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The brain’s ability to extract three-dimensional (3D) shape and orientation information
from viewed objects is vital in daily life. Stereoscopic 3D surface perception relies
on binocular disparity. Neurons selective to binocular disparity are widely distributed
among visual areas, but the manner in these areas are involved in stereoscopic 3D
surface representation is unclear. To address this, participants were instructed to observe
random dot stereograms (RDS) depicting convex and concave curved surfaces and the
blood oxygenation level-dependent (BOLD) signal of visual cortices was recorded. Two
surface types were: (i) horizontally positioned surfaces defined by shear disparity; and
(ii) vertically positioned surfaces defined by compression disparity. The surfaces were
presented at different depth positions per trial. Functional magnetic resonance imaging
(fMRI) data were classified from early visual areas to higher visual areas. We determined
whether cortical areas were selective to shape and orientation by assessing same-type
stimuli classification accuracies based on multi-voxel activity patterns per area. To identify
whether some areas were related to a more generalized sign of curvature or orientation
representation, transfer classification was used by training classifiers on one dataset
type and testing classifiers on another type. Same-type stimuli classification results
showed that most selected visual areas were selective to shape and all were selective
to the orientation of disparity-defined 3D surfaces. Transfer classification results showed
that in the dorsal visual area V3A, classification accuracies for the discriminate sign of
surface curvature were higher than the baseline of statistical significance for all types of
classifications, demonstrating that V3A is related to generalized shape representation.
Classification accuracies for discriminating horizontal–vertical surfaces in higher dorsal
areas V3A and V7 and ventral area lateral occipital complex (LOC) as well as in some
areas of intraparietal sulcus (IPS) were higher than the baseline of statistical significance,
indicating their relation to the generalized representation of 3D surface orientation.
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INTRODUCTION

The ability to interact with objects in the real world is closely
related to three-dimensional (3D) perception. This skill depends
on at least two abilities as follows: (i) the ability to perceive
the shape of a 3D object; and (ii) the ability to judge the
orientation of the object. For example, when someone attempts
to pick up a pencil on a desk or insert a key into a lock, the
procedure depends on the above-mentioned abilities. Although
these activities are common and essential in human daily
life, their underlying visual mechanisms have not yet been
completely investigated. Binocular disparity, which is generated
by the horizontal separation of the two eyes, is one of the
most important cues for 3D perception. It is an extremely
informative cue that is sufficient for depicting any 3D percept
imaginable—the depth of the points of the object as well as the
surface shape and orientation, which are considered higher-order
surface properties.

To extract useful information from images registered by the
two eyes, a sequence of processing stages is required (Marr and
Poggio, 1976). Different brain regions may play different roles
in 3D shape/orientation processing, with some areas responsible
for low-level disparity and other areas responsible for middle
or higher stage 3D representations that do not depend on
low-level disparity.

Previous studies of 3D perception from disparity have focused
on the neurons’ selectivity to disparity depicting 3D objects.
Zero-order depth indicates the depth position of an object. First-
order depth corresponds to a linear gradient of depth, such as a
plane slanted in depth. Second-order depth refers to curvature
in depth, e.g., disparity curvature in stereoscopic processing
(Orban et al., 2006b). In monkey and human brains, the neurons
selective to binocular disparity exist at multiple levels of the
visual hierarchy, starting from the early visual areas to the object-
selective and motion-selective areas and parietal areas (Cumming
and DeAngelis, 2001; Neri, 2005; Chandrasekaran et al., 2007;
Parker, 2007). There is evidence that neurons tuned for 3D
shape are widely distributed across the visual areas of the cortex.
Janssen et al. (1999) verified that a portion of the inferotemporal
(IT) neurons in macaques is selective for 3D shape depicted by
binocular disparity. Janssen et al. (2001) conducted a single-cell
method on animals and found that neurons of the lower bank of
the superior temporal sulcus (TEs) can be selective for horizontal
3D shapes. Georgieva et al. (2009) tested the interaction between
stereo and order of disparity, concluding that the V3A complex
and certain intraparietal sulcus (IPS) regions can extract and
process 3D shape from stereo. Recently, Alizadeh et al. (2018)
studied a patch of the macaque posterior inferotemporal area
TEO that is activated more by a curved surface than a flat
surface. Using the single-cell method, they observed that this
patch did not contain a large number of higher-order disparity-
selective neurons; however, the sign of the disparity gradient
of the stimuli could reliably be classified using a linear support
vector machine (SVM). Orientation discrimination research has
primarily focused on two types of orientation as follows: (i)
tilt, which refers to rotation in a 2D image plane, similar to a
clock hand changing its orientation over time; and (ii) slant,

which refers to rotation toward/away from the frontoparallel
direction. In relation to selectivity to orientation, Nguyenkim
and DeAngelis (2003) found that several middle temporal area
(MT) neurons in rhesus monkeys are tuned to 3D surface
orientation defined by binocular disparity, and that tilt and
slant typically exhibit independent effects on MT responses.
Rosenberg et al. (2013) reported that in the caudal intraparietal
area (CIP) of macaques, an explicit representation of slant exists,
indicating that this area plays an important role in encoding
surface orientation information. In functional imaging studies of
humans, Shikata et al. (2001) found that both posterior (CIP) and
anterior (AIP) areas within the IPS responded to planes oriented
in depth using texture gradients as monocular cues. In addition,
Naganuma et al. (2005) found that orientation information
defined by disparity is processed in the parietal area. Ban and
Welchman (2015) revealed a dorsal hierarchy that extracts 3D
surface orientation from binocular disparity, demonstrating that
responses in the V3A parallel the perceptual judgments of slant
in humans.

Previous studies for shape/orientation representation of 3D
object focused mainly on these types of questions: (1) selectivity
of neurons to specific depth cues (e.g., binocular disparity)
using single-cell studies; (2) blood oxygenation level-dependent
(BOLD) signal changes to specific stimuli (e.g., 3D shape) vs.
control condition using functional magnetic resonance imaging
(fMRI) studies; (3) distinguishing BOLD signal patterns caused
by different shapes/orientations; and (4) integration of different
cues that concurrently describe a 3D object. Our present
study belongs to the third type. However, to the best of our
knowledge, previous studies have not investigated whether the
shape/orientation presentation of stereopsis is directly dependent
on disparity or to a more generalized processing. We investigated
whether a generalized representation is involved by transfer
classification of BOLD signal patterns. In detail, we investigated
the sign of curvature (convex–concave shape) representation
and horizontal–vertical orientation representation of the surface
across cortical visual areas. The main purpose of our study
was to identify the areas containing a reliable representation
of the sign of curvature and orientation of the 3D surface and
to determine the extent of generalization of the representation.
Depending on the degree of reliability of the representation, the
term ‘‘generalized representation of the sign of curvature’’ can
be defined as follows: the lowest level is representation based
on the local disparity pattern of stimuli (i.e., not generalized);
the subsequent is representation based on a more global sign
of curvature information, irrespective of the orientation of
surfaces; and the more general level is representation based on
the global information of the sign of curvature, irrespective of
both the orientation of surfaces and depth position. Likewise,
the term ‘‘generalized representation of the orientation of
3D surface’’ can be defined as follows: the lowest level is
representation based on the local disparity pattern of stimuli; the
next level is representation based on more global information,
irrespective of the sign of curvature; the subsequent level is
representation based on global information, irrespective of the
sign of curvature and depth position. In our experiment, random
dot stereograms (RDS) were used to depict horizontally or
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vertically positioned convex and concave stereoscopic surfaces;
the sign of curvature and orientation of these stimuli cannot
be judged by monocular cues but can be judged by binocular
cues. The BOLD signal, as measured by fMRI, can be used
to indirectly reflect the underlying neural activity of cortices
(Logothetis et al., 2001). We tested the global BOLD signal
patterns of each area by classification using multi-voxel pattern
analysis (MVPA). The overall plan of the study was the following.
First, the whether multi-voxel pattern is related to sign of
curvature and orientation of surface depicted by binocular
disparity in each area was assessed. Second, by using stimuli
of the same sign of curvature (plus or minus) or orientation
(horizontal or vertical) defined by different disparities, it was
compared whether BOLD signal patterns invoked by stimuli with
different disparities and the same sign of curvature/orientation
are similar. Correspondingly, in the experiment, we initially
sought to identify the areas involved in representing the sign
of curvature and horizontal–vertical orientation of stereoscopic
surfaces defined by disparity. We investigated the retinotopic
visual cortices (V1, V2, V3d, V3v, V3A), the higher ventral
cortex [lateral occipital complex (LOC)], the higher dorsal area
[human middle temporal complex (hMT+), kinetic occipital area
(KO), V7], and the IPS areas [the ventral intraparietal sulcus
(VIPS), parieto-occipital intraparietal sulcus (POIPS), and dorsal
intraparietal sulcus (DIPS)]. Because areas that are related to
binocular disparity processing exist at the multiple levels of
the visual hierarchy, we expected that high accuracies would
be shown in most regions of interest (ROIs) for same-type
stimuli classification. Furthermore, we tested whether the high
accuracies relate to disparity information per se or to a more
generalized processing independent of low-level retinotopic
disparity information using transfer-type stimuli classification.
We hypothesized that some middle or higher areas are involved
in a more generalized representation of the sign of curvature,
particularly in the dorsal areas V3A and KO. This could
be attributed to the belief that the 3D visual information is
progressively processed along the streams, with the early areas
related to simple attribute processing and the middle and higher
areas related to more complex attributes. It is possible that
generalized representations exist in some middle and higher
areas. Further, coarse stereopsis is processed in the dorsal
stream and fine stereopsis is processed in the ventral stream
(Schiller et al., 1990; Neri et al., 2004; Uka and DeAngelis,
2006; Roe et al., 2007). Coarse stereopsis can be used to guide
the vergence movements of the eyes. During this process, it
is possible that some abstract information regarding the shape
is required and 3D shape is represented in a more abstract
(coarse) way in the dorsal stream. Furthermore, 3D information
is exchanged between the two streams and a more generalized
representation of shape that can be shared between the dorsal
and ventral streams may be involved. Van Dromme et al. (2016)
provided causal evidence for the flow of visual 3D information
between the dorsal stream and the ventral streams. V3A and
KO are considered to be parts of the anatomical pathway where
the functionally different ventral and dorsal streams exchange
information (Takemura et al., 2016). In addition, Dövencio ğlu
et al. (2013) demonstrated that KO plays an important role

