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An electroencephalogram (EEG)-based brain-computer interface (BCI) is a tool to

non-invasively control computers by translating the electrical activity of the brain.

This technology has the potential to provide patients who have severe generalized

myopathy, such as those suffering from amyotrophic lateral sclerosis (ALS), with the

ability to communicate. Recently, auditory oddball paradigms have been developed to

implement more practical event-related potential (ERP)-based BCIs because they can

operate without ocular activities. These paradigms generally make use of clinical (over

16-channel) EEG devices and natural sound stimuli to maintain the user’s motivation

during the BCI operation; however, most ALS patients who have taken part in auditory

ERP-based BCIs tend to complain about the following factors: (i) total device cost and

(ii) setup time. The development of a portable auditory ERP-based BCI could overcome

considerable obstacles that prevent the use of this technology in communication

in everyday life. To address this issue, we analyzed prefrontal single-channel EEG

data acquired from a consumer-grade single-channel EEG device using a natural

sound-based auditory oddball paradigm. In our experiments, EEG data was gathered

from nine healthy subjects and one ALS patient. The performance of auditory ERP-based

BCI was quantified under an offline condition and two online conditions. The offline

analysis indicated that our paradigm maintained a high level of detection accuracy

(%) and ITR (bits/min) across all subjects through a cross-validation procedure (for five

commands: 70.0 ± 16.1 and 1.29 ± 0.93, for four commands: 73.8 ± 14.2 and 1.16

± 0.78, for three commands: 78.7 ± 11.8 and 0.95 ± 0.61, and for two commands:

85.7 ± 8.6 and 0.63 ± 0.38). Furthermore, the first online analysis demonstrated that

our paradigm also achieved high performance for new data in an online data acquisition

stream (for three commands: 80.0 ± 19.4 and 1.16 ± 0.83). The second online analysis

measured online performances on the different day of offline and first online analyses on a

different day (for three commands: 62.5 ± 14.3 and 0.43 ± 0.36). These results indicate

that prefrontal single-channel EEGs have the potential to contribute to the development

of a user-friendly portable auditory ERP-based BCI.

Keywords: electroencephalogram, brain–computer interface, auditory event-related potential, single-channel

data, portable measurement device
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1. INTRODUCTION

Brain-computer interface (BCI) is a popular technology related to
the electroencephalogram (EEG). This non-invasive technology
has the potential to provide patients suffering from severe
communication disorders with the ability to communicate
through translation of specific electrical patterns in the brain into
predefined commands. The development of BCI technologies
has allowed patients with amyotrophic lateral sclerosis (ALS)
to communicate with others without the requirement of body
movement (Sellers and Donchin, 2006; McFarland et al., 2011;
Spataro et al., 2017). Although these developments have made
the realization of BCI technologies possible in laboratory
environments, many ALS patients desire the use of these
technologies in their daily lives, in their family and in their
home environments.

Traditional EEG devices make use of gel-based multi-
electrodes (over 16 channels) for data acquisition. This
equipment is difficult for untrained individuals (such as family
and helpers) to use because a high level of expertise is needed
to accurately attach the electrodes while properly adjusting the
quality of the acquired signals. The family/helper has to learn
how to appropriately position the electrodes as well as how
to correctly adhere the electrodes to the head if they are to
operate BCIs without significantly worsening their performance.
To alleviate the burden of mastering such complex skills for
the family/helper and to minimize the stress imposed on the
patient during the preparation of the device, the number of
electrodes should be decreased, and the equipment should be
simplified as much as possible. Recent developments in EEG
devices have made it possible to decrease the number of required
electrodes and achieved simple data acquisition by integrating
a wireless communication module and dry electrodes (Rogers
et al., 2016; Krigolson et al., 2017; Minguillon et al., 2017). These
devices have the potential to provide patients with easy-to-use
EEG-based BCIs.

An event-related potential (ERP) is a neuronal response to
a rare, though already known, event. ERPs have been widely
used in BCI paradigms with ALS patients (Hill et al., 2005;
Höhne et al., 2010; Schreuder et al., 2011). Visual or auditory
stimuli are often employed as the events to elicit the specific
electrical response. These responses can be observed in EEGs,
and the paradigm only requires concentration during a period
in which one assesses the rarity of the event. Even if ALS
patients enter a “completely-locked-in” or “totally-locked-in”
state (CLIS or TLIS) accompanied by a loss of visual function due
to excessive dryness of the retina caused by muscle dysfunction
associated with the eyelid, their auditory functions fortunately
remain intact. On account of this situation, some studies have
recently explored incorporating auditory stimuli into a BCI
paradigm with the goal of developing generalized ERP-based BCI
technologies for ALS patients (Hill et al., 2014; Kaongoen and Jo,
2017; Hammer et al., 2018).

To obtain a high level of BCI performance and usability,
selection of effective auditory stimuli is important to induce
strong ERPs and to maintain a high level of participant’s
motivation during its operation. A synthetic sound group

composed of different pitches and different arrival directions
is often presented to the user during auditory ERP-based
BCI paradigms. However, the repetitive unnatural sounds can
easily make the user tired, thereby significantly decreasing their
motivation. To avoid such situations during daily use, natural
sounds have been used in auditory ERP-based BCI paradigms.
Simon et al. (2015) proposed a multi-command auditory ERP-
based BCI that makes use of five natural sounds (a duck, singing
bird, frog, seagull, and a dove) presented from five different
directions (left, center-left, center, center-right, and right) in the
paradigm. It was demonstrated that the natural sounds improve
the performance of auditory ERP-based BCI, presumably because
natural sounds better serve to maintain the motivation of
participants until the end of the period. Besides, the differences
are easier to distinguish. A further study by Huang et al. (2018)
reported that natural sounds influenced subjective motivation
and improved the performance of auditory ERP-based BCI.
Until now, the mean offline detection accuracy of auditory ERP-
based BCI paradigms using traditional EEG devices has reached
80.0% (Baykara et al., 2016; Heo et al., 2017), which exceeds the
accuracy required (70.0%) for satisfactory communication in BCI
technologies (Käthner et al., 2013).

Whereas previous studies used traditional EEG devices for
data acquisition and ERP detection, the usability of the EEG
device in daily life must be taken into consideration to make it
useful in practical terms for patients. In addition, the detection
accuracy of auditory ERP-based BCI paradigms utilizing a
recently developed EEG device that makes use of only a
prefrontal single-channel measurement electrode, is not clear.
Therefore, analyzing a portable auditory ERP-based BCI is still
an important challenge to overcome in complicated traditional
measurement environments. The aim of this study is to analyze
auditory ERPwaveforms acquired from a consumer-grade single-
channel EEG device and to clarify the detection performance
under offline and online conditions.

