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Motor imagery (MI) has been widely used to operate brain-computer interface (BCI)
systems for rehabilitation and some life assistive devices. However, the current
performance of an MI-based BCI cannot fully meet the needs of its in-field applications.
Most of the BCIs utilizing a generalized feature for all participants have been found to
greatly hamper the efficacy of the BCI system. Hence, some attempts have made on
the exploration of subject-dependent parameters, but it remains challenging to enhance
BCI performance as expected. To this end, in this study, we used the independent
component analysis (ICA), which has been proved capable of isolating the pure motor-
related component from non-motor-related brain processes and artifacts and extracting
the common motor-related component across MI, motor execution (ME), and motor
observation (MO) conditions. Then, a sliding window approach was used to detect
significant mu-suppression from the baseline using the electroencephalographic (EEG)
alpha power time course and, thus, the success rate of the mu-suppression detection
could be assessed on a single-trial basis. By comparing the success rates using different
parameters, we further quantified the extent of the improvement in each motor condition
to evaluate the effectiveness of both generalized and individualized parameters. The
results showed that in ME condition, the success rate under individualized latency and
that under generalized latency was 90.0% and 77.75%, respectively; in MI condition, the
success rate was 74.14% for individual latency and 58.47% for generalized latency,
and in MO condition, the success rate was 67.89% and 61.26% for individual and
generalized latency, respectively. As can be seen, the success rate in each motor
condition was significantly improved by utilizing an individualized latency compared
to that using the generalized latency. Moreover, the comparison of the individualized
window latencies for the mu-suppression detection across different runs of the same
participant as well as across different participants showed that the window latency was
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significantly more consistent in the intra-subject than in the inter-subject settings. As a
result, we proposed that individualizing the latency for detecting the mu-suppression
feature for each participant might be a promising attempt to improve the MI-based
BCI performance.

Keywords: event-related desynchronization, independent component analysis, motor imagery, mu-suppression,
latency

INTRODUCTION

Motor imagery (MI), rehearsing a motor action without actual
movement, has been reported to involve similar brain networks,
such as the motor cortex, premotor cortex, supplementary motor
area, and prefrontal cortex, as reflected in motor execution (ME;
Guillot and Collet, 2005; Lotze and Halsband, 2006; Guillot
et al., 2007; Munzert et al., 2009; Collet et al., 2011; Westlake
and Nagarajan, 2011; Hétu et al., 2013; Bajaj et al., 2014, 2015;
Gallivan and Culham, 2015; Jiang et al., 2015; Ridderinkhof and
Brass, 2015; Saiote et al., 2016; O’Shea and Moran, 2017). The
potentially functional equivalence between the MI and the ME
facilitates the build of the MI-based brain-computer interface
(BCI), which provides a communication and control channel
between the brain and external devices without overt behaviors
(Jeannerod and Decety, 1995). Such noninvasive approach is
highly suited for the recovery of the disabled motor system
after suffering from a severe stroke (Dunsky et al., 2006, 2008;
Turken et al., 2008; Prasad et al., 2010; Inman et al., 2012; Silasi
and Murphy, 2014; Bajaj et al., 2015), thus it has been widely
reported to use the BCI for stroke rehabilitation and controlling
life-assistive devices (Birbaumer et al., 1999; Pfurtscheller et al.,
2000; Wolpaw et al., 2002; Neuper et al., 2003; Leuthardt et al.,
2004; Müller-Putz et al., 2005; Hochberg et al., 2006; Sharma
et al., 2006; Garrison et al., 2010; Ang et al., 2011; Szameitat et al.,
2012; Friedrich et al., 2013).

In an MI-based BCI, the mu-suppression feature is one
of the most applicable electroencephalographic (EEG) markers
(Wolpaw andMcFarland, 2004;Miller et al., 2010; Friedrich et al.,
2013). Previous studies have indicated that the MI induces the
dominant mu-suppression pattern among the alpha (8–13 Hz)
frequency band over the contralateral (as well as ipsilateral)
sensorimotor area, similar with the performance induced by ME
(Pfurtscheller and Neuper, 2001; Munzert et al., 2009; Duann
and Chiou, 2016). However, in the literature, although promising
results have been achieved by using different algorithms (Guger
et al., 2003; Lal et al., 2005; Schröder et al., 2005; Naeem et al.,
2006; Blankertz et al., 2008; Arvaneh et al., 2011), EEG features
(Pfurtscheller and Neuper, 1997; Lan et al., 2005, 2007; Leeb
et al., 2007; Blankertz et al., 2008), or signal processing methods
(Bashashati et al., 2007), there remain challenges to apply this
technology effectively to the clinical application. One primary
problem is that the mu-suppression has manifested in different
spatial and temporal properties across different participants
during the same task, and may also vary from time to time within
the same participant (Asensio-Cubero et al., 2013). Traditional
approaches, utilizing a generalized parameter for all participants
to control the BCI devices without much attention paid to

the observation of each trial or individual performance, have
resulted in a discouraging outcome (Wolpaw et al., 2002; Neuper
et al., 2003; Ang et al., 2011; Soekadar et al., 2011; Szameitat
et al., 2012; Duann and Chiou, 2016). For example, Blankertz
et al.’s (2010) study claimed that due to individual difference,
almost 15% to 30% of the participants failed to control the BCI
system, even though some practice or training was provided
before the formal test. Although including more EEG channels
that are not related to the ME or MI processes (Lal et al.,
2005; Lan et al., 2005, 2007; Schröder et al., 2005; Arvaneh
et al., 2011), or recruiting a large population for parametric
modeling (Guger et al., 2003) might help increase the accuracy
at the individual level, the generalization of such a setting
was still not easy to complete, and also for EEG. Therefore,
it is highly desirable to explore an effective subject-dependent
parameter to measure the mu-suppression feature for enhancing
the BCI performance.

Besides the MI condition, the mu-suppression feature has
been also reported in motor observation (MO) as well as
in ME condition (Pfurtscheller and Neuper, 2001; Neuper
et al., 2009; Duann and Chiou, 2016). Such a commonality in
the mu-suppression feature made it possible to compare the
patterns of the mu-suppression associated with different motor
conditions within the same experiment. In addition, it was also
made possible by the use of independent component analysis
(ICA). The ICA has been proved capable of isolating the pure
EEG processes from the artifacts, such as the eye artifacts, muscle
activity, environmental noise, and other non-motor-related EEG
activities (Jung et al., 2000; Turnip and Kusumandari, 2014),
and also capable of extracting the common independent EEG
component from different conditions that is thought to be
originated from the similar neural substrate (Naeem et al., 2006;
Brunner et al., 2007; Rogasch et al., 2014; Winkler et al., 2014).
For instance, Onton et al. (2006) used ICA to decomposed
single-subject EEG data and to extract independent neural
activities for the comparison of equivalent brain activities across
participants. Duann and Chiou (2016) also applied ICA to extract
the common motor-related independent EEG components for
the MI, ME, and MO conditions across participants. Given
the merits of the ICA to decompose independent source EEG
activities, in the present study, we first attempted to use
ICA as a preprocessing step to isolate the common motor-
related independent EEG component from the EEG data with
three motor conditions combined for each participant. Then,
the selected motor-related component was further epoched
according to the different motor conditions and computed the
time-frequency responses to extract the alpha power time course
and detect the mu-suppression feature associated with each of
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the three motor conditions at a single-trial level. The number
of trials in which the mu-suppression feature could be detected
was counted to rate the accuracy of themu-suppression detection
for the different motor conditions from the same independent
motor-related EEG components. In so doing, we expected to
achieve the accuracy of the mu-suppression detection with
less influence from the non-motor processes, which might be
collected at the same time during the EEG signal acquisition.
In the meantime, given the mu-suppression pattern was most
distinct in the ME condition as reported in Duann and Chiou
(2016), the ME mu-suppression feature could set the highest
accuracy standard for the condition of MI and MO to facilitate
a self-control comparison scheme. Finally, the same approach
was adopted to compare the generalized parameters to the
individualized parameters (mainly the window latency in this
study) for detecting the mu-suppression feature. Significant
improvement could then be achieved by individualizing the
window latency for mu-suppression detection.