in integrating disparity and shading cues of 3D structure
perception, suggesting a more generalized representation of
depth structure in the dorsal stream. Therefore, V3A and KO
are two of the candidate areas for generalized sign of curvature
representation. For orientation representation, IPS areas are
expected to be involved in the more generalized representations
of horizontal–vertical orientation because previous studies have
shown that the neurons in the posterior IPS areas in monkeys
and humans are selective to orientation via monocular cues,
such as texture gradients and perspective, as well as via
binocular cues, such as binocular disparity (Shikata et al., 2001;
Tsutsui et al., 2001; Naganuma et al., 2005; Rosenberg et al.,
2013).

MATERIALS AND METHODS

Participants
A total of 11 participants were recruited for the fMRI
experiments. Of these, three participants were excluded due to
poor performance on judging convex and concave stereoscopic
surfaces. ‘‘Acceptable performance’’ was defined as an accuracy
of ≥75% for each stimulus type. Of the remaining eight
participants, seven were male and one was female. One of the
males was left-handed, whereas the other seven participants
were right-handed. All participants had normal or corrected-
to-normal vision. None had any history of mental illness
or neurological disease. Their ages ranged from 22 to 33
(mean ± SD, 24.6 ± 3.7) years. Participants were remunerated
for their participation.

This study was performed in accordance with the
recommendations of Human Research Ethics Committee of
the Kochi University of Technology, and written informed
consent was obtained from all participants. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the Human Research
Ethics Committee of the Kochi University of Technology.

Stimuli
Stereoscopic stimuli were presented on a screen using a pair
of JVC D-ILA video projectors. A linear polarized filter was
placed in front of each projector. The images from the two
projectors were superimposed into one image and projected
onto a translucent screen inside the bore of the magnet. The
participants wore polarized glasses and viewed stimuli through
a slanted mirror (angled at 45◦) above the head coil. The optical
distance from the midpoints of the two eyes to the screen was
71 cm. The screen resolution was set at 1,024 × 768 pixels and
the refresh rate was 120 Hz.

The RDS stimuli comprised random black and white dots
generated using Psychotoolbox 3 in MATLAB (The MathWorks,
Natick, MA, USA). They depicted four surface types defined
by disparity as follows: the horizontal convex and concave
curved surfaces (Figure 1A) and vertical convex and concave
curved surfaces (Figure 1B). Each surface covered a square
of 14◦

× 14◦ and was presented on a mid-gray rectangular
background (23◦

× 18◦). The density of the stereogram was
41 dots/deg2; all the dots were of the same size and the diameter
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FIGURE 1 | Schematic illustration of the stimuli and block design.
(A) Horizontal hemi-cylindrical convex (left) and concave (right) surfaces.
(B) Vertical hemi-cylindrical convex (left) and concave (right) surfaces.
(C) Experimental set up (the example is a convex near surface). (D) Illusion of
the functional magnetic resonance imaging (fMRI) block design.

of the dots was 0.14◦. The radius of the surface was 4.4 cm.
The horizontal disparity of dots was calculated based on the
depth position and there was no vertical disparity between
corresponding dots. A fixation marker comprising a hollow
square with a side length of 0.5◦ and horizontal and vertical

nonius lines with a length of 0.375◦ was displayed at the center of
the screen to help participants maintain eye vergence. Figure 1C
shows the experimental set-up.

Experimental Design
Four stimulus types, namely horizontal convex, horizontal
concave, vertical convex, and vertical concave hemi-cylindrical
surfaces, were presented during the experiment at two different
depth positions (‘‘near’’ or ‘‘far’’) behind the fixation marker.
The distance from the nearest part of the surface and
fixation marker was simulated as 0 cm (‘‘near’’ condition,
uncrossed, absolute disparity of nearest part: 0◦) or 4.4 cm
(‘‘far’’ condition, uncrossed, absolute disparity of nearest
part: 0.30◦). Stimuli selected from a set of eight conditions
(2 shapes × 2 orientations × 2 depth positions) were presented
using a block design (Figure 1D). To avoid adaptation and
maintain neuronal activation, the stimulus in each block was
flashed on and off repeatedly for 0.5 s. Each time a stimulus
pattern was shown, the random dots were regenerated. Each
stimulus block comprised one of the eight conditions and lasted
15 s, and each stimulus condition was shown in two randomly
selected blocks per run. After each stimulus block, the participant
was required to make a judgment of the shape of the surface by
pressing the corresponding button on a keypad. The judgment
was followed by a 6 s fixation block. There was no fixation
block following the final judgment block. Each run began with
a 12 s fixation block. The total time taken for one run is
calculated as follows: (1) the time of all stimulus blocks is
15 × 8 × 2 = 240 s; (2) the time of all blocks for judgment is
3 × 8 × 2 = 48 s; and (3) the time of fixation blocks is 12 +
6 × (8 × 2 − 1) = 102 s. Therefore, each run lasted a total of
240 + 48 + 102 = 390 s. Participants were required to observe
the fixation marker and avoid any head movement during all
runs. Any runs with excessive head movement were discarded.
Excessive head movement was defined as head movement
of >2 mm or head rotation of >2◦ during each run. Overall,
participants were able to maintain their head static and at least six
usable echo-planar imaging (EPI) scans were obtained for each
participant.

