha [8–12 Hz], beta

[12–30 Hz], and gamma [30–50 Hz]) was calculated for each
channel across the whole trial duration. This resulted in 310
features (62 channels× 5 bands) for each trial.

• Neural complexity metrics-We focused on three measures of
complexity, specifically, Lempel-Ziv complexity (LZC) (Zhang
et al., 2001), Multi Scale Entropy (MSE) (Abásolo et al., 2006)
and Detrended Fluctuation Analysis (DFA) (Peng et al., 1995;
Rubin et al., 2013). The LZC measure was computed as the
mean of the measure across all channels, resulting in a single
feature for each trial. In comparison, the MSE and DFA
measures were first computed for each individual channel, and
for DFA we also computed the metric for each frequency band
(as described above), and a broadband [1–50Hz]. We then
computed the mean, variance, maximum, minimum, mean

variance

and maximum
minimum , resulting in 6 features for the MSE, and 36

features for DFA [6 measures × (5 bands + 1 broadband)],
resulting in 43 complexity features for each trial. Because these
metrics are affected by trial duration, we calculated them for
the last 2,500 samples (≈10 s) of each trial.

• Connectivity metrics - These features are based on a graph
reflecting the connectivity of the underlying network. The
graph comprises 62 vertices (channels); edges in the graph
represent correlations between channels (there are no self
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edges). There are two approaches regarding the weight of each
edge. One is to take the absolute value of the correlation as the
weight of each edge. Another is to give the same weight to all
edges that were kept after the thresholding process described
below. We kept only the top x% (we tried several thresholds)
of the edges with the highest values, for example 5% (which
was what we ultimately used), meaning that we were left
with 190 edges out of the 622 (minus the 62 self edges).
The graph was used to extract graph-theoretical features such
as average shortest distance between nodes, small-worldness,
etc. (Bullmore and Sporns, 2009). We ultimately used the
mean and standard deviation of the small-worldness measure
and its components, across the different thresholds.

• Basic - Simple demographic features of subjects’ age and sex
were used. In addition, the time it took to answer each problem
was used as a feature. These features were added to all the
above feature groups in the prediction phase.

3. RESULTS

After removal of subjects who did not meet the inclusion criteria
(see Methods), we were left with 47 subjects for the analysis (24
female and 23 male; age range 21–28,Mean = 24.55 years, SD =

1.79 years). Our goal was to estimate the cognitive workload of
subjects as they were trying to solve each problem during the test.

To this end, we assumed that the difficulty level increased
with every problem, as validated in previous studies (Forbes,
1964; Arthur et al., 1999). Figure 2 shows the rate of incorrect
responses over all problems in our data, reflecting the established
relationship between problem number and difficulty level.
Interestingly, problems 24 and 29 deviated significantly from the
trend (more than 3 standard deviations). For this reason, both
problems were also excluded from our analysis. In addition, we
only considered trials where subjects answered correctly. This
is based on the premise that the cognitive load exhibited by

participants for incorrect answers may not reflect the true level of
the question. After excluding the subjects (180 trials) and specific
problems (94 trials), as stated above, and the incorrect trials (366
trials), we were left with 1,232 trials.

For each of the 1232 correct trials, we computed different
features (as detailed in the Methods) and assigned them with
the corresponding difficulty level (a number between 1 and 36)
as the target value. Several types of machine learning algorithms
were tested in order to predict cognitive load - ”Random Forest”
(RF) from the sklearn python package (Buitinck et al., 2013) ,
which is a bagging decision-tree based model (Ho, 1995), and
”XGBoost” (XGB) and its corresponding python package (Chen
and Guestrin, 2016). XGB is also a decision tree-based model,
though it comes from the ”boosting” family (Zhou, 2012). They
were chosen because of the virtues of an ensemble learning
algorithm, along with their usual good fit with temporal data.
Additionally, we applied an artificial neural network (ANN),
using the keras python package (Chollet et al., 2015). Lastly, we
used simple Linear Regression (LR), also from the sklearn python
package, as a baseline for comparison. The hyper-parameters
of these models were found using a grid search. The best
performance was exhibited by the XGBoost classifier with a
step size of 0.05. For the optimal feature group, the number of
boosting rounds was 300. All other parameters were run with
the default settings. All results shown were cross-validated by
dividing the data randomly to training and validation sets (80%
of the data were used for training, 20% of the data were used for
validation) and repeating the process 10–20 times (determined
by the time complexity of the analysis). Our main measure
of model performance was r2, which is simply the Pearson
correlation squared. It is commonly interpreted as the proportion
of the variance for a dependent variable that is explained by an
independent variable or variables.