MATERIALS AND METHODS

Participants
Thirteen healthy, right-handed participants were paid to attend
the current study. One of the participants was excluded from
further analysis due to bad EEG quality, leaving 12 participants
(five females, mean age = 24 years, SD = 3) for further data
analysis. All participants had normal or corrected-to-normal
vision and no history of neurological or psychiatric disorders.
The study protocol was approved by Institutional Review Board
(IRB) of China Medical University Hospital, Taichung, Taiwan1

(Approval No. DMR100-IRB-221). Written informed consents
were obtained from all the participants before the experiment.

Experimental Paradigm and Data
Acquisition
Most MI studies have examined motor cortex function
during imagery of dominant hand movement. Moreover, the
performance from the non-dominant hand of the healthy
participants has been used to set a potential reference for the
performance from the paretic hand from the stroke patient
and could provide insights into BCI clinical application (e.g.,
Bauer et al., 2015; Shu et al., 2017). Thus, in this study, we
focused on the observation of the non-dominant handmovement
and asked the participants to perform the motor tasks using
their non-dominant (left) hands. The experimental paradigm
contained four EEG runs, and each run consisted of 15 trials
of three different motor conditions, namely, ME, MO, and MI,
delivered at a random order as shown in Figure 1. Each trial
began with a 1-s white cross displayed at the center of a computer
screen. Then, a motor cue was displayed to indicate which of
the three motor tasks the participants should perform in the
following 3 s. For the ME task, the participants were asked to
slowly make a fist once using the left (non-dominant) hand
during the entire 3-s duration when seeing the motor cue stating
‘‘clench left hand.’’ For the MI condition, the participants were

1http://www.cmuh.cmu.edu.tw

required to kinesthetically imagine clenching the left hand once
within the 3-s period, absolutely without actual movement. For
the MO trial, the participants needed to watch a 3-s video clip
of one real person clenching the left hand slowly in a third-
person perspective without making any physical movement. A
resting period with a time window of 3–5 s (4 s on average)
was appended after the motor cue to make an 8-s period for
each trial. Before the formal experiment, the participants were
asked to practice to make sure they completely conformed to
the requirements of the tasks and held still without any actual
movement during the MI and MO conditions. As a result, each
EEG run lasted for 120 s, and the whole experiment took about
20 min. The EEG data were recorded using an EEG system
(Neuroscan SymAmp2, Computmedics Limited, VIC, Australia)
with 64 channels, including two EOG channels, placed according
to the International 10–20 system and referenced to the linked
mastoids. Hardware band-pass filter (0.1–250 Hz) was applied
and the signals were digitized at the sampling rate of 1,000 Hz.
The impedance of electrodes was maintained below 5 K�.

Data Processing
The EEGLAB Matlab Toolbox2 was used to analyze the EEG
data. First, the EEG signals from each participant were screened
by the EEGLAB using the Artifact Subspace Reconstruction
(ASR)3 toolbox to remove bad EEG channels and portions. On
average, the ASR removed 7% of the EEG data. The EEG data
of one out of the 13 participants had been removed for more
than the mean portion [two standard deviations (SDs) higher
than the mean] and thus were excluded from the further data
analysis. The EEG data were then filtered with a band-pass filter
of 1–50 Hz and downsampled to 250 Hz. Then, after removing
the two EOG channels, all the data was off-line re-referenced
to the common average reference. Afterward, the cleaned EEG
data of all runs for each participant were concatenated for
the ICA decomposition using an infomax ICA algorithm as
implemented in EEGLAB. Finally, the independent motor-
related EEG component, which was common to three different
motor conditions, was selected from the ICA result of each
participant by matching the component topography, the source
location, and the time-frequency responses.

Selecting Independent Mu-Components
To select the motor-related independent components from all
the participants, we first used individual component topography
(as shown in Figures 2, 3 below) to identify all centrally located
generators, and also with the focus lateralized right to the
midline. Moreover, to verify the foci of the components, we
localized the sources of all the components using the DIPFIT
toolbox and also a standard MNI Boundary Element Model,
with the warp montage function to co-register the electrode
locations with the head model, followed by coarse and fine fitting
(Delorme and Makeig, 2004). In addition, we also performed
the time-frequency analysis (using the EEGLAB default setting,
a three-cycle Morlet wavelet with a Hanning-tapered window)
on these components to identify the mu-components from each

2http://sccn.ucsd.edu/eeglab/index.php
3https://sccn.ucsd.edu/wiki/EEGLAB_Extensions
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FIGURE 1 | Experimental paradigm with different motor-related tasks, namely, motor execution (ME), motor imagery (MI), and motor observation (MO). Each trial
begins with a white cross displayed at the center of a computer for 1 s. Then, a motor cue is presented to indicate which of the three motor tasks follow, and the
participant is asked to perform the given action accordingly during the 3-s period. Then, a 4-s resting period is shown before the next trial.

FIGURE 2 | The mean (upper-left corner) and individual topography of the right mu-component of all participants. The topographies show a maximum projection to
the C4 channel, corresponding to the right motor-related cortex.

of the 12 participants. Given all the participants were right-
handed, when they were asked to perform the motor action using
the left hand, it was more likely that the contralateral (right)
mu-component would dominate the task performance; however,
the ipsilateral (left) mu suppression due to hand dominance
could be also expected to be symmetrically found in a separate
independent component (as shown in below Figure 3).