fMRI Data Acquisition
Imaging was performed using a 3 Tesla Siemens Verio MRI
scanner with a 24-channel multi-phase array head coil at the
Brain Communication Research Centre of the Kochi University
of Technology. Participants’ heads were fixed with foam padding
to reduce movement. For each participant, a high resolution
T1-weighted anatomical scan (1 × 1 × 1 mm) was obtained to
construct the exact inflated and flattened cortical surface. For the
experimental scans, BOLD signals were measured using an EPI
sequence [echo time (TE): 30 ms; repetition time (TR): 3,000 ms;
number of volumes per run: 130; slice thickness: 3 mm; slice
acquisition order: interleaved] from 35 slices covering the visual
cortex, posterior parietal cortex, and posterior temporal cortex.
In addition, a T2-weighted structural image was obtained in a run
of 2.5 min and it was recorded at the same position as the slices of
the corresponding EPI data in one session. Structural data were
used as reference slices for 3D motion correction of EPI data as
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FIGURE 2 | Illustration of a flattened cortical surface with regions of interest
(ROIs) superimposed and percent signal change of each ROI. (A) ROIs. The
retinotopic areas (V1, V2, V3d, V3v, V3A), higher ventral area (LOC), higher
dorsal areas (KO, V7, hMT+), and intraparietal sulcus (IPS) areas [dorsal
intraparietal sulcus (DIPS), parieto-occipital intraparietal sulcus (POIPS),
ventral intraparietal sulcus (VIPS)]. Sulci are indicated in dark gray whereas
gyri are indicated in light gray. ROIs were defined by standard localizers in
separate sessions (see the “fMRI Data Acquisition” section). (B) Percent
signal change of each ROI. Error bars represent standard error of the mean
across participants (n = 8). Asterisks indicate that the percent signal change
is significantly greater than 0, as assessed by a t-test of group
data (∗p ≤ 0.004).

well as co-registration between T1-weighted anatomical images
and EPI images. Following co-registration between anatomical
and functional data in native anatomical space, all data were
converted to Talairach coordinates.

We measured the ROIs (Figure 2A) for each participant
using standard procedures in separate sessions prior to the main
experiment. Retinotopically organized visual areas, namely V1,
V2, V3d, V3v, and V3A, were localized by rotating wedge stimuli
and expanding concentric rings (Sereno et al., 1995; DeYoe et al.,
1996; Warnking et al., 2002). Area V7 was defined as the region
anterior and dorsal to V3A with a lower visual field quadrant
representation (Tootell et al., 1998; Tyler et al., 2005). Moreover,
we identified some higher ventral areas including the LOC, the
higher dorsal areas hMT+ and KO, and areas along the IPS
including VIPS, POIPS, and DIPS using special independent
localizers. LOC was identified as a set of continuous voxels in
the lateral occipito-temporal cortex that showed significantly
stronger activation (p < 10−4) to intact vs. scrambled images of
objects (Kourtzi and Kanwisher, 2000, 2001). hMT+ was defined
as a set of continuous voxels in the lateral temporal cortex that
demonstrated significantly stronger activation (p < 10−4) to a
set of coherent outward and inward moving dots compared to
static dots (Zeki et al., 1991). KO was identified as a set of voxels

that responded significantly stronger activation (p < 10−4) to
motion-defined contours than the transparent motion of a field
of black and white dots (Dupont et al., 1997; Zeki et al., 2003).
Stimuli comprising nine randomly connected lines were used
to locate the IPS areas (VIPS, POIPS, and DIPS). These areas
were identified by contrasting activity to 3D shapes, which was
produced by rotating stimuli in depth, vs. activity to 2D shapes,
which was produced by moving stimuli along a frontoparallel
plane (Vanduffel et al., 2002).

Data Analysis
Pre-processing
Data processing and analysis were performed using the
Freesurfer software package (Fischl, 2012), BrainVoyager
QX (Version 2.8.4.2645, 64-bit; BrainInnovation, Maastricht,
Netherlands), MATLAB R2014a (The MathWorks, Natick, MA,
USA), and SPSS Statistics 23 (IBM Inc., Armonk, NY, USA).
Freesurfer was used to remove the scalp of the T1-weighted 3D
anatomical image per participant and segment the remaining
parts into different regions, such as those of the outer skull and
inner skull. The white matter (WM) was separated from the
other components and later used as a mask to segment WM
and gray matter (GM) in BrainVoyager QX. The brain was
extracted from the skull and other tissues. Thereafter, we used
BrainVoyager QX to transform the extracted brain into standard
Talairach space. The flattened cortical surface of each participant
was generated by segmenting the cortical surface along the
GM/WM boundary, inflating the segmented GM, cutting along
the calcarine sulcus, and flattening. The flattened cortical surface
was used for visualizing functional maps and delineating ROIs,
which were later used in the MVPA procedure. For the EPI
data, 3D motion correction was performed (Woods et al., 1998)
referencing the T2-weighted image obtained at the beginning
of each session. No spatial smoothing was performed. Finally,
co-registration was performed to align the functional EPI data
to the T1-weighted anatomical data, and the functional EPI data
were transformed into Talairach space.

ROI-Based Univariate Analysis
Univariate analysis was performed to assess whether the overall
BOLD signal pattern in each selected ROI was higher for all
stimuli compared with that at the fixation baseline. We calculated
the ‘‘percent signal change’’ for the stimuli vs. the fixation
baseline. The fMRI time courses were shifted by two volumes
(6 s) to account for the hemodynamic delay of the BOLD signal.
The percent signal change values were averaged across all runs
and all participants.

SPSS Statistics 23 was used for statistical hypothesis testing.
One-sample t-tests were used to assess whether percent signal
change was significantly higher than chance level for each ROI.

ROI-Based MVPA
MVPA method is widely used to identify the global patterns
of the cortical areas of the human brain and is useful for
discovering function of the cortical areas. It allows the detection
of subtle differences between the conditions of interest but it
may bear unexpected pitfalls (Alizadeh et al., 2017). We carefully
performed a series of MVPA for the EPI data for each ROI
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in MATLAB. SVM was used as the classifier for MVPA. The
implementation of SVM was provided by MATLAB. Typically,
two types of classifications were performed. The first was a
same-type stimuli classification wherein we trained and tested
SVM on the same type of data. This was performed to investigate
whether specific patterns were contained in the dataset. The
second was a transfer classification wherein we trained and
tested SVM on different types of data. This was performed
to assess whether a pattern contained in one type of data
was also contained in another type of data. This is a useful
method for determining whether a specific pattern is shared by
different datasets.

Our MVPA procedure is as follows. Due to the hemodynamic
delay of the BOLD signal, the fMRI time courses were shifted
by two volumes (6 s). For each ROI in Talairach space, voxels
were selected from both hemispheres and sorted from the
largest to smallest according to their response (t-statistic) to
the stimulus conditions compared with the fixation baseline.
Using the t-statistics from the ‘‘stimulus vs. fixation baseline’’
contrast, the top 250 voxels were selected for all ROIs and all
participants. For ROIs of participants for whom 250 voxels were
unavailable, the highest number of voxels available was used for
the classification.

To estimate the value for each voxel of the ROIs used as input
for SVM for each stimulus block, the average value of the first
three volumes after stimulus onset (avg1) and the average value of
the last two volumes before stimulus onset (avg2) corresponding
to the fixation baseline (after shifting by two volumes) were
calculated. The avg1 − avg2 difference was then calculated.
Thereafter, the time series differences were transformed into z-
scores and transmitted to SVM for training and testing.

The leave-one-run-out cross-classification method was used
to evaluate the performance of the MVPA classification, i.e., data
were partitioned according to the run they belong to, and data
from one run were used for testing, whereas data from other
runs were used for training. This procedure was repeated with
different partitions of the data. The classification accuracy for
each ROI was calculated as the average classification accuracy
of all cross-classifications. The classification accuracies of all
participants were averaged for each ROI.

To estimate the baseline for statistical significance,
we performed classification analysis with randomly
permutated fMRI patterns for all ROIs, i.e., we randomized
the correspondences between fMRI data and labels and
performed classification similar to that performed for normal
non-permutated data. This procedure was repeated 1,000 times
to create a distribution of classification accuracies. We used
the 99.6th percentile (one-tailed, 12 ROIs) as the baseline for
statistical significance.

RESULTS

ROI-Based Univariate Analysis
The average percent signal changes across all runs and all
participants per ROI are shown in Figure 2B. All ROIs showed
a percent signal change >0 for the condition stimuli vs. fixation
baseline, indicating that the BOLD signal from these ROIs were

more strong during the stimuli condition than in the fixation
baseline condition. However, the percent signal change was not
significantly greater than 0 for the dorsal area hMT+ and parietal
areas POIPS and DIPS. The reason for the absence of a significant
change by these ROIs could be the trend in which signal changes
increasingly became weaker from the early visual areas to higher
visual areas, that the signal changes in these three areas were
relatively weak, and that our criterion for significance was strict
(∗p ≤ 0.004). Regardless, they still showed an average signal
change greater than 0.