At first, we compared the different feature types in
the prediction process with the different classifiers. Table 1

FIGURE 2 | Subject Error rate as a function of problem number. The mean error rate across subjects is plotted for each problem (circles) together with a quadratic fit

(dark gray curve). The equation corresponding to the fit is y = 0.0004793x2 − 0.000897x − 0.08256. The color of each point indicates the number of standard

deviations from the fit, with bright colors indicating a higher value.
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TABLE 1 | The table shows the Pearson correlation (r2) of each Feature group-

Model Pair.

LR RF XGB ANN

PS 0.007 0.383* 0.655* 0.346*

Complexity 0.323* 0.055 0.508* 0.286*

Connectivity 0.335* 0.186 0.5* 0.267*

PS & Complexity 0 0.322* 0.641* 0.186*

PS & Connectivity 0.07 0.44* 0.67* 0.32*

Complexity & Connectivity 0.339* 0.122 0.519* 0.331*

All Features 0.05 0.358* 0.628* 0.297*

summarizes the r2 results for this analysis (all results marked
with an * were significant). The best results were obtained using
XGB for all feature types as seen in a variance test(F(36, 3) =

16.79, p < 0.001, Tukey multiple comparisons: p < 0.05
for all XGB pairs). XGB provides a good trade-off between
model complexity and the number of samples required to
reach robustness. Even though ANN can capture very complex
relationships, they require a large training set. On the other hand,
LR and RF do not require significant amounts of training data,
but their model complexity is significantly more constrained
than XGB.

Next, we compared the utility of each of the three different
feature types. PS and connectivity features obtained the highest
score, and adding the complexity features to either of the two did
not contribute significantly to the prediction. This suggests that
complexity features do not add any further information beyond
spectral features and connectivity features. To test whether this
was not due to highmodel complexity resulting in over-fitting, we
conducted a feature selection process. We found that even after
reducing the number of features, no combination of complexity,
connectivity and PS features yielded better results than using only
the PS and connectivity features together with the basic features.

Figure 3 shows a scatter plot of the best model’s prediction
together with the true label of each instance in the test set. The
Pearson correlation of the best model is r2 = 0.67 (p < 0.01).
The model was trained on the problem serial number, which
should, in principle, produce a linear relationship. However, as
evident in Figure 2, the relationship between problem number
and error rate is slightly non-linear. This suggests that the
relationship between problem number and the EEG measure
could also be non-linear. We therefore also computed the
Spearman correlation, which relates to a general monotonic
relationship rather than a linear one, and obtained a value of 0.81
(p < 0.01). One of the features used by the algorithm was the
duration of each segment, namely the time it took the subject to
answer.We also examined the performance with only this feature
and found a r2 of 0.23 (p < 0.01) and a Spearman correlation of
0.41 (p < 0.01).

3.1. Effect of Number of Electrodes
From an applicative point of view, the number of electrodes
affects both the cost and the complexity of using EEG. We
therefore examined the extent to which reducing the number
of electrodes affects the prediction quality. To this end, we

FIGURE 3 | This figure shows the Pearson correlation between the XGBoost

model’s prediction and the true label of each instance. The model shown here

uses the PS, connectivity and basic features, which is the one that produced

the best prediction. The equation of the linear fit is y = 1.19x − 2.33.

conducted a two step analysis. Firstly, we ran 1,000 simulations,
where in each, ten electrodes were chosen randomly out of the
total of 62. For each electrode combination, only the relevant
PS features were used (five per channel, in addition to the
basic features) to generate a workload prediction using the XGB
algorithm.We then sorted the electrodes based on the percentage
of simulations each electrode was involved in that yielded a score
above a specified threshold, out of all simulations it participated
in. The top thirty electrodes were chosen in descending order and
were taken for the second step, where the effect of the number of
best electrodes on the r2 was examined. As seen in Figure 4, a
relatively high r2 of 0.7 (p < 0.01) can be obtained using only 12
electrodes (and in fact over 95 percent of peak performance for
only 8). Additionally, using the same features of the 12 electrodes,
the model produces a Spearman correlation of 0.82 (p < 0.05).
These 12 electrodes were: CP1, CPz, CP4, TP8, TP10, P3, P4,
PO7, O1, O2, AF3, FT8.

3.2. Effect of Discretizing the Workload
In our analysis, the target variable (difficulty of each problem)
had 34 possible values. We analyzed the influence of reducing the
number of levels of the target variable. We used different sized
bins, to reduce the number of different values to 6, 9, 18, 34. For
example, to obtain 6 levels, values were binned to [1–6], [7–12],
[13–18], [19–24], [25–30], and [31–36]. As evident in Figure 5,
prediction quality generally decreased with the number of levels.
This is not surprising, because the prediction task becomes more
complex with the number of levels. In addition, we show that
using only the best 12 electrodes found earlier to compute the
connectivity features (combined with the PS features of those
electrodes), we obtain r2 = 0.713 (p < 0.05) for 6 levels, which is
the best prediction quality we obtained.