Evaluating the Success Rate of the
Mu-Suppression Detection
After the mu-components were identified, the continuous
component activities were epoched from −0.5 s before and

3 s after the onset of the motor cue, and all the epochs were
categorized into three trial types (ME, MI and MO). Note
that the feature we selected for further comparison was based
on the average group time-frequency results that displayed
the most consistent time-frequency feature across participants
(and eventually the mu-suppression feature within the alpha
frequency band). Then, the alpha power time course was
extracted by averaging the time-frequency results within the
selected frequency range of 8–13 Hz. Given that the frequency
band (8–13 Hz) for the mu-suppression features was quite
robust across different participants, especially in the ME task
(Duann and Chiou, 2016), we thus adopted this feature for the
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FIGURE 3 | The mean (upper-left corner) and individual topography of the left mu-component of all participants. The topographies show a maximum projection to
the C3 channel, corresponding to the left motor-related cortex.

mu-suppression detection. In the meantime, because this feature
was more pronounced in the ME condition, it thus set a gold
standard to compare the results of the other twomotor condition
to that of the ME condition. Hence, we here used the fixed alpha
frequency band (8–13Hz) formu-suppression feature extraction.

The success of detecting the mu-suppression pattern in a
single motor trial was determined by if we could successfully
find a time window in which the alpha power was significantly
lower than the alpha power in the baseline window. First, we
computed the time-frequency decomposition using a three-cycle
Morlet wavelet for each epoch. The number of cycles in the
wavelets used for higher frequencies would continue to expand
to half of the number of cycles at the highest frequency (the
default setting in the EEGLAB). Each EEG epoch consisted of
a 200-ms window with 90% overlap from the previous time
window to result in the time-frequency response for each trial
at high temporal resolution (∼20 ms). Subsequently, we applied
a sliding window approach with no overlap to compare the alpha
power within the moving window after the motor cue onset to
the alpha power of the pre-motor cue baseline along the alpha
power time course. The size of the baseline window was the
same as the moving window for further comparison. If the alpha
power in any of the moving windows was significantly lower
than the alpha power in the baseline window using a paired
t-test (at the significance level of p < 0.05 with Bonferroni
multiple comparison corrections), this trial was then labeled
as a successful trial with mu-suppression. To determine the
window size of the moving window (as well as the baseline) for
effectively comparing the alpha power, we then compared the
success rate from different window sizes varying from 150 to

500ms (i.e., 150 ms, 200ms, 260ms, 320ms, 380ms, 440ms, and
500 ms). For each window size setting, the moving window was
sliding through the entire alpha power time course for each trial
to determine if the mu-suppression pattern existed in the current
trial. Then, the success rate was further summarized for each
participant by counting how many trials out of the total trials
exhibiting a successful mu-suppression detection. After selecting
the window size setting for each participant and condition,
we further compared the success rate of the mu-suppression
feature detection for each participant and motor condition by
using a non-parametric Kruskal–Wallis test. The H-value with
degrees of freedom and the corresponding p-value was reported
in the results. In addition, Dunn’s pairwise tests with Bonferroni
correction at an alpha value of 0.05 were also performed to
validate the pairwise difference.

Selecting the Window Size and the
Window Latency
To improve the sensitivity of the mu-suppression detection on
each motor condition, we selected a window size to detect
the mu-suppression features at the single-trial level for all
participants mainly according to the following three criteria:
first, the window size should deliver the best success rate of
mu-suppression detection; second, considering the real-time
characteristic of the BCI operation, the window size should
be relatively short to expedite the feature detection process.
Finally, the window size should contain enough sample points
to provide sufficient frequency resolution to result in multiple
frequency bins within the 8–13Hz range for computing themean
alpha power.
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In addition to selecting the window size, we further used
the same sliding-window approach with the 150-ms window
size to determine the window latency that delivered the best
success rate of detecting the mu-suppression features for each
motor condition and participant. Besides, to evaluate the efficacy
of such individualized parameter, we further compared the
success rate using the individualized latency with the success
rate utilizing a generalized latency. Here, the generalized window
latency of 635 ms was determined by the grand average of the
time-frequency plot obtained from all the motor conditions and
all the participants.

RESULTS

The Mu-Components for the
Motor-Related Cortex
A single ICA decomposition was applied to individual data with
all the three motor conditions combined, thus the common
right-mu and left-mu-components for all motor conditions could
be identified for each participant as shown in Figures 2, 3,
respectively. Given that in our study, the participants were
required to complete the task using the left (non-dominant)
hand, we thus focused on the analysis and interpretation of

the contralateral (right mu) components across participants
and then compared the observed results with that of the
ipsilateral components.

The Success Rate Under Different Window
Sizes
All three motor conditions could induce a significant
mu-suppression response in the alpha frequency band after
the motor task performance as compared to the baseline (see
Supplementary Material Figure S1). To select the window
size for further analysis, we derived the alpha power from the
contralateral (right-mu) components and separately calculated
the success rate of detecting the mu-suppression features by
using different window sizes, varying from 150 ms to 500 ms, for
each motor condition and participant, as displayed in Figure 4.
The results from a non-parametric Kruskal–Wallis test showed
that there was no significant difference in success rate across
different window sizes in the MI (H(6) = 3.116, p = 0.794) and
the MO condition (H(6) = 4.888, p = 0.558) condition. However,
in the ME condition, the window size did exhibit a significant
effect on the success rate (H(6) = 28.904, p < 0.001). The post
hoc analysis with Bonferroni correction further indicated that
the success rate (mean ± SD) under the window size of 150 ms

FIGURE 4 | The average success rate (y-axis) with different window sizes (x-axis) in the MI, MO and ME conditions across participants. The error bars represent the
95% Confidence Interval (CI). The formula to calculate 95% CI is Mean ± 1.96 × Standard Error. The results show that the 150-ms window size tends to deliver the
best average success rate among all in the MI, as well as the ME and MO conditions, thus the 150-ms window is preferred to be the suitable window for computing
the success rate of detecting the mu-suppression feature for each motor condition and participant. ∗p < 0.05.
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(78.31 ± 1.68%) was significantly higher than that under the
window size of 500 ms (p = 0.005) and 440 ms (p = 0.001),
showing the tendency toward delivering highest success rate
among all window size settings. Although in the MI and MO
conditions, no significant difference in success rate was observed
across various window size settings, the window size of 150 ms in
the MI (58.02 ± 7.23%) and the MO (53.77 ± 4.35%) conditions
still tended to deliver a higher success rate than other window
size settings. The consistent pattern was also presented when
we derived the alpha power from the ipsilateral components,
showing that the window size of 150 ms delivered the best
accuracy compared to the other window settings. Therefore,
based on the statistical comparison as well as the selection criteria
mentioned above, the window size of 150 ms was eventually
selected to compute the success rate of the mu-suppression
detection for each motor condition and participant.

With the selected window size of 150 ms, we depicted the
window-by-window plot to see whether and how the success
rate varies across different window latencies along the alpha
power time course for each motor condition and participant (see
Figure 5). In the figure, each panel represents a motor condition;
each row represents the success rate derived from one participant
(the average across participants shown at the top of each panel).
Each small-block indicates each success rate derived using the
150-ms sliding window at the latency indicated by the x-axis
along the alpha power time course from the motor cue onset. The
gray-level blocks indicate the success rate, the darker, the higher
success rate is. The empty black box highlights the best success
rate for eachmotor condition from each participant. As shown in

FIGURE 5 | The window-by-window plots of the success rate
(in percentage, see color bar) for all trials concatenated from four runs in the
ME, MI and MO conditions, using the alpha power derived from the
contralateral (right) mu-components. The x-axis indicates the time in ms. The
various gray-level blocks of each row indicate the success rate derived using
the 150-ms sliding window at the latency indicated by the x-axis along the
alpha power time course from the motor cue onset. The best success rate in
each participant and average across participants (top row) are marked with
the empty black boxes. The results show that the latency delivering the best
success rate in the MI condition, as well as the ME and MO conditions, is
found to be dramatically different across participants.