ROI-Based MVPA
Classification Accuracy for the Sign of Curvature
Discrimination
We performed three types of the sign of curvature classifications
(Figure 3A) as follows: (i) same-type stimuli sign of curvature
classification (denoted by green arrows); (ii) transfer sign of
curvature classification of the surfaces at the same depth position
(denoted by red arrows); and (iii) transfer sign of curvature
classification of the surfaces at different depth positions (denoted
by blue arrows).

Same-Type Stimuli Sign of Curvature Classification
To investigate whether ROIs are selective to the sign of curvature
of convex and concave surfaces, ‘‘same-type stimuli sign of
curvature classification’’ was performed. Each stimulus exhibited
the following three attributes: position (near or far), orientation
(horizontal or vertical), and sign of curvature (plus or minus).
Here, the ‘‘same-type stimuli sign of curvature classification’’
refers to trained and tested SVM using the same type of data,
i.e., both the training and the testing data were of the same depth
position (near or far) and orientation (horizontal or vertical).
For example, SVM was trained on (horizontal, near) surfaces
data and then tested using the same type of data (horizontal,
near) surfaces. Similarly, we trained SVM on [(horizontal, far),
(vertical, near), and (vertical, far)] surfaces separately and then
tested SVM on the corresponding types of data (see 1.a, 1.b,
1.c, 1.d of Figure 3A). The average classification accuracy values
across the four types of data of the eight participants are shown
in Figure 3B–1.

All areas showed an average classification accuracy higher
than chance level for the two-class classification (50%). The V1;
V2; dorsal areas V3d, V3A, V7, and KO; ventral area LOC;
and parietal area VIPS exhibited a classification accuracy higher
than the baseline of statistical significance, suggesting that these
areas are related to the processing of the sign of curvature of
curved surfaces.

Transfer Sign of Curvature Classification of Surfaces at the
Same Depth Position
The ability of SVM to classify the sign of surface curvature with
accuracy higher than the baseline of statistical significance is
attributable to two main reasons. One is that the BOLD signal
patterns in ROIs reflect the local disparity of surfaces. The local
disparity between surfaces with a different sign of curvature was
different; it is possible that the multi-voxel BOLD signal patterns
in ROIs reflect these differences and SVM used the differences
for classification. The second possibility is that the multi-voxel
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FIGURE 3 | Sign of curvature classification and results. (A) Illustration of the
types of the sign of curvature classification performed. 1.a, 1.b, 1.c, and 1.d
represent same-type stimuli classification. 2.a, 2.b, 2.c, and 2.d represent
transfer the sign of curvature classification of surfaces at the same depth
position. 3.a, 3.b, 3.c, and 3.d represent transfer the sign of curvature
classification of surfaces at different depth positions. (B) The accuracy of
classification for convex vs. concave discrimination. (1) The accuracy of
classification for the sign of curvature discrimination for same-type stimuli.
(2) The transfer sign of curvature classification of surfaces at the same depth
position. (3) The transfer sign of curvature classification of surfaces at different
depth positions. The red horizontal dotted lines indicate the baselines of
statistical significance for ROIs. The locations of these lines indicate the upper
99.6% percentile of the distribution of the accuracy of classification of the
permutated data. The black horizontal line indicates the chance level for
two-class classification. The error bars depict the standard error of the mean
across subjects (n = 8).

BOLD signal pattern reflects a more generalized sign of surface
curvature representation and SVM classified surfaces based on
these patterns.

To assess whether each ROI is related to binocular disparity or
more generalized processing of sign of curvature representation,
the transfer sign of curvature classification of surfaces at the same
depth position was performed.

There are three points that should be mentioned as follows:
(1) the sign of surface curvature classification was performed
by classifying whether a convex or concave surface was shown
during the stimulus blocks; (2) the training and testing data
were selected from blocks when stimuli were shown at the same
depth condition; and (3) ‘‘transfer’’ indicates that the data used
for training and testing had different attributes in terms of
orientation (horizontal or vertical). For example, we trained SVM
using data in which horizontal surfaces were shown and then
tested SVM using data in which vertical surfaces were shown
at the same depth position and vice versa. The classification is
illustrated in 2.a, 2.b, 2.c, and 2.d of Figure 3A. The average
accuracy values for the four classification types across the eight
participants are shown in Figure 3B–2. In the higher dorsal
areas V3A and KO, ventral area LOC, and parietal area VIPS,
the fMRI responses evoked by one type of surfaces (horizontal
or vertical) could allow the sign of curvature classification of
responses evoked by the other type of surfaces (vertical or
horizontal, respectively). Because the disparity patterns of the
surfaces used for training and testing were different, this result
was probably related to more generalized processing of the sign of
surface curvature.

To further investigate whether generalized representation is
invariant of depth position, we performed the transfer sign of
curvature classification of surfaces at different depth positions.

Transfer Sign of Curvature Classification of Surfaces at
Different Depth Positions
In this type of classification, SVM was trained to classify the
sign of curvature of surfaces. ‘‘Transfer’’ indicates that the data
used for training and testing have different attributes in terms
of both depth position and orientation. For example, we trained
SVM using data with horizontal surfaces in the far position
and tested SVM using data with vertical surfaces in the near
position. These classifications are illustrated by arrows 3.a, 3.b,
3.c, and 3.d of Figure 3A. The average accuracies for the four
types of classification across eight participants are shown in
Figure 3B–3.

As shown, only the classification accuracy for V3A was
higher than the baseline of statistical significance (classification
accuracy: 54.05%; baseline of statistical significance: 53.92%).
This indicates that V3A is related to a more generalized
representation of sign of surface curvature and is invariant to
depth position.

Alternatively, the near–far information between the center
and surrounding of the surfaces could support all the three types
of sign of surface curvature classification. Moreover, for ‘‘the
same-type stimuli sign of curvature classification’’ and ‘‘transfer
sign of curvature classification of surfaces at the same depth
position,’’ the different depth positions of peaks of surfaces with
a different sign of curvature could be used for classification.
To exclude this possibility, we investigated the classification
accuracy for near vs. far surface discrimination. Figure 4A
illustrates the near–far classification performed. We performed
same-type stimuli near–far classification. SVM was trained to
classify a near vs. far position of the surfaces. ‘‘Same-type stimuli’’
indicates that the data used for training and testing exhibited
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FIGURE 4 | Near–far classification and results. (A) Illustration of the near–far
classification. We trained and tested support vector machine (SVM) using the
same type of data. (B) The accuracy of classification for near vs. far
discrimination using same-type stimuli. The red horizontal dotted lines
indicate the baselines of statistical significance for ROIs. The locations of
these lines indicate the upper 99.6% percentile of the distribution of the
accuracy of classification of the permutated data. The black horizontal line
indicates the chance level for two-class classification.

the same sign of curvature (plus or minus) and same orientation
(horizontal or vertical). For example, we trained and tested SVM
using data with horizontal surfaces with minus curvature. The
average classification accuracies for the four types of data across
all participants are shown in Figure 4B.

As shown, the average classification accuracy for V3A was
approximately that of chance level for two-class classification,
indicating that near–far surfaces cannot be classified by V3A,
at least in our experimental setting. By combining our findings
thus far, we can conclude that the higher-than-baseline accuracy
for the sign of curvature classification in V3A was not likely to
be based on the multi-voxel BOLD signal pattern that reflect
near–far information between the center and side of the stimulus
(because we cannot classify near–far surfaces by V3A in our
experimental setting); rather, it is likely related to the pattern that
reflects the generalized sign of surface curvature representation.
This result is consistent with our hypothesis that the dorsal
area V3A is a candidate involved in generalized sign of surface
curvature representation.