3.3. Individualized Prediction Using Neural
Networks
Lastly, because different individuals might experience different
levels of cognitive load for the same problem, we wanted to assess
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FIGURE 4 | Performance as a function of the number of best channels. Channels were ordered according to their contribution to the prediction quality (see text for

details). The curve depicts the prediction quality (r2) for the XGBoost algorithm as a function of the number of best channels taken into account.

FIGURE 5 | Difficulty level discretization effect on prediction quality (r2). Each line corresponds to different feature types. PS red are the PS features of the 12 best

channels. Error bars reflect standard error of the mean.

the influence of individualizing the prediction model. To this
end, we first built a three layer artificial neural network (ANN),
trained with data from all subjects using the PS and connectivity
features of the 12 best electrodes. We then fixed the parameters
of the first and second layers, and for each subject continued
to train the weights of the output layer (Figure 6). This is a
common practice in the field of neural networks (Gruber et al.,
2017). We conducted a paired t-test (Figure 7), by calculating
the mean correlation with the correct answer over several folds
using the general model (M = 0.39, SD = 0.06) and after

tuning (M = 0.43, SD = 0.06), which yielded a significant
difference (t = −4.75, p = 0.001) in favor of the individualized
network models.

4. DISCUSSION

We recorded EEG from subjects while solving the advanced
progressive matrices test (Raven’s matrices test) and used EEG
features and machine learning to predict problem difficulty,
our chosen operationalization of cognitive workload. Problem
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FIGURE 6 | Diagram explaining the architecture of the ANN that was used. There were 2 hidden layers, and all layers were dense (e.g., all connections were present).

The parameters between the input layer and hidden layer 1, and the parameters between hidden layer 1 and hidden layer 2 were held during the individualization

phase.

FIGURE 7 | Difference of r2 score using an ANN before and after

individualizing the last layer for each subject. Error bars reflect standard error

of the mean. Paired t-test results are shown. ***p = 0.001.

difficulty was ordered on a scale from 1 to 36 (Forbes, 1964;
Arthur et al., 1999) and was treated here as a continuous value.
Our results show that even when considering cognitive load in
a continuous manner, a reasonable prediction accuracy can be

obtained using EEG measures. This could be very useful for
many applications in which there is a wide range of cognitive
workload levels. These findings extend those of previous studies
which used a small number (2-3) of discrete levels of cognitive
workload (Gerě and Jaušcvec, 1999; McDonald and Soussou,
2011; Conrad and Bliemel, 2016). Indeed, we found that reducing
the number of difficulty levels improves the results significantly.

We examined several machine learning algorithms and found
that XGBoost outperformed all other algorithms with all three
feature groups. XGBoost was more accurate than the simpler
models of linear regression and Random Forest. The lower scores
of the ANN are probably due to the fact that they typically require
a much larger training dataset than we had at our disposal (Chen
and Guestrin, 2016). Furthermore, even though the ANN scored
lower than XGBoost, we showed that prediction quality can be
improved by tuning the last layer of the ANN to each individual.
With a larger dataset, the personalized ANN could potentially
attain better prediction than XGBoost. Additionally, in this study
we did not use individual features such as individual frequency
bands. In general, this could improve the performance of the
algorithm. Incorporating individual features should be addressed
in future research.

As part of our analysis, we checked the impact of additional
EEG measures, specifically metrics of connectivity and metrics
of neural complexity. Our results suggest that connectivity
measures do add information regarding cognitive load beyond
the simple spectral features. On the other hand, it seems
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that complexity features, while holding information regarding
cognitive load, do not afford additional information over and
above that found in connectivity and PS features.

Lastly, we found that prediction quality did not deteriorate,
and even improved, when using a limited number of channels
(∼ 12), which is important for practical applications. This is
most probably due to better generalization, resulting from a less
complex model, as opposed to one utilizing all channels.

We chose to utilize the advanced progressive matrices test in
this study because of the high validity of its operationalization of
difficulty levels. However, to extend our findings further toward
applicability, future studies should examine the utility of our
EEG-based metrics for cognitive load in real-life settings such
as control tower operator performance as aerial traffic ebbs and
flows. Since our results indicate the feasibility of employing an
array comprising as little as eight electrodes, potentially such
studies could be carried out in parallel using portable dry EEG
systems. The added benefit would be the feasibility of amassing
the expansive datasets necessary for utilizing elaborate neural
network models, which in this scenario are expected to improve
predictive ability. In addition, it would be useful to identify EEG
markers for different dimensions of cognitive workload. Such
markers would pave the way for optimizing and personalizing
learning processes from e-learning to military training (Ikehara
and Crosby, 2005; Mills et al., 2017).
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