Figure 5, the success rate largely varies across different window
latencies in each participant, and the latency delivering the best
success rate in the MI condition also widely differ from those
in the ME and MO conditions across participants. Individual
performance of the success rate in each of the three motor
conditions was also summarized in Table 1. As shown in Table 1,
all three motor conditions exhibit a large SD in the success rate
for each participant. The highest SD can go as high as 17.0% in
the MI, 17.0% in the MO, and 20.6% in the ME condition.

Further, we computed the average success rate across the
150-ms windows at all latencies along the alpha power time
course for each motor condition and participant. The results
from a Kruskal–Wallis test showed that the average success rate
also significantly varied from participant to participant in all
three motor conditions (MI: H(11) = 244.042, p < 0.001; ME:
H(11) = 134.932, p < 0.001; MO: H(11) = 272.915, p < 0.001).
On the other hand, the similar individual-difference pattern was
also observed when we computed the success rate of detecting
the mu-suppression from the ipsilateral components (as shown
in Figure 6).

Considering that there was a large inter-subject variation
as displayed, we further examined the potential individualized
parameter for BCI improvement as follows.

The Mu-Suppression Detection Using
Different Latency Settings
We compared the success rate under the individualized latency
reflecting the best performance of each participant, the success
rate under the generalized latency at 635 ms after the motor cue
onset that was determined by the maximum mu-suppression in
the grand average time-frequency plot from all motor conditions
and all participants, and also the average success rate across
the 150-ms windows at all latencies along the alpha power
time course derived from the contralateral mu-components. The
results from pairwise comparison tests indicated that using the
individualized latency significantly improved the success rate
compared to using a generalized latency in all the three motor
conditions (MI: 74.14% vs. 58.47%, t(11) = 4.766, p = 0.001;
ME: 90.0% vs. 77.57%, t(11) = 3.913, p = 0.002; MO: 67.89% vs.

TABLE 1 | Individual performance of the success rate in motor imagery (MI),
motor execution (ME) and motor observation (MO) conditions: mean and standard
deviation (SD).

MI ME MO

Subject Mean SD Mean SD Mean SD

1 51.1 17.0 71.8 12.8 38.1 5.2
2 55.2 9.4 67.0 20.6 55.6 13.4
3 50.6 10.6 56.6 15.4 43.3 5.7
4 64.4 7.8 83.6 15.1 58.5 9.6
5 50.7 11.3 72.3 14.6 49.5 8.1
6 59.7 7.2 60.6 9.9 44.8 7.4
7 43.3 10.2 79.5 16.0 34.9 10.0
8 89.0 9.3 69.8 14.0 88.8 4.6
9 31.0 4.5 71.2 10.6 67.5 5.4
10 71.9 15.7 78.3 14.1 60.8 5.6
11 64.1 16.6 86.8 17.4 59.0 7.7
12 65.3 11.0 79.0 6.7 44.4 16.7
Average 58.0 10.9 73.0 13.9 53.8 8.3
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FIGURE 6 | The window-by-window plots of the success rate in all motor
conditions using the alpha power derived from the ipsilateral (left)
mu-components. The x-axis indicates the time in ms. The various gray-level
blocks of each row indicate the success rate derived using the 150-ms sliding
window at the latency indicated by the x-axis along the alpha power time
course from the motor cue onset. The best success rate in each participant
and average across participants (top row) are marked with the empty black
boxes. The results show that the latency delivering the best success rate in all
motor conditions is also dramatically different across participants, as
observed from the contralateral mu-component.

61.26%, t(11) = 3.988, p = 0.002), and also the average success rate
in each motor condition (MI: 74.14% vs. 58.02%, t(11) = 9.335,
p < 0.001; ME: 90% vs. 73.04%, t(11) = 12.604, p < 0.001; MO:
67.89% to 53.77%, t(11) = 7.080, p < 0.001). The comparison
of the success rate under each setting was clearly illustrated in
Figure 7 to present the extent of the improvement in each motor
condition. Meanwhile, we also separately computed the success
rate for each of the four runs within the same participant to
assess the stability of the latency across runs. The results with
a Kruskal–Wallis test indicated that there was no significant
difference across runs with the selected latency to achieve the best
success rate in individuals for each of the three motor conditions
(MI: H(3) = 1.172, p = 0.760; MO: H(3) = 2.209, p = 0.530;
ME: H(3) = 4.876, p = 0.181). As can be seen, the intra-subject
variation was less pronounced than the inter-subject variation,
thus such a statistical result further supported the approach to
combine the four-run data to ensure the statistical power with a
large trial number for each of the motor conditions.

Further, to examine whether the individualized latency
could induce the similar improvement from the ipsilateral
mu-component, we calculated and compared the success rate
under the individualized and generalized latency by using the
alpha power derived from the ipsilateral mu-components. The
results from pairwise comparison tests showed that a significant
improvement was also achieved by using the individualized
latency in all the three motor conditions compared to a
generalized latency (MI: 69.50% vs. 50.14%, t(11) = 5.630,
p < 0.001; ME: 85.18% vs. 69.28%, t(11) = 5.678, p < 0.001; MO:
63.50% vs. 50.58%, t(11) = 3.464, p = 0.005) and also the average
success rate (MI: 69.50% vs. 52.82%, t(11) = 9.364, p < 0.001;

ME: 85.18% vs. 68.97%, t(11) = 10.03, p < 0.001; MO: 63.50% vs.
48.42%, t(11) = 5.763, p < 0.001). We also found that the grand
latency (mean ± SD) to induce the best performance of all the
motor conditions tend to be longer in the ipsilateral components
compared to that in the contralateral components across
participants (MI: 950.96 ± 290.60 ms vs. 810.79 ± 190.10 ms;
ME: 931.33 ± 233.96 ms vs. 850.21 ± 207.06 ms; MO:
781.33 ± 340.86 ms vs. 656.08 ± 225.09 ms).

DISCUSSION

In the present study, by using the approach combining the
ICA with a sliding window for detecting the mu-suppression
at the single-trial level, we reveal a significant variation of the
success rate of detecting the mu-suppression features within and
across individuals in the MI condition, as well as in the ME and
MO conditions. The success rate in the MI could go as high
as 100% for some participants; on the contrary, it could also
go as low as 20% for others. Moreover, the results indicated
that the success rate from each participant could largely vary
across different window latencies (see Figures 5, 6). Therefore,
the present results may suggest that the traditional way to find
the mu-suppression feature using a generalized parameter set,
such as the generalized latency, for all participants to compare
the alpha power with the baseline power, might be problematic.
Given so, simply evaluating the training performance for an
MI-based BCI without justifying the success rate of the single-
trial mu-suppression detection might not be sufficient to provide
a fair judgment on the training efficacy. It would be difficult
to conclude of a failure in the training performance is mainly
due to an inappropriate training protocol or caused by the low
success rate in detecting the mu-suppression at the operation
level. Therefore, the proposed method by recording the success
rate of mu-suppression detection in a trial-by-trial fashion might
help to reflect the true problem associated with theMI-based BCI
training system.