The results showed high accuracy in the three types of the
sign of curvature discrimination in V3A. The information used
for the discrimination, however, may be different: (1) for the
‘‘same-type stimuli sign of curvature classification,’’ it may be
explained by local disparities (or zero-order disparity) because
of the training data and testing data were of identical type;
(2) for the ‘‘transfer sign of curvature classification of surfaces
at the same depth position,’’ it is may be classified according
to the different depth positions of the peaks of surfaces with

the different sign of curvature or near–far information between
the center and surroundings of the surfaces. However, we also
checked ‘‘same-type stimuli near–far classification,’’ for which
disparities were different between near and far surfaces. The
result showed that in our experimental condition, the accuracy of
the classification was approximately that of chance level in V3A.
Considering this finding, we can infer that it was unlikely to be
classified by these two reasons; and (3) for the ‘‘transfer sign of
curvature classification of surfaces at different depth position,’’
the disparity of surfaces for training (e.g., horizontal surfaces
in the near depth position) and disparity of the surfaces for
testing (e.g., vertical surfaces in the far depth position) were quite
different. Hence, it is unlikely to be classified by local disparities.
In addition, V3A is on the dorsal visual stream, and this visual
stream is related to coarse stereopsis. It is likely that V3A was
involved in the representation of the sign of surface curvature in
a more abstract (coarse) manner, which did not depend on the
orientation of the surface and depth position. Therefore, V3A
showed high accuracy in this classification. Notably, the high
accuracy demonstrated by V3A showed in our classification does
not indicate that the ventral stream areas were not involved in
the generalized representation of shape. There is an exchange of
information between dorsal and ventral streams (Yeatman et al.,
2014; Sim et al., 2015; Takemura et al., 2016). We observed that
V3A showed statistical significance in all the three types of sign of
curvature classification. In conclusion, V3A is a crucial part of the
process related to the more generalized sign of surface curvature
representation, and the results are consistent with those reported
in previous studies.

Classification Accuracy for Horizontal vs. Vertical
Surfaces Discrimination
In addition to the representation of the sign of surface curvature
defined by disparity, we investigated the representation of
orientation of stereoscopic surfaces among ROIs. Accordingly,
ROI-based MVPA was performed. The following three types
of horizontal vs. vertical surface classifications were conducted
(Figure 5): (i) the same-type stimuli horizontal–vertical surfaces
classification; (ii) the transfer horizontal–vertical classification
of surfaces with different signs of curvature at the same depth
position; and (iii) the transfer horizontal–vertical classification
of surfaces with different signs of curvature at different
depth positions.

Same-Type Stimuli Horizontal–Vertical Surfaces
Classification
We trained SVM to classify the orientation of surfaces, i.e., to
judge whether surfaces were horizontal or vertical. ‘‘Same-type
stimuli’’ indicate that both the training and testing data were of
the same sign of curvature (plus or minus) and depth position
(near or far). For example, we trained and tested SVM using data
with horizontal–vertical surfaces with minus sign of curvature
in the near position. This classification is illustrated in 1.a, 1.b,
1.c, and 1.d of Figure 5. The average classification accuracies
for all data types across the eight participants are shown in
Figure 5B–1.
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FIGURE 5 | The horizontal–vertical classification, results and local disparity
for classification. (A) Illustration of the horizontal–vertical classification. 1.a,
1.b, 1.c, and 1.d indicate same-type stimuli horizontal–vertical surfaces
classification. 2.a, 2.b, 2.c, and 2.d indicate transfer horizontal–vertical
classification of surfaces with different signs of curvature at the same depth
position. 3.a, 3.b, 3.c, and 3.d indicate transfer horizontal–vertical
classification of surfaces with different signs of curvature at different

(Continued)

FIGURE 5 | Continued
depth positions. (B) The accuracy of classification for horizontal vs. vertical
discrimination: (1) The accuracy of classification for same-type stimuli
horizontal–vertical surfaces classification. (2) The accuracy of classification for
transfer horizontal–vertical classification of surfaces with different signs of
curvature at the same depth position. (3) The accuracy of classification for
transfer horizontal–vertical classification of surfaces with different signs of
curvature at different depth positions. The red horizontal dotted lines indicate
the baselines of statistical significance for ROIs. The locations of these lines
indicate the upper 99.6% percentile of the distribution of the accuracy of
classification of the permutated data. The black horizontal line indicates the
chance level for two-class classification. (C) A schematic illustration of two
surfaces of different shapes of the same orientation at different depth
positions that share some similar disparity patterns. (1) A horizontal concave
surface in the near position and a horizontal convex surface in the far position
are shown. These two surfaces share a similar disparity pattern around the
position shown by the horizontal red dotted line. (2) Vertical concave surface
in the near position and vertical convex surface in the far position. These two
surfaces share a similar disparity pattern around the vertical dotted red line.

The accuracies of classification for distinguishing horizontal
vs. vertical orientation among all areas were higher than the
baseline of statistical significance, indicating that multi-voxel
pattern in all ROIs contains robust orientation information.

Transfer Horizontal–Vertical Classification of Surfaces
With Different Sign of Curvature
This classification included two types as follows: the ‘‘transfer
horizontal–vertical classification of surfaces with different signs
of curvature at the same depth position’’ and the ‘‘transfer
horizontal–vertical classification of surfaces with different signs
of curvature at different depth positions.’’

The reasons for SVM showing a horizontal–vertical
classification accuracy higher than the baseline of statistical
significance for same-type stimuli horizontal–vertical surfaces
may be the following. First, the disparity patterns of horizontal
surfaces and vertical surfaces were different. The multi-voxel
patterns could reflect this disparity, and the SVM used the
differences for the classification. Second, the multi-voxel
patterns could reflect horizontal and vertical orientation
representation processing, i.e., these multi-voxel patterns reflect
the representation of horizontal–vertical orientations of surfaces
and SVM classified the surfaces based on these patterns. To
investigate whether the significantly high accuracy for each ROI
depended on disparity or more generalized horizontal–vertical
orientation representation irrespective of sign of surface
curvature, ‘‘transfer horizontal–vertical classification of surfaces
with different sign of curvature at the same depth position’’
was performed. SVM was trained to classify whether a stimulus
shown to a participant was horizontal or vertical. ‘‘Transfer’’
indicates that the stimuli used for training and testing exhibited
different sign of curvature but the same depth position. For
example, data of surfaces with a minus sign of curvature shown
in the near position were used to train SVM and data of surfaces
with a plus sign of curvature shown in the near position were
used to test SVM. The classification is illustrated in 2.a, 2.b, 2.c,
and 2.d of Figure 5A. The average accuracies of classification for
the four types of classification across all participants are shown in
Figure 5B–2. In the dorsal areas V3A and V7, higher ventral area
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LOC, and parietal areas VIPS and POIPS, the fMRI responses
evoked by one type (minus or plus) of horizontal–vertical surface
can allow the classification of the response evoked by another
type (plus or minus, respectively) of horizontal–vertical surface
at the same depth position. This finding suggests that these
areas are related to the generalized processing of orientation of
stereoscopic surfaces irrespective of disparity types.

For the ‘‘transfer horizontal–vertical classification of surfaces
with different signs of curvature at different depth positions,’’
SVM was trained to classify the horizontal–vertical orientation
of the surface of a stimulus shown to participants. ‘‘Transfer’’
indicates that the data used for training and testing had different
attributes in sign of curvature (plus or minus) and depth (near
or far). For example, SVM was trained using data with a
surface with a minus sign of curvature in the near position
and SVM was tested using data with a surface with a plus
sign of curvature in the far position. These classifications
are shown by arrows 3.a, 3.b, 3.c, and 3.d in Figure 5A.
However, there is other information that could support this
type of horizontal–vertical classification, namely there are some
common disparity patterns between the surfaces of different
sign of curvature and the same orientation at different depth
positions. In detail: (1) for the pair [(horizontal, concave, near)
surface and (horizontal, convex, far) surface] and the pair
[(vertical, concave, near) surface and (vertical, convex, far)
surface], the former pair of surfaces share a common disparity
pattern at the horizontal red line shown in (1) in Figure 5C;
the latter pair of surfaces share a common disparity pattern
at the vertical red line in (2) in Figure 5C. The difference
between the former and latter common patterns can be used for
horizontal–vertical classification, wherein an SVM was trained
on concave surfaces in the near position and tested on convex
surfaces in the far position and vice versa (3.c and 3.a in
Figure 5A); and (2) for the pair [(horizontal, convex, near)
surface and (horizontal, concave, far) surface] and pair: [(vertical,
convex, near) surface and (vertical, concave, far) surface], the
former pair of surfaces share a common disparity pattern at
the uppermost and lowermost horizontal lines; the latter pair
of surfaces share a common disparity pattern at the most left
and right vertical lines. The difference between the former
and latter common patterns can be used for horizontal–vertical
classification, wherein an SVM was trained on a convex surface
in the near position and tested on a concave surface in the far
position and vice versa (3.b and 3.d in Figure 5A). Therefore,
whether the representation is invariant of depth position cannot
be verified. The average accuracies of all classifications across
the eight participants are shown in Figure 5B–3. As shown,
in addition to the areas (except the LOC) with an accuracy of
classification higher than the baseline of statistical significance
for ‘‘transfer horizontal–vertical classification of with different
sign of curvature at the same depth position,’’ those of the
dorsal areas KO and hMT+ and the parietal area DIPS are
higher than the baseline of statistical significance. For the LOC,
accuracy is higher than the baseline of statistical significance
in ‘‘transfer horizontal–vertical classification of surfaces with
different signs of curvature at the same depth position’’ but not
for ‘‘transfer horizontal–vertical classification of surfaces with