This paper is organized as follows: section 2 describes the
specifics of the EEG recordings, such as subject characteristics
and auditory stimuli explanations. Additionally, the methods
for capturing and classifying the EEG data in offline and
online processing are described, section 3 presents the results
of analyzing the auditory ERP waveforms. Finally, section 4
discusses the results and presents conclusions regarding the
plausibility of applying auditory ERP-based BCI using only
prefrontal single-channel EEG in daily-life communication.

2. MATERIALS AND METHODS

2.1. Participants
Nine healthy participants without any myopathy (three females,
age: 20-50, mean: 33.0, SD: 8.2) and one ALS patient (a 31-
year-old male) took part in the experiments. The outbreak of
his ALS occurred ∼4 years prior to this experiment and his
ALS-functional rating scale score, as obtained on the day of the
EEG recordings, was 17. Before the experiments, all participants
provided written informed consent and were asked to abstain
entirely from intake of caffeine, nicotine, and alcohol after 9 pm
on the previous day.
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2.2. EEG Recordings
To implement an easy-to-use EEG-based BCI, we used a
consumer-grade mobile EEG device called MindWave Mobile
with a BMD chipset (NeuroSky Inc.) This device has a
measurement electrode and a reference electrode for fixed
locations Fpz and A1 according to the international 10–20 system
(Jasper, 1958). The reason why we used the device is that an
auditory ERP response can be detected even from the frontal
area (Holm et al., 2006; Höhne and Tangermann, 2014; Käthner
et al., 2015). Furthermore, the signal quality from the frontal
area is better than that of other locations as the location has
less influence on air contamination between the electrode and
the scalp. We therefore used this device to implement a portable
ERP-based BCI. The sampling rate of this device is 512 Hz
for data acquisition. The device installs a Bluetooth module
for wireless communication between itself and a storage device.
This module removes the coupling cables for the amplifier and
recorder; this helps to avoid movement constraints caused by the
length of the cables, such as sitting on a chair that is close to the
amplifier and recorder. A notch filter was applied to the EEGs to
attenuate the 50 Hz power-line noise. EEG recordings of healthy
subjects were acquired in the same room. EEG recordings of the
ALS patient were acquired in his home. Each subject was asked to
sit on a chair/wheelchair (WHILL Model C, WHILL, Inc.) with
their eyes closed and unmoving, and was asked to put on a canal-
type earphone (EM01K, FOSTEX) that was physically connected
to an iPad (CPU: Apple A9, RAM: 2 GB, and OS version: 11.4.1).

2.3. Auditory Stimuli
In this study, we chose five natural sounds used in a
previous study (Simon et al., 2015): (i) duck, (ii) singing
bird, (iii) frog, (iv) seagull, and (v) dove, which include
several spectral structures and temporal changes. To assist
in the discrimination of sounds, each sound came from a
different direction, as conveyed through differential use of the
earphones: (i) left, (ii) center-left, (iii) center, (iv) center-right,
and (v) right. The spectrograms and directions of these sounds
are shown in Figure 1. The sounds were downloaded from
the webpage http://bbcsfx.acropolis.org.uk/. Time length and
directions were modified.

The sound directions were synthetically generated with
Python code in accordance with a previous study (Käthner et al.,
2013). The interaural level difference (ILD) and interaural time
difference (ITD) were adjusted. For the sound of 0◦ (left), 90◦

(center), and 180◦ (right), we only adjusted ILD to render sound
directions. The ITDwas applied for sounds located at 45◦ (center-
left) and 135◦ (center-right). That metric can be obtained from
the following equation:

ITD =
r

c
(θ + sin(θ)), (1)

where r is the radius of the human head, c is the speed of sound,
and θ is the azimuth of the sound source localization. We set
r = 0.9, c = 340.0, and θ = {45◦, 135◦} to synthesize the sound
directions. The impressions of 45◦ and 135◦ were improved by
the subjectively selected ILD (Käthner et al., 2013). To prevent

the participants from listening to specific sounds, the volume of
all sounds was normalized.

2.4. Experimental Design
The experimental design was approved by the Ethical Review
Committee of Dentsu ScienceJam Inc. with approval number
006 in October 2018. The experiments consisted of an offline
analysis and online analysis. First, we presented all kinds of
natural sounds (i.e., duck, singing bird, frog, seagull, and dove)
at least five times for each participant as a calibration phase at
the beginning of the experiments to ensure that the participants
recognized the sounds easily. The sound volume level was
adjusted during listening. If he/she requested to hear any of
the sounds again, we allowed him/her to listen to the sounds
once again.

Figure 2A shows the experimental protocol for the offline
analysis. During the experiments, three runs were conducted for
each participant. Each run consisted of five trials. At the start of
each trial, one of the five sounds was randomly assigned to be
the target sound. This assignment continued for the duration of
the trial. Over the five trials, each of the five sounds was selected
as the target sound only once. Each trial was composed of 30
sequences. Each sequence contained a random permutation of
five sounds (five sub-trials). In brief, one trial contained 30 sub-
trials for ERP waveforms caused by one target sound, and four
types of 30 sub-trials for non-ERP waveforms based on four non-
target sounds. In addition, we were able to, respectively, obtain
five grand-average ERPwaveforms across the 30 sub-trials for five
sound labels from one trial. The participant was asked to focus on
the target sound andmentally count the appearance of the targets
throughout a trial. We also requested the participants to count
from one to 10 three times rather than counting to 30 because
numbers >10 impose a higher mental load and can contribute to
participant fatigue. Participants were given a rest between runs
and decided the duration of their rest each time because a fixed-
rest duration affects motivation in BCI tasks (Huang et al., 2018).
Note that no participant chose to rest over 10 min.

In a previous BCI study, Simon et al., 2015 set the sound
duration to 150 ms, the interstimulus interval (ISI) to 250 ms,
and the number of sequences to 15. According to this study, we
set the sound duration in our experiment to 150 ms. On the
other hand, we shortened the ISI to 150 ms and increased the
number of sequences to 30 because we could not confirm clear
grand-average ERP waveforms and sufficient accuracy during the
pre-testing phase in which we used 250 ms ISI and 15 sequences
with the consumer-grade EEG device. Hence, we increased the
number of sequences to 30. In the case of using 250 ms ISI and 30
sequences, the total length of one trial became 1 min, which was
too long for participants to concentrate on counting the sound
stimuli, thereby leading to low accuracy. Therefore, we set the
ISI to 150 ms, shortened the length of one trial, and used 30
sequences, simultaneously. Such short ISI was also used in Höhne
et al. (2011) and is common in visual ERP-based BCIs (Käthner
et al., 2015; Hammer et al., 2018).