For the detection of mu-suppression features in different
motor conditions, we found that the shorter window length
setting (150 ms) was preferred to use than the longer window
size settings for computing the success rate of detecting
the mu-suppression feature for each motor condition and
participant. An ME task has been found to mainly activate brain
activation in areas associated with ME, such as primary motor
cortex, premotor area, the supplementary motor area and even
the primary sensory cortex (e.g., Lotze and Halsband, 2006;
Hanakawa et al., 2008; Munzert et al., 2009; Collet et al., 2011;
Bajaj et al., 2014, 2015; Gallivan and Culham, 2015; Jiang et al.,
2015; O’Shea and Moran, 2017), thus the ME may involve the
loop interaction between those brain areas from the initiation
to the end of a physical movement. As a result, it should
induce a long lingering mu-suppression response, as reflected
in a deepest and longest mu suppression pattern. On the other
hand, both the MI and MO conditions might not involve much
of the interaction among those motor-related areas, thus the
characteristics of the mu-suppression patterns in both the MI
and MO conditions, as compared to the ME conditions, seems
to be less stable with much shallower suppression amplitude,
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FIGURE 7 | The comparison of the success rate under different settings. The light gray refers to the average success rate across the 150-ms windows at all
latencies along the alpha power time course; the dark gray refers to the success rate under the generalized latency (635 ms after the motor cue) that was determined
by the maximum mu-suppression in the grand average time-frequency plot from all the motor conditions and all the participants; the dark black represents the
success rate under the individualized latency reflecting the best performance. The error bars refer to 95% CI. The formula to calculate 95% CI is
Mean ± 1.96 × Standard Error. The results illustrate that the success rate was significantly improved by an individualized latency compared to that under a
generalized latency and also the average success rate in each motor condition. ∗p < 0.05.

much shorter suppression period and large fluctuations (see
Supplementary Material Figure S1). The shorter window length
thus might be more favorable for the paired t-test (here we used
to determine the significance of the power difference between the
sliding window and the baseline window) to survive and then
to detect the potential mu-suppression patterns in MI and MO
conditions. Following these reasons, the shorter window length
setting, as compared to the longer window length settings, did
provide better average accuracy across all three motor conditions
in this study (as shown in Figure 4).

Further, the current findings (see in Figure 7) clearly
illustrated that if an individualized window latency was selected
to derive the mu-suppression feature from the contralateral
components, the success rate could be significantly improved
than if the parameter was averaged across the entire time window
after the motor cue onset (ME, from 73.04% to 90%; MI, from
58.02% to 74.14%; MO, 53.77% to 67.89%), or if a generalized
window latency at 635 ms after the motor cue was used for
all participants (ME, from 77.57% to 90%; MI, from 58.47% to
74.14%; MO, 61.26% to 67.89%). To be noted, although we do
not implement a ‘‘NoGo’’ condition to contrast with the results
of the motor conditions in the experiment, the performance in
the ME can play the role of benchmarking the performance of
the mu-suppression detection in the MI and MO conditions
without actual physical movements. In this study, the common
mu-components, which provide the maximally isolated motor-
related EEG activity with less contamination from other brain
or non-brain processes, are selected from each participant for

further comparison using a joint ICA decomposition, thus the
result of the ME condition can set an upper bound of the
success rate for the other motor conditions. That is, the success
rate in the MI condition can by no means reach the high
standard set by the ME condition, given a much less pronounced
mu-suppression feature associated with MI. Besides, although
the similar improvement with the individualized latency can also
be achieved in all the motor conditions by using the ipsilateral
component, the latency to induce the best performance in all
motor conditions seems to be shorter in the contralateral side
compared to that in the ipsilateral side. Taken together, these
results at least drop a hint to us that the individualized latency in
the current study indeed improves the success rate and extracting
the mu-suppression feature from the contralateral size might be
the optimal option for the on-line detection.

To date, increasing interests have been raised in finding
an effective subject-dependent approach to improve BCI
performance. Previous studies have shown that training BCI
systems on subject-specific EEG data before the real-time
BCI application can somehow improve BCI performance. For
example, Guger et al. (2003) found that high accuracy could be
achieved if the MI-based BCI system with a large population was
trained on individual EEG data for a subsequent run with specific
tasks. However, as introduced above, even if some training
was provided before the formal test, there were still almost
15%–30% of users who failed to use a BCI with sufficient level of
control (e.g., Guger et al., 2003; Blankertz et al., 2010). Moreover,
the generalization of such a large population was not easy to
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complete inmost cases. Therefore, based on the previous findings
as well as the current results, we propose that the utilization
of individualized EEG features, such as individualized latency,
rather than generalized characteristics may be a promising
solution to improve the success rate of detecting mu-suppression
in an MI-based BCI application.

One may concern that the different performance across
conditions is partially due to the experimental design. For
example, Annett (1995) found that the variety ofMI performance
led to individual differences in MI-based EEG changes.
Specifically, the subject might, for example, perform the MI
task from the first-person perspective (i.e., kinesthetic imagery)
or the third-person perspective (visual imagery; Curran and
Stokes, 2003). To observe how the EEG pattern changes with
different types of MI, Neuper et al. (2005) designed an EEG
study and claimed that only kinesthetic experiences instead
of visual representations of actions induced the MI-based
EEG change. However, such a difference (kinesthetic vs.
visual imagery) should not account for the difference in the
mu-suppression responses induced by different motor tasks
in this study, because all participants are asked to perform
both the kinesthetic (MI) and the visual imagery (MO) in
the same experiment run, and all participants have reported
that they can differentiate these two different motor tasks well.
Moreover, some previous BCI studies reported the around
event-related synchronization (ERS) effect during motor tasks.
The absence of the ERS effect in the current study may be
because it only involves one slow hand grasp action in each
of the motor conditions. Consequently, we did not see the
ERS effect in the time-frequency results given the epoch length
we used in the data analysis. That is also the reason why
we eventually determine the data analysis parameter using the
average group time-frequency responses in this study. Given that
in this study we mainly focus on the fixed frequency band to
measure mu-suppression features, future work is still needed
to investigate whether individual frequency band will influence
the BCI performance and also the efficacy of individualized
parameters as suggested.