different signs of curvature at different depth positions.’’ This is
possible because the LOC is selective to depth position. Preston
et al. (2008) showed that the LO, a sub-region of the LOC,
contains information regarding the depth position of planes
depicted by an RDS.

In summary, although we were unable to confirm that the
orientation representation is invariant with depth position, we
can conclude that the dorsal areas V3A and V7, the higher ventral
area LOC, and the parietal areas VIPS and POIPS are somewhat
related to the generalized representation of horizontal–vertical
orientation of surfaces. In addition, because in the LOC, accuracy
in ‘‘transfer horizontal–vertical classification of surfaces with
different signs of curvature at different depth positions’’ was
lower than the baseline for statistical significance, we can confirm
that the orientation representation in the LOC is not invariant
with depth position.

DISCUSSION

In the present study, we used the MVPA method and fMRI
data to investigate the sign of curvature and orientation
representations of 3D surfaces defined by binocular disparity.
By comparing a series of the accuracies of classification
across ROIs, we found that all types of sign of curvature
classification—including the ‘‘same-type stimuli sign of
curvature classification,’’ ‘‘transfer sign of curvature classification
of surfaces at same depth position,’’ and ‘‘transfer sign
of curvature classification of surfaces at different depth
positions’’—showed an accuracy of classification higher than the
baseline of statistical significance in the dorsal area V3A. For
horizontal–vertical orientation classification, the accuracies of
classification for both ‘‘same-type stimuli horizontal–vertical
classification’’ and ‘‘transfer horizontal–vertical classification
of surfaces with different signs of curvature at same depth
position’’ were significant in the dorsal areas V3A and
V7, higher ventral area LOC, and parietal areas VIPS and
POIPS. In summary, these results indicate that the dorsal
area V3A is related to the generalized representation of
the sign of curvature and that some dorsal and ventral
areas, as well as parts of IPS, are related to the generalized
horizontal–vertical orientation representation of surfaces defined
by disparity.

Comparison With Earlier Studies of Shape
Representation
In the ‘‘two-stream’’ theory of cortical areas, visual information is
processed progressively from the early visual areas to higher areas
and divided into two anatomically and functionally separate
streams after V1. Each stream processes visual information in
a hierarchical manner, with each area processing information
based on the results of previous areas (Zeki, 1978). Mishkin
and Ungerleider (1982) first conceptualized this theory based
on lesion research of non-human primates. The ventral stream
has been termed the ‘‘what’’ stream whereas the dorsal stream
has been termed the ‘‘where’’ stream, as the ventral stream is
related to an object’s shape and identity whereas the dorsal
stream is related to object’s location and spatial relationships.
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According to this perspective, 3D shape representation should
exist on the ventral stream. More recently, a revised ‘‘two-
stream’’ theory was offered by Goodale and Milner (1992).
Rather than viewing both streams as contributing to conscious
visual awareness, they argue that only the ventral stream
contributes to conscious vision (known as the ‘‘perception’’
stream). Information in the dorsal pathway is used for the
unconscious control of action, such as the movement of the
body guided by visual input (known as the ‘‘action’’ stream).
From this view, shape representation can exist on both the
ventral and dorsal pathways with representation in the ventral
stream serving as perception and in the dorsal stream as
visually guided action. There is ample evidence that 3D shape
information from monocular cues is processed both in the
ventral and dorsal visual streams in humans (Orban et al., 1999;
Paradis et al., 2000; Taira et al., 2001; Georgieva et al., 2008).
In macaques, stereo information has been found in both the
dorsal and ventral visual stream (Parker, 2007). Further, in an
fMRI study of patients suffering from visual object agnosia
due to a ventral cortex lesion (dorsal cortex is intact), Freud
et al. (2017) found that the dorsal cortex can mediate object
representations that are dissociable from object representations
in the ventral stream, and together with other evidence, they
claimed that representations in the dorsal stream mediate the
processing of object-related structural information, but are
insufficient for normal object perception. However, there is
no complete agreement on the distinction between the two
pathways and the role played by each area on the pathways.
Ventral ‘‘perception’’ and dorsal ‘‘action’’ separation has been
challenged by findings that dorsal areas are also involved in
shape representation for tasks that do not involve visually
guided action (Sereno et al., 2002; Lehky and Sereno, 2007;
Konen and Kastner, 2008).

Specifically, for the representation of shape from disparity,
disparity-selective neurons are widely distributed throughout
the visual cortical areas, from as early as the striate cortex
(V1 or primary visual cortex) to extra-striate and higher
areas like the posterior parietal and inferior temporal cortices
in both the dorsal stream and ventral visual streams (Neri
et al., 2004). In the early visual area V1, neurons show
selectivity for absolute disparity of RDS stimuli (Cumming
and Parker, 1997). The neurons in V2 show selectivity for
absolute and relative disparities (Thomas et al., 2002) and
can transform absolute disparity to relative disparity during
3D vision, which is important for invariant object recognition
(Grossberg et al., 2011). Besides the V3A, the dorsal regions,
including V3B/KO and V7, are involved in processing disparity-
defined depth (Preston et al., 2009). The neurons’ selectivity
for binocular disparity creates a foundation for ROIs showing
accuracy for classifying stereoscopic shapes above the baseline
of statistical significance in our experiment, whereas the wide
distribution of these neurons suggests that several areas, from
the early visual areas to higher areas, offer a high-level accuracy
of classification.

In the present study, we first examined the same-type stimuli
sign of curvature classification. The ROIs are involved in
processing of the sign of surface curvature were found in both

the dorsal (V1, V2, V3d, V3A, V7, KO, and VIPS) and ventral
(V1, V2, and LOC) streams. This finding is consistent with the
two-stream theory, in which shape representation in the ventral
stream mediates shape perception, while shape representation in
the dorsal stream mediates visually guided actions. However, we
cannot be certain whether the sign of curvature representations
in the dorsal areas are involved in visually guided actions
or not, although our results support that this representation
can exist in the dorsal areas. Therefore, this question requires
further research.

Besides investigating the involvement of processing the
sign of curvature of surfaces defined by disparity in ROIs, we
investigated whether the ROIs are involved in the processing
of low-level binocular disparity or more a generalized
representation, which may relate to perception or visually
guided actions. This was performed by the ‘‘transfer sign of
curvature classification of surfaces at the same depth position’’
and ‘‘transfer sign of curvature classification of surfaces at
different depth positions’’ analyses; the analyses revealed that
all classification accuracies in the dorsal area V3A were higher
than the baseline of statistical significance, indicating that V3A
is involved in the more generalized representation of sign of
surface curvature that does not depend on local disparity pattern
(orientation and depth position).