To avoid the effects of artifacts caused by body or ocular
movements during the offline analysis, we visually inspected
whether the data included artifacts after each trial. We set upper
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FIGURE 1 | Spectrograms and directions of the five natural sounds (0◦: duck, 45◦: singing bird, 90◦: frog, 135◦: seagull, and 180◦: dove) presented in our

experiments.

and lower bounds to 40.0 and −25.0 µV for the identification.
When artifact peaks exceeding the thresholds were present in the
recorded EEG dataset, the trial was conducted again to collect
the predefined number of trials. In the online experiment, the
thresholds automatically detected the artifacts. Consequently,
the iPad application indicated to the subjects to record the
trial once again. In addition, to avoid any changes to device
configuration (such as reattachment of the device that may lead
to deterioration of the constructed classifiers), we continuously
recorded and tested EEG data under offline and online conditions
for ∼1 h. In the online experiments, we reduced the number
of commands (types of target sounds) from five to three to
keep participants motivated. In the pre-test trial, we tested
the detection performance of five commands. However, their
accuracy was not high enough to keep participants’ motivated,
and they tended to report fatigue or boredom. Therefore, we
reduced the number of target commands to keep the motivation
in the online experiments.

Sound 2 (singing bird) and sound 4 (seagull) were not used
as target sounds in the online experiments. The previous studies
used the sound localization of 0◦, 90◦, and 180◦ for auditory
BCIs (Höhne et al., 2011; Lopez-Gordo et al., 2012; Huang et al.,
2018), because the direction confusion was stronger when the
directions of 45◦ and 135◦ were used (Schreuder et al., 2010).
Hence, we selected 0◦, 90◦, and 180◦ for the three target sounds
(duck, frog, and dove) and evaluated detection performance with
three commands in the online analysis. However, all kinds of
sounds were presented in the experiments; thus, sounds 2 and
4 were always assigned to non-target sounds. Ten runs were
used for evaluation in the online analysis (Figure 2B). Two
runs were obtained on the same day as the offline analysis
(online experiment 1) because setting this number of runs also
depended on fatigue and tiredness, reported after more than 1 h
of recording in pre-test trials. Another eight runs were conducted
6 months later (online experiment 2). All data obtained in the

offline experiment were used for the online experiment 1 as
learning data. For online experiment 2, two runs were conducted
before the experiment and added to the learning data. All three
sounds that arrived from left, center, and right directions were
used as the target sound two times each. After each trial, the
acquired 150 sub-trial data were separated into five groups based
on the presented sound labels, and then they were, respectively,
averaged over 30 epochs to obtain grand-average undefined
(ERP/non-ERP) waveforms. The grand-average waveform that
presented the highest probability of the target sound among the
five waveforms was detected as ERP waveform. If the waveform
of sound 2 or 4 had the highest probability of the target sound,
another waveform having the second highest probability was
detected as ERP waveform. After the detection, the number
corresponding to the predicted sound was visually presented on
the iPad display to maintain the participant’s motivation (Nijboer
et al., 2008). After each trial, participants opened their eyes
(before closing them again) to check the obtained number.

2.5. Feature Selection and Classifier
We applied a fourth-order band-pass Butterworth filter with
0.5 Hz and 10 Hz cut-off frequencies to each sub-trial data
(epoch). One-second epochs (512 samples) after the onsets of
auditory stimuli were extracted for both analyses. Each extracted
epoch was baseline-corrected by the average value of pre-
stimulus data within an interval of 100 ms (Simon et al., 2015).
The baseline-corrected epochs were consequently down sampled
to 16 Hz and used as the features for classification; therefore, the
dimensionality of features was 16. Each grand-average waveform
was calculated before this down sampling process.

For feature selection and ERP detection, we used a stepwise
linear discriminant analysis (SWLDA), which has been widely
used in auditory ERP-based BCI studies (Simon et al., 2015;
Onishi et al., 2017). The SWLDA learns two-class (target and
non-target) information using the training data that contains
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FIGURE 2 | Experimental protocols for one participant in (A) offline analysis and (B) online analyses. Two runs with online data were performed on the same day as

the offline analysis (online experiment 1). The other eight runs were conducted 6 months later (online experiment 2). Five natural sounds were randomly presented, and

the participants mentally counted the presence of the target sound during EEG recordings.

all sound labels with two patterns (e.g., EEG features while
presenting sound 1 as the target in trial 1 of run 2, and EEG
features while presenting sound 1 as the non-target in trial 2 of
run 3), and then predicts the probability of target for the testing
data based on the trained SWLDA classifier. To express the
variance of data, the training data remains sub-trial information;
however, the testing data consists of grand-average undefined
(ERP/non-ERP) waveforms over 30 sub-trials in one trial for the
respective sound labels. This ensures a high detection accuracy
considering the situation of actual BCI operations where users do
not allow poor and vulnerable BCIs. SWLDA selects important
feature variables automatically with a combination of forward
and backward steps (Krusienski et al., 2006). First, p-values are
calculated with the least-squares regression for feature variables.
The feature variable set, which has a lower p-value than the input
threshold (p-value < 0.10), is pooled into the linear discriminant
analysis (LDA) function. A new feature variable is continuously
added to the LDA function. If the feature variables are no
longer significant after updating p-values, they are removed
from the feature variable set (p-value > 0.15). This process is
repeated until no additional feature variables meet the input or
output criteria.

2.6. Assessment
A key factor for ERP-based BCIs is the detection accuracy
of target and non-target ERPs. We separately calculated the
accuracy for each subject. In the offline analysis, the accuracy
was calculated through a leave-one-trial-out cross-validation
(LOTOCV) procedure. The data from one trial was used for
testing, while that of the others was used for training. Thus,
2,100 sub-trials (14 trials × 30 sequences × 5 sub-trials)
constituted the training data and five grand-average ERP/non-
ERP waveforms (150 sub-trials) were the testing data in each
validation step in a subject. In the online analysis, all data
obtained in the experiments were grand averaged for the testing
data. Furthermore, the detection performance was calculated
by applying the selected feature variables, and their coefficients

in the LDA function optimized by all sub-trial data in the
offline analysis.

In this paper, the evaluation metric “Accuracy" has the same
meaning as the true positive rate (TPR) in a confusion matrix.
The matrix collects the decisions of target and non-target sounds
based on posterior probabilities of SWLDA. TPR refers to how
accurately EEG recordings were classified as targets during the
listening of the target sounds; therefore, TPR is an effectivemetric
for evaluating ERP-based BCI performance.