Taken together, to achieve the expected success rate of the
mu-suppression feature detection in an MI-BCI performance,
conducting a short ME/MI run with few trials before the BCI
training to find the individualized parameters may be helpful
and such parameters will be then applied for this specific subject
across the whole run. Even if the detection performance in the

BCI application is still not as good as expected, we would like to
propose that the limited success rate of mu-suppression detection
should not hinder the delivery of the MI-based BCI applications
to those who are targeted to use for their rehabilitation training.
First, the performance of operating the BCI system of these
targeted users may be gradually improved by practicing. More
importantly, the effects of the clinical rehabilitation training
in facilitating brain activity using the MI-based BCI apparatus
might have already been visible even when the performance
accuracy is still limited. However, the parameters might need to
be optimal again for the next BCI run, especially for those stroke
patients, since their mu-suppression features might change
due to the brain reorganization through some effective BCI
rehabilitation training.
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Bauer, R., Fels, M., Vukelić, M., Ziemann, U., and Gharabaghi, A. (2015). Bridging
the gap between motor imagery and motor execution with a brain-robot
interface. Neuroimage 108, 319–327. doi: 10.1016/j.neuroimage.2014.12.026

Frontiers in Human Neuroscience | www.frontiersin.org 10 August 2019 | Volume 13 | Article 302

https://www.frontiersin.org/articles/10.3389/fnhum.2019.00302/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2019.00302/full#supplementary-material
https://doi.org/10.12968/bjnn.2011.7.3.523
https://doi.org/10.1016/0028-3932(95)00072-b
https://doi.org/10.1109/tbme.2011.2131142
https://doi.org/10.1088/1741-2560/10/4/046014
https://doi.org/10.1016/j.nicl.2015.06.006
https://doi.org/10.1016/j.nicl.2015.06.006
https://doi.org/10.3389/fnsys.2014.00013
https://doi.org/10.1088/1741-2560/4/2/r03
https://doi.org/10.1016/j.neuroimage.2014.12.026
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Xu et al. The Sensitivity of Single-Trial Mu-Suppression Feature Detection

Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B.,
Kübler, A., et al. (1999). A spelling device for the paralysed. Nature 398,
297–298. doi: 10.1038/18581

Blankertz, B., Losch, F., Krauledat, M., Dornhege, G., Curio, G., and Müller, K. R.
(2008). The berlin brain-computer interface: accurate performance from first-
session in BCI-naïve subjects. IEEE Trans. Biomed. Eng. 55, 2452–2462.
doi: 10.1109/TBME.2008.923152

Blankertz, B., Sannelli, C., Halder, S., Hammer, E. M., Kübler, A., Müller, K. R.,
et al. (2010). Neurophysiological predictor of SMR-based BCI performance.
Neuroimage 51, 1303–1309. doi: 10.1016/j.neuroimage.2010.03.022

Brunner, C., Naeem, M., Leeb, R., Graimann, B., and Pfurtscheller, G. (2007).
Spatial filtering and selection of optimized components in four class motor
imagery EEG data using independent components analysis. Pattern Recognit.
Lett. 28, 957–964. doi: 10.1016/j.patrec.2007.01.002

Collet, C., Guillot, A., Lebon, F., MacIntyre, T., and Moran, A. (2011). Measuing
motor imagery using psychometric, behavioral, and psychophysiological tools.
Exerc. Sport Sci. Rev. 39, 85–92. doi: 10.1097/jes.0b013e31820ac5e0

Curran, E. A., and Stokes, M. J. (2003). Learning to control brain activity: a review
of the production and control of EEG components for driving brain-computer
interface (BCI) systems. Brain Cogn. 51, 326–336. doi: 10.1016/s0278-
2626(03)00036-8

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis.
J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Duann, J. R., and Chiou, J. C. (2016). A comparison of independent event-
related desynchronization responses in motor-related brain areas to movement
execution, movement imagery, and movement observation. PLoS One
11:e0162546. doi: 10.1371/journal.pone.0162546

Dunsky, A., Dickstein, R., Ariav, C., Deutsch, J., and Marcovitz, E. (2006). Motor
imagery practice in gait rehabilitation of chronic post-stroke hemiparesis:
four case studies. Int. J. Rehabil. Res. 29, 351–356. doi: 10.1097/mrr.
0b013e328010f559

Dunsky, A., Dickstein, R., Marcovitz, E., Levy, S., and Deutsch, J. (2008).
Home-based motor imagery training for gait rehabilitation of people with
chronic poststroke hemiparesis. Arch. Phys. Med. Rehabil. 89, 1580–1588.
doi: 10.1016/j.apmr.2007.12.039

Friedrich, E., Scherer, R., and Neuper, C. (2013). Long-term evaluation of a 4-class
imagery-based brain-computer interface. Clin. Neurophysiol. 124, 916–927.
doi: 10.1016/j.clinph.2012.11.010

Gallivan, J. P., and Culham, J. C. (2015). Neural coding within human brain areas
involved in actions. Curr. Opin. Neurobiol. 33, 141–149. doi: 10.1016/j.conb.
2015.03.012

Garrison, K. A., Winstein, C. J., and Aziz-Zadeh, L. (2010). The mirror neuron
system: a neural substrate for methods in stroke rehabilitation. Neurorehabil.
Neural Repair 24, 404–412. doi: 10.1177/1545968309354536

Guger, C., Edlinger, G., Harkam,W., Niedermayer, I., and Pfurtscheller, G. (2003).
How many people are able to operate an EEG-based brain-computer interface?
IEEE Trans. Neural Syst. Rehabil. Eng. 11, 145–147. doi: 10.1109/tnsre.2003.
814481

Guillot, A., and Collet, C. (2005). Duration of mentally simulated movement: a
review. J. Mot. Behav. 37, 10–20. doi: 10.3200/jmbr.37.1.10-20

Guillot, A., Lebon, F., Rouffet, D., Champely, S., Doyon, J., and Collet, C. (2007).
Muscular responses during motor imagery as a function of muscle contraction
types. Int. J. Psychophysiol. 66, 18–27. doi: 10.1016/j.ijpsycho.2007.05.009

Hanakawa, T., Dimyan, M. A., and Hallett, M. (2008). Motor planning, imagery,
and execution in the distributed motor netowrk: a time-course study with
functional MRI. Cereb. Cortex 18, 2775–2788. doi: 10.1093/cercor/bhn036

Hétu, S., Grégoire, M., Saimpont, A., Coll, M.-P., Eugène, F., Michon, P.-E., et al.
(2013). The neural network of motor imagery: an ALE meta-analysis. Neurosci.
Biobehav. Rev. 37, 930–949. doi: 10.1016/j.neubiorev.2013.03.017

Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M.,
Caplan, A. H., et al. (2006). Neuronal ensemble control of prosthetic devices
by a human with tetraplegia. Nature 442, 164–171. doi: 10.1038/nature
04970

Inman, C. S., James, G. A., Hamann, S., Rajendra, J. K., Pagnoni, G., and
Butler, A. J. (2012). Altered resting-state effective connectivity of fronto-
parietal motor control systems on the primary motor network following stroke.
Neuroimage 59, 227–237. doi: 10.1016/j.neuroimage.2011.07.083

Jeannerod, M., and Decety, J. (1995). Mental motor imagery: a window into
the representational stages of action. Curr. Opn. Nuerobiol. 5, 727–732.
doi: 10.1016/0959-4388(95)80099-9