To the best of our knowledge, there is no direct research on
the generalized representation of the sign of curvature of surfaces
solely defined by disparity. However, there is some related
research. Dövencio ğlu et al. (2013) adopted convex ‘‘bumps’’
and concave ‘‘dimples’’ defined by shading, binocular disparity,
and their combination. By comparing pattern classifications in
different visual cortical areas, they found that fMRI BOLD signals
in the dorsal visual area V3B/KO were more discriminable when
disparity and shading concurrently signaled depth, indicating the
integration of these two cues. In a cross-cue transfer test, they
found that the fMRI BOLD signal evoked by one type of cue
could support the classification of a signal evoked by another
type of cue, which indicates the generalized representation of
shapes in the dorsal visual cortex by combining qualitatively
different information with 3D perception. However, the results
of the present study differ from those of Dövencio ğlu et al.
(2013). There are several possible reasons for this difference.
First, we focused on 3D shape from binocular disparity
whereas Dövencio ğlu et al. (2013) focused on 3D shape
from binocular disparity and shading. Our research revealed
a common multi-voxel BOLD signal patterns caused by the
surface of same shape from different disparity patterns, whereas
Dövencio ğlu et al.’s (2013) research revealed a common multi-
voxel BOLD signal pattern caused by the same shape from
different cues. Second, the convex–concave shapes used in our
experiment and those in Dövencio ğlu et al.’s (2013) experiment
were different. We adopted horizontal-positioned and vertical-
positioned hemi-cylindrical convex–concave surfaces, while they
used convex ‘‘bumps’’ and concave ‘‘dimples’’ of hemispheric
shapes. Nevertheless, our finding that V3A is involved in a
more generalized shape representation does not contradict that
of previous research: in macaques, clusters of disparity-selective
neurons have been found in V3A (Anzai et al., 2011; Hubel et al.,
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2015); using a 7T fMRI scanner, Goncalves et al. (2015) showed
that disparity-selective neurons in the visual cortical areas were
clustered and that this organization persisted across imaging
sessions, particularly in the V3A. These studies showed that V3A
is disparity-selective and is possibly a locus that is related to a
generalized representation of sign of surface curvature.

Comparison With Earlier Studies on
Orientation Representation
The perception of orientation is essential for reconstructing the
3D structure of an object. Previous studies have demonstrated
that the parietal lobe plays an important role in orientation
representation. Cues that support the depth discrimination of
orientation include linear perspective and texture, velocity, and
disparity gradients (Johnston and Passmore, 1994). These cues
can be divided into the two following categories: monocular cues
and binocular cues. In a study of alert monkeys, Shikata et al.
(1996) found that neurons in the lateral bank of the caudal part of
the intraparietal sulcus (CIP) were sensitive to the orientation of
a surface defined by disparity. Neurons from this region were also
shown to be selective to binocular disparity gradients in monkeys
(Sakata et al., 1998; Taira et al., 2000). Tuning to disparity-
defined 3D surface orientation has also been found in TE regions
(Janssen et al., 2000).

In our study of orientation representation of 3D surfaces
defined by disparity, we first investigated the whether ROIs are
involved in orientation processing using the ‘‘same-type stimuli
horizontal–vertical surfaces classification.’’ The accuracies of
classification were higher than the baseline of statistical
significance for all ROIs including the V1, V2, the ventral visual
areas V3v and LOC, the dorsal visual areas V3d, V3A, KO,
hMT+, and V7, and the IPS areas VIPS, POIPS, and DIPS.
This finding is consistent with those of previous reports that
disparity-selective neurons are widely distributed across visual
cortical areas. To investigate the more generalized representation
of horizontal–vertical orientation, we performed a ‘‘transfer
horizontal–vertical classification of surfaces with different signs
of curvature at the same depth position.’’ The results showed
that from higher dorsal areas to the parietal areas V3A, V7,
VIPS, and POIPS and ventral area LOC, the accuracies of
classification were higher than chance level, suggesting that these
areas are involved in the more generalized representations of
orientation. The neurons in the CIP were previously shown to
be sensitive to monocular texture gradient cues as well as to
disparity, suggesting that they integrate texture and disparity
gradient signals to construct a generalized representation of 3D
surface orientation (Tsutsui et al., 2002). Ban and Welchman
(2015) inferred the computational hierarchy that supports the
estimations of slant using fMRI measurements and a series
of generative models, and found that V3A was involved in
slanted surface information representation by pooling disparity
across space; the representation was largely unaffected by
low-level stimulus changes, and V3A response showed a degree
of tolerance across different depth positions. They concluded
that V3A, which anatomically precedes CIP in macaques, is
an earlier locus for processing the disparity signals of slant.
This finding is consistent with our finding that the accuracy of

classification in V3A was higher than the baseline of statistical
significance. In addition, we found that the areas V7, VIPS,
and POIPS may be related to the generalized representation of
orientation. This is consistent with previous animal research
showing CIP involvement in orientation representation through
monocular cues such as texture gradient and perspective as
well as binocular cues of binocular disparity, suggesting that
representation in this area may be more generalized (Tsutsui
et al., 2001, 2002). Moreover, the relationship between human
and monkey neuroanatomy is not exact; the human V7 and/or
VIPS are considered to correspond to the macaque CIP (Orban
et al., 2006a). Therefore, it is reasonable that the human areas
V7 and VIPS were selective to orientation.

Other MVPA Analysis
Janssen et al. (2001) showed that neurons in the TEs represent
differences in the second-order disparities of 3D shapes.
Moreover, they found that the neurons in TEs can code the
orientation of curvature (i.e., vertical or horizontal). Therefore,
one may believe that the representation of vertical gradients (as in
horizontally oriented cylinders) and that of horizontal gradients
(as in vertically oriented cylinders) should be different. However,
this may not necessarily be true. In the aforementioned study,
the ‘‘selectivity for horizontal compared with vertical 3D shapes’’
was investigated, and the following combinations were verified:
(1) the neurons selective for vertical but not for horizontal 3D
shapes; (2) neurons selective for both directions of curvature;
and (3) neurons selective for horizontal but not for vertical. A
total of 104 neurons were tested, and the result showed that 16 of
those neurons were selective for both vertical and horizontal 3D
shape. In this regard, there may be neurons that are selective for
both types of surfaces in some areas of the visual cortex. For a
comprehensive investigation, we examined two additional types
of classification in which horizontal surfaces and vertical surfaces
were independently analyzed.

Two additional types of classification were also performed
in our analysis. The first type was related to the sign of
surface curvature classification, whereas the second type was
related to the classification of the surface position in terms of
depth. First, to investigate whether ROIs were involved in the
generalized representation of the sign of curvature irrespective
of the depth position of the surface, additional transfer sign
of curvature classification was performed (hereafter denoted
by A1). This classification is illustrated in Figure 6A (1.a,
1.b, 1.c, and 1.d). We trained the SVM using data of surfaces
at the near position and tested using data of surfaces in
the same orientation at the far position and vice versa. The
average accuracy of the four types of classification across eight
participants is shown in Figure 6C–1. The results showed that
V1; V2; dorsal areas V3d, V3A and KO; and the parietal area
VIPS exhibited an accuracy of classification that was statistically
significant. Second, to identify the areas containing information
regarding the depth position of the surface, an additional
near–far classification was performed (hereafter denoted by
A2). As illustrated in Figure 6B (1.a and 1.b), we trained
and tested the SVM using data of surfaces for both the plus
and minus sign of curvature in the same orientation. The
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FIGURE 6 | Additional analysis and results. (A) Illustration of the additional
types of the sign of curvature classification performed. 1.a, 1.b, 1.c, and 1.d
represent the transfer sign of curvature classification that trained the SVM
using data of surfaces at the near position and tested the SVM using data of
surfaces at the far position, and vice versa (denoted by A1). (B) Illustration of
the additional near–far classification performed. We trained and tested the
SVM using data of both convex and concave surfaces with the same
orientation (denoted by A2). (C) Accuracy of the additional types of
classification. (1) The accuracy of classification for the additional classification
A1. (2) The accuracy of classification for the additional classification A2. The
red horizontal dotted lines indicate the baselines of statistical significance for
the ROIs. The locations of these lines indicate the upper 99.6% percentile of
the distribution of the accuracy of classification of the permutated data. The
black horizontal line indicates the chance level for two-class classification.

average accuracy of the two types of classification across eight
participants is shown in Figure 6C–2. The results showed that
accuracy of classification in all ROIs did not reach the baseline of
statistical significance.