Apart from detection accuracy, other evaluation metrics
may be used for BCI systems. Previous studies have used the
information transfer rate (ITR), which has the advantage of
incorporating both speed and accuracy into a single value (Cheng
et al., 2002; Wolpaw et al., 2002; Wang et al., 2017). It indicates
the amount of information communicated per unit of time. The
ITR can be calculated using the following equation:

ITR =

(

log2 N + P log2 P + (1− P) log2
1− P

N − 1

)

∗ 60/T, (2)

whereN is the number of selectable commands (N = {2, 3, 4, 5}),
P is the target detection accuracy (0 < P < 1), and T is the
average time (sec) for a selection (T = 45). We used five kinds
of natural sounds as auditory stimuli and enabled subjects to
select five commands (N = 5). In addition to comparatively
evaluating the detection performance of the natural sounds,
we investigated the performance for fewer target candidates
(N = {2, 3, 4}). As indicated in section 2.5, the LDA learns
the target and non-target features and predicts probabilities for
testing data. The probabilities were compared among five grand-
average waveforms with five sound labels. One of the waveforms
that indicated the highest probability was detected as an ERP
waveform. Reducing the number of commands (e.g., five to three)
may lead to an improved detection accuracy because the amount
of misclassified data is decreased. Although the ITR gets worse by
reducing the number of commands, accuracy is also important.
We therefore evaluated the detection accuracy with five, four,
three, and two commands. Training data were used in 1,650
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sub-trials (11 trials × 30 sequences × 5 sub-trials), 1,200 sub-
trials (8 trials × 30 sequences × 5 sub-trials), and 750 sub-trials
(f trials × 30 sequences × 5 sub-trials) in each evaluation for
four, three, and two commands, respectively. Four, three, and two
grand-average ERP/non-ERP waveforms were the testing data
in each evaluation. We assessed all combinations of the targets
and showed the average of the results in the offline analysis. To
complement the analysis, we evaluated the four, three, and two-
command accuracies with training on all data; test data were the
same as in the evaluation for the five commands. Non-candidates
for classification output should not be included in the training
data for cross-validation; however, they include two-class (ERP
and non-ERP) information. The 2,100 sub-trials (14 trials ×

30 sequences × 5 sub-trials) were used for training data in the
evaluation for each four, three, and two commands. Four, three,
and two grand-average ERP/non-ERP waveforms were used for
the testing data.

Note that the first online experiment was sequentially
conducted after the offline experiment; we therefore could not
know the best combination of the natural sounds. We simply
selected the target combination based on the sound directions.
For a comparison with the first online experiment, we conducted
a second online experiment under the same conditions.

3. RESULTS

3.1. Detection Performances
To evaluate the performance of our auditory ERP-based BCI
paradigm with a portable EEG device, we calculated an average
detection accuracy and ITR through a LOTOCV procedure for
each subject. In total, for each subject, 450 target epochs and
1,800 non-target epochs were recorded throughout the offline
experiments. The detection accuracy and ITR are listed in
Table 1.

First, we calculated the performance for five commands.
As mentioned in section 2.6, LOTOCV was applied to 2,250
epochs. In each validation step, there were five testing waveforms
(averaged across 30 epochs) containing one target, and four non-
target data and 2,100 training epochs. This procedure yielded an
average detection accuracy of 70.0% and an ITR of 1.29 bits/min.
The accuracy for three out of the ten subjects was over 70.0% and
the standard deviation of all subjects was 16.1%. In addition, both
subjects 7 (healthy subject) and 10 (ALS patient) displayed high
performance levels with a detection accuracy of 100% and ITRs
of 3.10 bits/min.

Table 2 shows the confusion matrix with five sound labels
in the offline analyses. The vertical labels indicate the true
target sound labels. The horizontal labels are the predicted target
sounds. The detection performance for sound “duck” was the
lowest with an accuracy of 56.7%. The highest accuracy was
80.0%, attained by sound “singing bird” and “dove.” The highest
false positive rate (FPR) was obtained by sound “duck,” for which
six instances of “seagull” test data were misclassified to the sound
across all subjects.

Second, we decreased the number of commands from five
to less than five to assess the viability of our paradigm using
other output settings. When the number of commands was

four, the average accuracy and ITR were 68.8% and 0.95
bits/min, respectively. With this setting, three of the ten subjects
displayed over 70.0% detection accuracy. Three-command
setting showed an average accuracy of 70.9% and ITR of 0.71.
Three out of the ten subjects displayed over 70.0% accuracy.
For two commands, the accuracy was 79.0% and the ITR was
0.43. With this setting, nine subjects displayed over 70.0%
detection accuracy.

Third, we evaluated the detection performance when non-
candidates for classification output were included in the learning.
Table 3 shows the accuracies and ITRs. When the number of
commands was four, the average accuracy and ITR were 73.8%
and 1.16 bits/min, respectively. With this setting, six of the
ten subjects displayed over 70.0% detection accuracy. Three-
command setting showed an average accuracy of 78.7% and
ITR of 0.95. Seven out of the ten subjects displayed over 70.0%
accuracy. For two commands, the accuracy was 85.7% and
the ITR was 0.63. With this setting, all ten subjects displayed
over 70.0% detection accuracy. Unlike in ordinary LOTOCV,
using non-candidates for classification output for learning may
improve the detection performance.

In the online analyses, we evaluated the detection performance
for three commands. For online experiment 1, we evaluated two
runs performed in the same day as the offline experiment. The
online detection accuracy and ITR are shown in Table 4. In total,
180 target and 720 non-target epochs were recorded for each
subject. The average of the detection accuracy and ITR across all
subjects was 80.0% and 1.16 bits/min. Under this setting, four
out of ten subjects achieved 100% accuracy. In the runner-up,
two out of the remaining six subjects, one of which was the ALS
patient, had an accuracy of 83.3%. Table 5 shows the confusion
matrix for the online three-command operation, which was
composed of the sounds: duck, frog, and dove. The accuracy for
the sound “frog” was the lowest. By contrast, the sound “duck”
was correctly classified with an accuracy of 90.0%. Furthermore,
we evaluated eight runs performed in online experiment 2. The
online detection accuracy and ITR are shown in Table 4. In
total, 900 target and 3,600 non-target epochs were recorded for
each subject. The average of the detection accuracy and ITR
across all subjects was 62.5% and 0.43 bits/min, respectively.
Under this setting, three out of ten subjects achieved 70.0%
accuracy. In addition, the ALS patient achieved an accuracy of
87.5%. Table 5 shows the confusion matrix. The accuracy for the
sound “frog” was the lowest, as in online analysis 1. The sound
“dove,” by contrast, was correctly classified with an accuracy
of 66.3%.