Jiang, D., Edwards, M. G., Mullins, P., and Callow, N. (2015). The neural substrates
for the different modalities of movement imagery. Brain Cogn. 97, 22–31.
doi: 10.1016/j.bandc.2015.04.005

Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J.,
Iragui, V., et al. (2000). Removing electroencephalographic artifacts by blind
source separation. Psychophysiology 37, 163–178. doi: 10.1017/s00485772009
80259

Lal, T. N., Schroder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N.,
et al. (2005). Support vector channel selection in BCI. IEEE Trans. Biomed. Eng.
51, 1003–1010. doi: 10.1109/tbme.2004.827827

Lan, T., Erdogmus, D., Adami, A., Mathan, S., and Pavel, M. (2007).
Channel selection and feature projection for cognitive load estimation using
ambulatory EEG. Comput. Intell. Neurosci. 2007:74895. doi: 10.1155/2007/
74895

Lan, T., Erdogmus, D., Adami, A., Pavel, M., and Mathan, S. (2005). ‘‘Salient
EEG channel selection in brain computer interfaces by mutual information
maximization,’’ in IEEE Engineering in Medicine and Biology 27th Annual
Conference (Shanghai, China: IEEE), 7064–7067.

Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., and Pfurtscheller, G. (2007).
Brain-computer communication: motivation, aim, and impact of exploring
a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 473–482.
doi: 10.1109/TNSRE.2007.906956

Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., and Moran, D. W.
(2004). A brain-computer interface using electrocorticographic signals in
humans. J. Neural Eng. 1, 63–71. doi: 10.1088/1741-2560/1/2/001

Lotze, M., and Halsband, U. (2006). Motor imagery. J. Physiol. Paris 99, 386–395.
doi: 10.1016/j.jphysparis.2006.03.012

Miller, K. J., Schalk, G., Fetz, E. E., Nijs, M. D., Ojemann, J. G., and
Rao, R. P. N. (2010). Cortical activity during motor execution, motor imagery
and imagery-based online feedback. Proc. Natl. Acad. Sci. USA 107, 4430–4435.
doi: 10.1073/pnas.0913697107

Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., and Rupp, R. (2005). EEG-
based neuroprosthesis control: a step into clinical practice. Neurosci. Lett. 382,
169–174. doi: 10.1016/j.neulet.2005.03.021

Munzert, J., Lorey, B., and Zentgraf, K. (2009). Cognitive motor processes: the role
of motor imagery in the study of motor representations. Brain Res. Rev. 60,
306–326. doi: 10.1016/j.brainresrev.2008.12.024

Naeem, M., Brunner, C., Leeb, R., Graimann, B., and Pfurtscheller, G.
(2006). Seperability of four-class motor imagery data using independent
components analysis. J. Neural Eng. 3, 208–216. doi: 10.1088/1741-2560/
3/3/003

Neuper, C., Müller, G. R., Kübler, A., Birbaumer, N., and Pfurtscheller, G. (2003).
Clinical application of an EEG-based brain-computer interface: a case study
in a patient with severe motor impairment. Clin. Neurophysiol. 114, 399–409.
doi: 10.1016/s1388-2457(02)00387-5

Neuper, C., Scherer, R., Reiner, M., and Pfurtscheller, G. (2005). Imagery of motor
actions: differential effects of kinesthetic and visual-motor mode of imagery in
single-trial EEG. Cogn. Brain Res. 25, 668–677. doi: 10.1016/j.cogbrainres.2005.
08.014

Neuper, C., Scherer, R., Wriessnegger, S., and Pfurtscheller, G. (2009). Motor
imagery and action observation: modulation of sensorimotor brain rhythms
during mental control of a brain-computer interface. Clin. Neurophysiol. 120,
239–247. doi: 10.1016/j.clinph.2008.11.015

Onton, J., Westerfield, M., Townsend, J., and Makeig, S. (2006). Imaging human
EEG dynamics using independent component analysis. Neurosci. Biobehav.
Rev. 30, 808–822. doi: 10.1016/j.neubiorev.2006.06.007

O’Shea, H., and Moran, A. (2017). Does motor simulation theory explain the
cognitive mechanisms underlying motor imagery? A critical review. Front.
Hum. Neurosci. 11:72. doi: 10.3389/fnhum.2017.00072

Pfurtscheller, G., Guger, C., Müller, G., Krausz, G., and Neuper, C. (2000). Brain
oscillations control hand orthosis in a tetraplegic. Neurosci. Lett. 292, 211–214.
doi: 10.1016/s0304-3940(00)01471-3

Pfurtscheller, G., and Neuper, C. (1997). Motor imagery activates primary
sensorimotor area in humans. Neurosci. Lett. 239, 65–68. doi: 10.1016/s0304-
3940(97)00889-6

Frontiers in Human Neuroscience | www.frontiersin.org 11 August 2019 | Volume 13 | Article 302

https://doi.org/10.1038/18581
https://doi.org/10.1109/TBME.2008.923152
https://doi.org/10.1016/j.neuroimage.2010.03.022
https://doi.org/10.1016/j.patrec.2007.01.002
https://doi.org/10.1097/jes.0b013e31820ac5e0
https://doi.org/10.1016/s0278-2626(03)00036-8
https://doi.org/10.1016/s0278-2626(03)00036-8
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1371/journal.pone.0162546
https://doi.org/10.1097/mrr.0b013e328010f559
https://doi.org/10.1097/mrr.0b013e328010f559
https://doi.org/10.1016/j.apmr.2007.12.039
https://doi.org/10.1016/j.clinph.2012.11.010
https://doi.org/10.1016/j.conb.2015.03.012
https://doi.org/10.1016/j.conb.2015.03.012
https://doi.org/10.1177/1545968309354536
https://doi.org/10.1109/tnsre.2003.814481
https://doi.org/10.1109/tnsre.2003.814481
https://doi.org/10.3200/jmbr.37.1.10-20
https://doi.org/10.1016/j.ijpsycho.2007.05.009
https://doi.org/10.1093/cercor/bhn036
https://doi.org/10.1016/j.neubiorev.2013.03.017
https://doi.org/10.1038/nature04970
https://doi.org/10.1038/nature04970
https://doi.org/10.1016/j.neuroimage.2011.07.083
https://doi.org/10.1016/0959-4388(95)80099-9
https://doi.org/10.1016/j.bandc.2015.04.005
https://doi.org/10.1017/s0048577200980259
https://doi.org/10.1017/s0048577200980259
https://doi.org/10.1109/tbme.2004.827827
https://doi.org/10.1155/2007/74895
https://doi.org/10.1155/2007/74895
https://doi.org/10.1109/TNSRE.2007.906956
https://doi.org/10.1088/1741-2560/1/2/001
https://doi.org/10.1016/j.jphysparis.2006.03.012
https://doi.org/10.1073/pnas.0913697107
https://doi.org/10.1016/j.neulet.2005.03.021
https://doi.org/10.1016/j.brainresrev.2008.12.024
https://doi.org/10.1088/1741-2560/3/3/003
https://doi.org/10.1088/1741-2560/3/3/003
https://doi.org/10.1016/s1388-2457(02)00387-5
https://doi.org/10.1016/j.cogbrainres.2005.08.014
https://doi.org/10.1016/j.cogbrainres.2005.08.014
https://doi.org/10.1016/j.clinph.2008.11.015
https://doi.org/10.1016/j.neubiorev.2006.06.007
https://doi.org/10.3389/fnhum.2017.00072
https://doi.org/10.1016/s0304-3940(00)01471-3
https://doi.org/10.1016/s0304-3940(97)00889-6
https://doi.org/10.1016/s0304-3940(97)00889-6
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Xu et al. The Sensitivity of Single-Trial Mu-Suppression Feature Detection