Furthermore, the additional analysis showed the following:

1. For classification A1, the results were similar to those reported
for ‘‘same-type stimuli sign of curvature classification’’ in
‘‘Same-Type Stimuli Sign of Curvature Classification’’ section
(hereafter, this type of classification is denoted by S1),
in which both the training and testing data were of the
same depth position (i.e., near or far) and orientation
(i.e., horizontal or vertical). However, the accuracy of
classification in V7 and LOC was not significant. This
observation can possibly be attributed to the representation
of the sign of curvature V7 and LOC being more sensitive to
the depth position. For the V7 area, this can be inferred from
the results of the ‘‘same-type stimuli near–far classification’’
(Figure 4B). According to the results, V7, VIPS and POIPS
showed a significant near–far accuracy of classification,
whereas other areas did not. Therefore, the V7 did not show
a significant accuracy in this additional classification A1.
For the LOC area, although the accuracy of classification
was not significant in near–far discrimination, Preston et al.
(2008) showed LO (which is a sub-region of LOC) contained
information regarding the depth position of planes depicted
using a random dot stereogram. This may explain the lack
of statistically significant accuracy for LOC area in this
additional classification A1. The VIPS showed a significant
accuracy in both classification A1 and near–far classification.
This is probably because the VIPS contains a subgroup of
neurons that are sensitive to the near–far depth position as
well as neurons that are selective to the sign of curvature
irrespective of the depth position.

2. For classification A2, the results were inconsistent with
those previously reported. A study showed that numerous
areas from the early visual cortex areas to higher areas
contained near–far information regarding the stereoscopic
plain. Preston et al. (2008) found that numerous areas, such as
the retinotopic areas V1, V2, V3v and V4; higher ventral area
LO; higher dorsal area hMT+; and IPS areas VIPS, POIPS,
and DIPS showed a significant accuracy of classification. The
discrepancy between the results of the present study, which
showed no significant accuracy in all ROIs, and those reported
by the previous study may be attributed to the following
reasons. First, the stimuli used in the studies were different.
We adopted curved surfaces in different depth positions,
whereas Preston et al. (2008) adopted frontoparallel flat planes
in different depth positions. It may be more difficult for the
SVM to perform a near–far classification on curved than
plain surfaces as the local disparity information is different
within the curved surface. Second, we trained and tested the
SVM using data of surfaces with a different sign of curvature.
These surfaces with a different sign of curvature exhibited
differences in local disparity, even at identical depth positions.
Based on these reasons, we did not identify an ROI with a
significant accuracy of classification.

Limitations
In our experiment, we adopted curved surfaces with different
signs of curvature and orientations. These surfaces were

Frontiers in Human Neuroscience | www.frontiersin.org 13 August 2019 | Volume 13 | Article 283

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Li and Shigemasu Representation of Stereoscopic 3D Surface

simulated in two different depth positions behind the fixation
marker. For the surfaces in the same depth position, the surfaces
with the same sign of curvature (i.e., minus or plus) and different
orientations (i.e., horizontal or vertical) shared a similar average
absolute disparity. In contrast, surfaces with a different sign of
curvature (irrespective of orientation) at the same depth position
exhibited differences in the average absolute disparity. For the
surfaces in the different depth positions, the surfaces (irrespective
of the sign of curvature) exhibited differences in the average
absolute disparity.

For the sign of curvature classification, there were some
limitations in our study: in the ‘‘transfer sign of curvature
classification of surfaces at the same depth position,’’ we
sought to investigate the generalized representation of the
sign of surface curvature, irrespective of the orientation of
surfaces. The differences in the average absolute disparity
between surfaces with a different sign of curvature in the same
depth position may have been used for this kind of sign of
curvature classification. From this perspective, this may affect the
conclusion of generalized representation of the sign of curvature
(shape) of surfaces. However, most importantly, for the ‘‘transfer
sign of curvature classification at different depth positions,’’
it was not possible to use the differences in average absolute
disparity between surfaces with a different sign of curvature
for classification. For this type of classification, the observed
significantly high accuracy in the V3A cannot be interpreted
as selectivity to average absolute disparity. However, it may
only be interpreted as a more generalized sign of curvature
representation of surfaces. Therefore, it is reasonable to conclude
that V3A was involved in the more generalized representation of
the sign of curvature of surface, irrespective of its orientation and
depth position.

For the orientation classification, no problems were caused
due to the mismatch in the absolute disparity between
surfaces with a different sign of curvature. In our study, we
mainly performed two types of horizontal–vertical classification,
namely the ‘‘same-type stimuli horizontal–vertical surfaces
classification’’ and ‘‘transfer horizontal–vertical classification of
surfaces with different signs of curvature.’’ The significantly high
accuracy for these two types of classification could not have
been caused by the mismatch in the absolute disparity between
the convex and concave surfaces. However, we identified a few
areas showing significant classification accuracy, indicating the
involvement of a more generalized orientation representation.

In this investigation, we only selected convex and concave
surfaces in two different orientations. The reasons for the
selection of these surfaces are discussed below.

First, the main focus of our study was to investigate the sign
of curvature and the horizontal–vertical representation of the
stereoscopic surface in ROIs and to assess the involvement of
generalized representation in each ROI. For the investigation
of generalized representation of the sign of curvature and
orientation, we required stimuli that exhibit both a sign
of curvature and orientation features. Moreover, the sign
of curvature and orientation features can be easily and
independently manipulated. Therefore, the convex and concave
surfaces with two different orientations were considered. Other

stimuli, such as ‘‘convex ‘bumps’ vs. concave ‘dimples’’’ used by
Dövencio ğlu et al. (2013) only have the sign of curvature feature.
Thus, they cannot be used to investigate the generalized sign of
curvature representation or orientation representation.

Second, the surfaces we selected can be regarded as the
element of a more complex surface (e.g., sinusoidal surface).
We intended to initially investigate a simple and basic surface
in our study first. Therefore, we selected convex and concave
surfaces in two different orientations as our stimuli. We did
not investigate a more complex index of surface, such as the
Koenderink shape index (Koenderink and Doorn, 1992), because
it is more complicated, and it may be hard to show surfaces with
differences large enough (e.g., two surfaces with a large curvature
difference), which is not suitable for the MVPA method.

Another concern in this study is that the number of
participants is relatively small compared with some previous
MVPA studies. In the study by Murphy et al. (2013), data
from 12 participants were used for analysis. However, there
are studies that have included fewer or the same number of
participants than ours. In a study by Horikawa and Kamitani
(2017), five participants were recruited, whereas in the study
by Preston et al. (2008), eight participants were recruited
in the experiment. In our study, we assured reliability by
performing ‘‘permutation tests.’’ Permutation tests are widely
used for significance testing in classification-based fMRI analyses
(Ban and Welchman, 2015; Patten and Welchman, 2015). In
our case, we randomized the correspondences between fMRI
data and labels, and performed classification similar to that
performed for normal, non-permutated data. This procedure was
repeated 1,000 times to create a distribution of classification
accuracies. We used the 99.6th percentile (one-tailed, 12 ROIs)
as the baseline for statistical significance. This indicates that
if a classification is higher than the baseline for statistical
significance, it is extremely rare that the accuracy was obtained
by chance in the eight participants. Therefore, we believe that our
results are valid and reliable.

CONCLUSION

In the present study, we first investigated whether ROIs are
involved in the generalized sign of curvature representation
of curved surfaces defined by binocular disparity. Moreover,
the generalized horizontal–vertical orientation representation
of these surfaces was also investigated. fMRI experiments
using MVPA were conducted. Two types of classifications
were performed as follows: (1) same-type stimuli classification,
which was used to validate the selectivity to the sign of
curvature or horizontal–vertical orientation in each ROI; and
(2) transfer classification, which was used to validate the
generalized representation.

Areas V1, V2, dorsal areas (V3d, V3A, V7, and KO), the
ventral area (LOC), and the parietal area (VIPS) were found to be
related to the sign of curvature. Among these areas, V3A showed
a more generalized sign of curvature representation irrespective
of surface orientation and depth position.

All ROIs were related to the horizontal–vertical orientation
of stereoscopic surfaces. Among these areas, the dorsal areas
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V3A and V7, the higher ventral area LOC, and the parietal
areas VIPS and POIPS showed a more generalized orientation
representation irrespective of the sign of curvature of surface.
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