3.2. ERP Analysis
Figure 3 shows the grand average of ERP and non-ERP
waveforms for each subject in the offline analysis. In total, 450
target and 1,800 non-target epochs were recorded per subject
over the course of these experiments. The filled fields along the
plots denote the standard error (SE) of amplitude for each time
point. Typically, the meaningful components of ERP-based BCI
are N200 and P300 (Höhne et al., 2011; Hübner et al., 2018). The
N200 components were uniquely and visually identified around
the light-gray fields at 200–350 ms in Figure 3. A heat map in
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TABLE 1 | Summary of the detection performances in the offline analysis.

Sub.

Five commands Four commands Three commands Two commands

Accuracy ITR (bits/min) Accuracy (%) ITR (bits/min) Accuracy (%) ITR (bits/min) Accuracy (%) ITR (bits/min)

1 53.3 0.52 45.0 0.18 51.1 0.13 66.7 0.11

2 66.7 0.98 63.3 0.63 66.7 0.44 70.0 0.16

3 53.3 0.52 58.3 0.48 61.1 0.31 71.7 0.19

4 66.7 0.98 63.3 0.63 67.8 0.47 75.0 0.25

5 73.3 1.27 78.3 1.20 80.0 0.88 85.0 0.52

6 60.0 0.73 58.3 0.48 58.9 0.26 71.7 0.19

7 100 3.10 96.67 2.32 100 2.11 100 1.33

8 66.7 0.98 65.0 0.68 63.3 0.36 71.7 0.19

9 60.0 0.73 65.0 0.68 64.4 0.39 85.0 0.52

10 100 3.10 95.0 2.18 95.6 1.70 93.3 0.86

Mean 70.0 1.29 68.8 0.95 70.9 0.71 79.0 0.43

SD 16.1 0.93 15.6 0.70 15.2 0.63 10.6 0.37

The average results of all target combinations were presented for <5 commands. Non-candidates for classification output were not included for the learning.

TABLE 2 | Confusion matrix of five sound labels over all subjects in offline analysis.

Predicted labels
Accuracy (%)

Duck Bird Frog Seagull Dove

True labels

Duck 17 5 5 1 2 56.7

Bird 2 24 1 1 2 80.0

Frog 2 2 22 1 3 73.3

Seagull 6 2 3 18 1 60.0

Dove 0 3 2 1 24 80.0

Mean 70.0

the form of a colored bar is positioned beneath each ERP plot
to indicate the signed R2 value. The value specifies how clearly
the ERP and non-ERP are discriminated. The discriminability is
described by the heat maps. The colors in the heat maps indicate
the strength of R2. Through the R2 plot, the highest positive
amplitudes within the target epochs could be identified on two-
time segments positioned at∼350–600 and 700–1,000ms ranges.
These areas are visually distinguished by dark-gray shading
in Figure 3.

Figure 4 shows the grand average of ERP and non-ERP
waveforms for each subject in the online analysis 1. In total,
180 target and 720 non-target epochs were recorded per subject
over the course of the experiments. Most of the ERP waveforms
were similar in shape and size to those of the offline analysis.
A notable difference in comparison to the waveforms from the
offline experiments was that the discriminability time points as
well as their strengths differed. The red color, which indicates
a high R2 value, can be observed to deepen around 400 ms for
subjects 3 and 4. For subjects 6, 9, and 10, higher R2 values
appeared earlier than in the offline experiment.

Figure 5 shows the grand average of ERP and non-ERP
waveforms for each subject in the online analysis 2. In total,
900 target and 3,600 non-target epochs were recorded over the

experiments of each subject. Most of personal characteristics of
the ERP and non-ERP waveforms were not significantly different
from those of online experiment 1. However, the time points
representing strong R2 values were moved to forward (subjects
3, 5, and 6) and backward (subjects 9 and 10).

Table 6 displays the latency and amplitude of negative and
positive peaks in ERP waveforms from the offline experiments.
The negative and positive peaks were found within the intervals
of 200–350 and 350–1,000 ms, respectively. There were two time
segment candidates to appear as a positive peak in an ERP
waveform. Usually, a positive peak (P300) should appear in the
350-600 ms range, but sometimes they appeared in the 700–
1,000 ms range in this study. The ERP waveform of subject
7, which has contained the most discriminable information in
the offline analysis 1 (see Table 1), had a strong positive peak
at ∼500 ms. Subject 10, which has also contained the most
discriminable information in the offline analysis 1, had a positive
peak after 700 ms. In online analysis 2, the average of latencies
of positive peaks were decreased compared to offline analysis
and online analysis 1. Although the latencies for some subjects
were increased, the tendency as a whole subject indicates that it
is shortened.

4. DISCUSSION

As mentioned earlier, the aim of this study is to analyze
the discriminability of auditory ERP waveforms acquired from
a consumer-grade single-channel EEG device under offline
and online conditions. Our results indicate that the single-
channel EEG device can be feasibly used for both offline and
online analyses.

The offline analysis revealed that the detection accuracy
and ITR for five, four, three, and two commands averaged
across 10 subjects were 70.0% and 1.29 bits/min, 73.8% and
1.16 bits/min, 78.7% and 0.95 bits/min, and 85.7% and 0.63
bits/min, respectively. The online analysis confirmed that the
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TABLE 3 | Detection performance when non-candidates for classification output were included in the learning.

Sub.

Four commands Three commands Two commands

Accuracy (%) ITR (bits/min) Accuracy (%) ITR (bits/min) Accuracy (%) ITR (bits/min)

1 60.0 0.53 66.7 0.44 75.0 0.25

2 70.0 0.86 74.4 0.68 83.3 0.47

3 60.0 0.53 67.8 0.47 78.3 0.33

4 70.0 0.86 75.6 0.72 83.3 0.47

5 78.3 1.20 84.4 1.07 91.7 0.78

6 61.7 0.58 66.7 0.44 75.0 0.25

7 100 2.67 100 2.11 100 1.30

8 71.7 0.92 76.7 0.76 85.0 0.52

9 66.7 0.74 74.4 0.68 85.0 0.52

10 100 2.67 100 2.11 100 1.30

Mean 73.8 1.16 78.7 0.95 85.7 0.63

SD 14.2 0.78 11.8 0.61 8.6 0.38

The average results of all target combinations were presented for <5 commands.

TABLE 4 | Summary of detection performances in online analyses for which the

average accuracy of online analysis 1 was 80.0% with an ITR of 1.16 bits/min and

that of online analysis 2 was 60.0% with an ITR of 0.44 bits/min.

Online analysis 1 Online analysis 2

Sub. Accuracy (%) ITR (bits/min) Accuracy (%) ITR (bits/min)

1 83.3 1.02 66.7 0.44

2 50.0 0.11 66.7 0.44

3 66.7 0.44 37.5 0.01

4 100 2.11 62.5 0.34

5 100 2.11 79.2 0.85

6 100 2.11 54.2 0.18

7 100 2.11 45.8 0.06

8 66.7 0.44 54.2 0.18

9 50.0 0.11 70.8 0.56

10 83.3 1.02 87.5 1.22

Mean 80.0 1.16 62.5 0.43

SD 19.4 0.83 14.3 0.36

detection accuracy and ITR for three commands averaged across
10 subjects were 80.0% and 1.16 bits/min. In this condition, four
out of the 10 subjects achieved 100% accuracy (2.11 bits/min).
In addition to detection performance, we investigated the shape
of ERP waveforms. The ERP analysis revealed that N200 and
P300 components can be detected even if we obtained prefrontal
single-channel EEG data. Additionally, the discriminability of
ERP waveforms was clarified by signed R2 values.

4.1. Experimental Design
To compare auditory ERP detection performance using a single-
channel prefrontal EEG to multichannel EEGs, we designed an
experimental protocol with a set of natural sounds identical to
those utilized in a previous study that made use of multichannel
data from a traditional EEG device (Simon et al., 2015). In our
protocol, the duration of the ISI and the number of sequences

TABLE 5 | Confusion matrix of three sound labels over all subjects in online

analysis.

Online analysis 1

Predicted labels
Accuracy (%)

Duck Frog Dove

True labels

Duck 18 1 1 90.0

Frog 3 13 4 65.0

Dove 1 2 17 85.0

Mean 80.0

Online analysis 2

Predicted labels
Accuracy (%)

Duck Frog Dove

True labels

Duck 50 13 17 62.5

Frog 19 47 14 58.8

Dove 18 9 53 66.3

Mean 62.5

were modified from their initial settings (250 ms and 10) to
150 ms and 30, respectively, because they did not contribute to
achieving high detection performance in our pre-test trials, where
three participants joined.While we set the duration of the ISI and
the number of sequences to 250 ms and 10 sequences, when the
length of sound presentation was 150 ms, the average accuracy
was 40.0 ± 5.4%. Consequently, we increased the number of
sequences from 10 to 30; however, it took 60 s to complete
each trial, which induced fatigue and boredom in the users,
thereby decreasing the average accuracy. When testing 150 ms
ISI with 10 sequences, the accuracy was 46.7 ± 33.9%. Finally,
we shortened the ISI from 250 ms to 150 ms with 30 sequences
and acquired 75.6 ± 19.1%. Therefore, the balance between the
number of sequences and the trial length was important. The
most important factor influencing our experimental design was
the subject’s motivation (Nijboer et al., 2008; Kleih et al., 2010).
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FIGURE 3 | ERP and non-ERP waveforms of each subject in the offline analysis (purple line: ERP, blue line: non-ERP). The filled fields along the plots denote the

standard error (SE) of amplitudes for each time point. The time interval for N200 is filled with light-gray color at 200–350 ms. In addition, the time intervals between

350–600 and 700–1,000 ms were filled with dark-gray color for finding the positive peaks of ERP responses.

FIGURE 4 | ERP and non-ERP waveforms of each subject in the online analysis 1 (purple line: ERP, blue line: non-ERP). The filled fields along the plots denote the

standard error (SE) of amplitudes for each time point. The time interval for N200 is filled with light-gray color at 200–350 ms. In addition, the time intervals between

350–600 and 700–1,000 ms were filled with dark-gray color for finding the positive peaks of ERP responses.

Fatigue and boredom decrease the motivation of subjects and
results in an overall decline in performance during the auditory
ERP-based BCI. In consideration of the negative consequence
of these emotions, setting the ISI to a duration of 150 ms was
empirically the best solution. Although the duration must be
optimized based on a quantitative and strict approach in future
studies, to prevent fatigue or boredom, we found that a trial with
less than or equal to 45 s does not tend to induce such feelings.
Therefore, we set the ISI period to 150 ms and the number of
sequences to 30 in the offline analysis.

To assess the relationship between the number of trials and the
detection accuracy, we investigated the detection accuracy with
an incremental learning approach. Figure 6 shows the change in
accuracy when the number of trials for learning was sequentially
increased from one to 14. Here, one trial data was always
employed as testing data in a LOTOCV procedure. The learning
trial was randomly chosen. Figure 6 shows an upward trend
for average accuracy regardless of the number of commands.
For this result, the accuracy could be improved when obtaining
more trials. However, the purpose of this study is to evaluate
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FIGURE 5 | ERP and non-ERP waveforms of each subject in the online analysis 2 (purple line: ERP, blue line: non-ERP). The filled fields along the plots denote the

standard error (SE) of amplitudes for each time point. The time interval for N200 is filled with light-gray color at 200—350 ms. In addition, the time intervals between

350–600 and 700–1,000 ms were filled with dark-gray color for finding the positive peaks of ERP responses.

the feasibility of auditory ERP-based BCI with prefrontal single-
channel EEG data. Exceeding 70.0% accuracy, which is required
for satisfactory communication in BCI operation (Käthner et al.,
2013), is a reasonable criterion for confirmation of the feasibility.
As we estimated above, the average accuracy for five commands
exceeded this criterion when the number of learning trials was set
to 12. Therefore, we assumed that 15 trials for each subject was an
adequate number of trials.

The online experiments were designed to achieve the optimal
balance between the detection performance and the subject
motivation. We chose three natural sounds (duck, frog, and
dove) for the following two reasons. First, it was necessary
to reduce the number of targets to maintain an acceptable
detection accuracy (over 70.0%) because subjects’ motivation will
decrease if they experience difficulty in learning the auditory
ERP-based BCI system. In our pre-test trials, subjects tended
to get tired when five-command operation was conducted in
the online experiments, because they hardly selected the true
targets. Hence, we decreased the number of the target sounds and
attempted to increase the accuracy. The second reason is to keep
in check the total experiment duration. To avoid any changes in
device configuration that may result from reattachment and lead
to deterioration of the constructed classifiers, we continuously
recorded and tested EEG data under offline and first online
conditions for ∼1 h. Although we allowed subjects to take a
break between runs, they tended to experience fatigue when the
EEG recording continued for more than 1 h. Considering these
reasons, we decided to conduct two runs with three commands
in the online experiment 1.

4.2. BCI Performance
Our measurement configuration differed from that of previous
studies—which have typically positioned electrodes at vertices
around the temporal and centro-parietal region, such as Cz

and Pz positions—in that our electrode was positioned at
the Fpz position, directly over the prefrontal region. Despite
this difference, the performance of our experiments was not
much lower than what previous studies have reported using
either multi- or single-channel methods. The average detection
accuracy in offline experiment and online experiment 1, as
described in section 3.1, exceeded the criteria of 70.0%. The
average accuracy of online experiment 2 was 62.5% whereas
the date of the experiment was much later than that of the
first experiments. Höhne et al. (2011) previously reported a
detection accuracy of 89.4% and an ITR of 3.40 bits/min
when using nine auditory stimuli in an online analysis that
made use of multichannel data with a traditional EEG device.
Simon et al. (2015) demonstrated that performance during
online five-command operation for auditory ERP-based BCI
using multichannel EEGs can yield a detection accuracy of
90.0% (ITR of 4.23 bits/min) for 11 healthy subjects and
45.0% (ITR of 1.35 bits/min) for an ALS patient. Furthermore,
Lopez-Gordo et al. (2012) reported that using single-channel
EEG data from position Cz and speech sounds as stimuli
for auditory ERP-based BCI obtained 69.0–78.0% detection
accuracy with an ITR of 2.70 bits/min. In our study, the
averaged detection accuracy across 10 subjects in the offline
five-command operation was 70.0% and the ITR was 1.29
bits/min. The average accuracy of the first online three-command
operation was 80.0% and the ITR was 1.16 bits/min. In
addition, subjects 7 and 10 displayed high-performance levels
with detection accuracy for five, four, three, and two commands
in the offline analysis. Interestingly, the ALS patient (subject
10) demonstrated the maximum performance. The subjects
showed 100 and 83.3% in the online experiment, whereas the
ALS patient showed the second highest accuracy. These results
indicate that the BCI paradigm would not be limited to healthy
subjects. For the detection accuracy, it was confirmed that our
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TABLE 6 | Overview of latencies and amplitudes of positive (200–350 ms) and negative (350–1,000 ms) ERP peaks in the offline and online analyses.

Offline Online 1 Online 2

Negative Positive Negative Positive Negative Positive

Sub. (ms) Lat. (ms) Amp. (µV) Lat. Amp. (µV) Lat. (ms) Amp. (µV) Lat. (ms) Amp. (µV) Lat. (ms) Amp. (µV) Lat. (ms) Amp. (µV)

1 281 −0.51 537 0.08 324 −0.22 941 1.34 287 −0.59 777 1.25

2 293 −1.79 932 0.68 340 −1.45 977 0.58 347 −0.74 799 1.37

3 199 −1.42 965 5.95 313 1.23 986 4.90 313 −0.86 525 4.82

4 299 −1.56 828 0.46 338 −1.62 932 −0.28 347 −0.76 844 1.68

5 279 −1.49 998 0.70 313 −2.58 998 1.03 347 0.15 535 1.96

6 314 −0.12 844 1.20 320 −1.67 641 −0.30 309 −0.51 611 1.06

7 309 −1.16 508 3.40 295 −0.87 494 3.41 340 −0.62 541 1.95

8 260 −1.33 473 1.43 205 −0.32 475 0.89 347 −0.06 506 3.14

9 240 −1.36 500 1.75 299 −1.27 395 2.64 324 −0.44 855 5.78

10 340 −2.74 895 3.15 244 −0.90 635 0.90 220 −1.08 949 2.78

Mean 281 −1.35 748 1.88 299 −0.97 747 1.51 329 −0.55 694 2.58

SD 38 0.67 205 1.71 41 0.98 230 1.57 40 0.35 158 1.51

FIGURE 6 | Average detection accuracies based on LOTOCV for increasing

the number of learning trials with two, three, four, and five commands.

paradigm maintained a high level of accuracy without using any
vertex channels.

From Tables 1, 3, the average accuracies for four, three,
and two command conditions were improved while using non-
candidate data as learning data. In the LOTOCV, all trials should
be testing data. Table 1 indicated the result in an ordinary case.
However, the non-candidate data for testing also has information
of ERP or non-ERP. Therefore, we added the non-candidate
data for learning data and obtained higher accuracies. At this
time, the number of training samples was equal for all command

conditions. The results indicate that increasing the amount of
data would be useful even if the data contain information
unrelated to the candidate sounds.

For long-term use of our BCI paradigm, the result of online
analysis 2 is important. The average accuracy was 62.5% and
did not exceed 70.0%; however, the results of our research
are valuable for future studies. First, the result showed that
three out of ten subjects achieved 70.0% accuracies. They
indicated the possibility that our BCI paradigm can be used
as a communication tool even if a limited number of persons
can use it. Second, the accuracies of subjects 2, 9, and 10 in
online analysis 2 were higher than those in online analysis 1.
Therefore, the long-term use is not a factor that decreases the
accuracy. Third, the accuracy of subject 10 (ALS patient) showed
the highest accuracy in online analysis 2. More ALS patients
are needed to show that this BCI paradigm can be used for the
patients, but it is a fact that the ALS patient showed a sufficient
accuracy in long-term use. In addition, the time point where
a strong R2 value appears moved forward (subjects 3, 5, and
6) and backward (subjects 9 and 10) in online analysis 2. This
is because the offline data and online data 2 were obtained
on a different day, and a reattachment of the EEG device
has occurred. Therefore, solving these issues by the domain
adaptation or transfer learning may improve the accuracy in
future work.

After the online experiment 2, we obtained an interesting
comment from subject 5 whose accuracy of the online analysis 2
was 79.2%. Even before the system showed the result, he could
notice whether he correctly selected the target command. He
said that the point was to hear non-target sounds as a noise.
When he inevitably heard those sounds as a natural sound, the
system showed a wrong command. The comment may improve
accuracy of the BCI by explaining this fact before the auditory
BCI experiments.

De Vos et al. (2014) conducted a three-command auditory
oddball task using a low-cost, small, and wireless 14-channel
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EEG measurement configuration for auditory ERP-based BCI
in daily life. They obtained a detection accuracy of 71.0%
with an ITR of 1.06 bits/min. In comparison to this study,
our BCI framework of offline analysis and online analysis 1
yielded a better accuracy and ITR while making use of a
low-cost, small, and wireless single-channel EEG measurement
configuration. Moreover, the preparation time for using a
wearable device is <1 min. When the preparation of the
EEG device is considered, our framework is faster than those
reported in previous studies. The study of auditory ERP-based
BCI using prefrontal single-channel EEG is still in its infancy;
however, this study succeeded in maintaining an adequate level
of accuracy and encourages daily-use portable auditory ERP-
based BCIs in daily life environments. The next challenge is to
improve ITRs.

4.3. ERPs Acquired From a Prefrontal
Single-Channel EEG Device
Although the latency of positive peaks varied across subjects (SD
of offline = 205 ms, online 1 = 230 ms, online 2 = 158 ms),
the BCI performance maintained a high level of accuracy in
all subjects (see Table 1). Figures 3–5 indicate that some ERP
waveforms had positive peaks at ∼350–600 ms time segment,
which is in line with the findings reported in previous studies
of auditory ERP-based BCIs (Schreuder et al., 2010; Höhne
et al., 2011; Simon et al., 2015). On the other hand, some ERP
waveforms had positive peaks at ∼700–1,000 ms segment. The
appearance of positive peaks after 700 ms from stimulus onset
was not explicitly discussed in previous studies; however, they
were frequently confirmed in auditory ERP-based BCI studies
(Furdea et al., 2009; Höhne and Tangermann, 2014). They also
showed that the positive peak after 700ms contributes to auditory
BCI accuracy. The results did not detect any new neuronal
phenomena, but merely suggest that the delay of negative and
positive peaks (i.e., N200 and P300) may be caused by the
difficulty in identifying auditory stimuli. Therefore, detecting
P300 is not the only key factor for obtaining sufficient auditory
ERP-based BCI performance.

The relationship between ERP and non-ERP waveforms of
subject 3 was different than those of our other subjects. The
amplitudes of both waveforms were much larger than those in
the other plots. The first online accuracy of subject 3 was low,
only 66.7%; however, this result was not significantly lower than
that of the other subjects. The accuracy in the offline analysis for
two commands was 85.7% (Table 1). This result demonstrates
that sufficient accuracy can be achieved even though the ERP
waveforms do not show typical P300 components. The result
of online analysis 2 was low for subject 3; this is because the
latency of the positive peak moved from 986 ms to 525 ms.
Most of the previous studies showed that the peak appears at
approximately 250–600 ms (Furdea et al., 2009; Höhne and
Tangermann, 2014). Therefore, the subject might have to get used
to the BCI paradigm, and obtaining learning data on the same day
as the long-term testing would improve accuracy.

A critical point in our examination of auditory ERP-based BCI
is the similarities between the evoked ERPs over subjects. The

latencies of some subjects in online analyses were lower when
compared to the offline analysis. These variations result from the
users becoming accustomed to hearing sounds or visual feedback.
Previous studies revealed that repeated training could generate
similar ERPwaveforms in the subject (Baykara et al., 2016; Halder
et al., 2016). Although we only conducted six trials in the online
experiment 1 to maintain a high level of subject motivation,
future collection of more data related to training and visual
feedback would allow us to evaluate whether or not repetitive
training improves the performance of auditory ERP-based BCI
with prefrontal single-channel data.

Erlbeck et al. (2017) showed that there was no difference
in auditory P300 between ALS patients and healthy subjects.
In this study, similar ERP waveforms could be obtained from
ALS patient in both offline and online experiments. While it is
difficult to conclude that there is no difference between ERPs of
healthy subjects and ALS patients because only one ALS patient
participated in our study, our results indicate that the user with
ALS was able to operate the auditory ERP-based BCI with a
prefrontal single-channel EEG device in a manner comparable to
that of healthy users.

4.4. Limitations
In this study, all subjects including an ALS patient yielded
good BCI performance. It should be noted that the participants
in our study were already accustomed to wearing an EEG
device. The ALS patient had taken part in other EEG
projects and had a good understanding of the EEG device.
The other subjects were researchers and engineers in our
institution; thus, they feel no resistance to EEG measurements.
In addition, the ALS patient was a musician, which may
have contributed to his ease in distinguishing the sounds.
The ability to discriminate between sounds has been
demonstrated to differ between musicians and non-musicians
(Paraskevopoulos et al., 2014).

As mentioned in section 2, the experiments were conducted
while subjects had their eyes closed, except for when checking the
feedbacked number in the online analysis. Prefrontal EEGs in all
cases contain eye blink and eye movement artifacts when subjects
have their eyes open. As a result, the findings of this study are
only applicable to subject in the eyes-closed state or ALS patients
whose eye blink ability has been lost. To analyze an auditory ERP-
based BCI using prefrontal EEG data in an eyes-open state, an
ocular artifact reduction method would need to be applied to the
recorded EEG data.

We obtained a detection accuracy of 80.0% using three target
sounds in online analysis 1; however, the ITR was only 1.16
bits/min. Most previous studies have developed auditory ERP-
based BCIs to control some effectors such as virtual keyboard as
movement-independent communication tools (Schreuder et al.,
2010; Höhne et al., 2011; Simon et al., 2015). These studies
attained ITRs of over 2.00 bits/min. The lower ITR yielded by our
procedure is not appropriate for the development of such tools.
At present, single-channel EEG devices should be reserved for
different purposes compared to multichannel devices, as dictated
by the situation.
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Moreover, in online analysis 2, the detection performance
was totally decreased. Data adaptation approaches for modifying
the effects of electrode shifts and instrument changes must be
applied in trained models to implement more effective portable
BCIs in everyday life. Our study was the first to analyze the
performance of auditory ERP-based BCI based on prefrontal
single-channel data obtained from a consumer-grade wireless
EEG device in offline and online conditions. These results would
help provide easy-to-use ERP-based BCIs to ALS patients in their
home environments.

5. CONCLUSIONS

The development of a portable auditory ERP-based BCI
would help overcoming considerable obstacles preventing the
use of BCI technology in everyday life. In this study, we
analyzed prefrontal single-channel EEG data obtained from
a consumer-grade EEG device using a natural sound-based
auditory oddball paradigm. The offline and online analyses
demonstrated sufficient accuracy for both healthy subjects and
an ALS patient. The offline analysis indicated that the detection
accuracy and ITR averaged across ten subjects for five, four,
three, and two commands were 70.0% and 1.29 bits/min, 73.8%
and 1.16 bits/min, 78.7% and 0.95 bits/min, and 85.7% and 0.63
bits/min, respectively. The online analysis 1 indicated that the
detection accuracy and ITR averaged across all subjects for three
commands were 80.0% and 1.16 bits/min. Online analysis 2,
which obtained data on a different day than the offline analysis
and online analysis 1, showed that the detection accuracy and ITR
were 62.5% and 0.43 bits/min, respectively. Whereas the ITRs
were lower than in previous studies using clinical multichannel
EEG device, our paradigm with a single-channel EEG device

maintains the accuracy required for sufficient communication
and has extreme portability for daily use. This study represented
the feasibility of prefrontal single-channel EEGs for auditory
ERP-based BCIs. The improvement of accuracy by training
more trials, and the effects of fatigue caused by continuous
online experiments remain issues that should be evaluated in
further studies.
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