Pfurtscheller, G., and Neuper, C. (2001). Motor imagery and direct brain-
computer communication. Proc. IEEE 89, 1123–1134. doi: 10.1109/5.939829

Prasad, G., Herman, P., Coyle, D., McDonough, S., and Crosbie, J. (2010).
Applying a brain-computer interface to support motor imagery practic in
people with stroke for upper limb recovery: a feasibility study. J. Neuroeng.
Rehabil. 7:60. doi: 10.1186/1743-0003-7-60

Ridderinkhof, K. R., and Brass, M. (2015). How Kinesthetic Motor Imagery works:
a predictive-processing theory of visualization in sports and motor expertise.
J. Physiol. Paris 109, 53–63. doi: 10.1016/j.jphysparis.2015.02.003

Rogasch, N. C., Thomson, R. H., Farzan, F., Fitzgibbon, B., Bailey, N. W.,
Hernandez-Pavon, J. C., et al. (2014). Removing artefacts from TMS-EEG
recordings using independent component analysis: importance for assessing
prefrontal and motor cortex network properties. Neuroimage 101, 425–439.
doi: 10.1016/j.neuroimage.2014.07.037

Saiote, C., Tacchino, A., Brichetto, G., Roccatagliata, L., Bommarito, G.,
Cordano, C., et al. (2016). Resting-state functional connectivity and motor
imagery brain activation.Hum. Brain Mapp. 37, 3847–3857. doi: 10.1002/hbm.
23280

Schröder, M., Lal, T. N., Hinterberger, T., Bogdan, M., Hill, N. J., Birbaumer, N.,
et al. (2005). Robust EEG channel selection across subjects for brain-computer
interfaces. EURASIP J. Adv. Signal Process. 2005, 3103–3112. doi: 10.1155/asp.
2005.3103

Sharma, N., Pomeroy, V. M., and Baron, J. C. (2006). Motor imagery: a backdoor
to the motor system after stroke? Stroke 37, 1941–1952. doi: 10.1161/01.STR.
0000226902.43357.fc

Shu, X., Yao, L., Sheng, X., Zhang, D., and Zhu, X. (2017). Enhanced motor
imagery-based BCI performance via Tactile stimulation on unilateral hand.
Front. Hum. Neurosci. 11:585. doi: 10.3389/fnhum.2017.00585

Silasi, G., andMurphy, T. H. (2014). Stroke and the connectome: how connectivity
guides therapeutic intervention. Neuron 54:511. doi: 10.1016/j.neuron.2014.
10.020

Soekadar, S. R., Birbaumer, N., and Cohen, L. G. (2011). Brain-computer-
interfaces in the rehabilitation of stroke and neurotrauma. Syst. Neurosci.
Rehabil. doi: 10.1007/978-4-431-54008-3_1 [Epub ahead of print].

Szameitat, A. J., Shen, S., Conforto, A., and Sterr, A. (2012). Cortical activation
during executed, imagined, observed, and passive wrist movements in healthy
volunteers and stroke patients. Neuroimage 62, 266–280. doi: 10.1016/j.
neuroimage.2012.05.009

Turken, U., Whitfield-Gabrieli, S., Bammer, R., Baldo, J. V., Dronkers, N. F.,
and Gabrieli, J. D. E. (2008). Cognitive processing speed and the structure of
white matter pathways: convergent evidence from normal variation and lesion
studies. Neuroimage 42, 1032–1044. doi: 10.1016/j.neuroimage.2008.03.057

Turnip, A., and Kusumandari, D. E. (2014). Improvement of BCI performance
through nonlinear indepenent component analysis extraction. J. Comput. 9:3.
doi: 10.4304/jcp.9.3.688-695

Westlake, K. P., and Nagarajan, S. S. (2011). Functional connectivity in relation
to motor performance and recovery after stroke. Front. Syst. Neurosci. 5:8.
doi: 10.3389/fnsys.2011.00008

Winkler, I., Brandl, S., Horn, F., Waldburger, E., Allefeld, C., and Tangermann, M.
(2014). Robust artifactual independent component classification for BCI
practitioners. J. Neural Eng. 11:035012. doi: 10.1088/1741-2560/11/3/035013

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and
Vaughan, T. M. (2002). Brain-computer interfaces for communication and
control.Clin. Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)00057-3

Wolpaw, J. R., and McFarland, D. J. (2004). Control of a two-dimensional
movement signal by a noninvasive brain-computer interface in humans. Proc.
Natl. Acad. Sci. U S A 101, 17849–17854. doi: 10.1073/pnas.0403504101

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Xu, Huang and Duann. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 12 August 2019 | Volume 13 | Article 302

https://doi.org/10.1109/5.939829
https://doi.org/10.1186/1743-0003-7-60
https://doi.org/10.1016/j.jphysparis.2015.02.003
https://doi.org/10.1016/j.neuroimage.2014.07.037
https://doi.org/10.1002/hbm.23280
https://doi.org/10.1002/hbm.23280
https://doi.org/10.1155/asp.2005.3103
https://doi.org/10.1155/asp.2005.3103
https://doi.org/10.1161/01.STR.0000226902.43357.fc
https://doi.org/10.1161/01.STR.0000226902.43357.fc
https://doi.org/10.3389/fnhum.2017.00585
https://doi.org/10.1016/j.neuron.2014.10.020
https://doi.org/10.1016/j.neuron.2014.10.020
https://doi.org/10.1007/978-4-431-54008-3_1
https://doi.org/10.1016/j.neuroimage.2012.05.009
https://doi.org/10.1016/j.neuroimage.2012.05.009
https://doi.org/10.1016/j.neuroimage.2008.03.057
https://doi.org/10.4304/jcp.9.3.688-695
https://doi.org/10.3389/fnsys.2011.00008
https://doi.org/10.1088/1741-2560/11/3/035013
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1073/pnas.0403504101
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	The Sensitivity of Single-Trial Mu-Suppression Detection for Motor Imagery Performance as Compared to Motor Execution and Motor Observation Performance
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Experimental Paradigm and Data Acquisition
	Data Processing
	Selecting Independent Mu-Components
	Evaluating the Success Rate of the Mu-Suppression Detection
	Selecting the Window Size and the Window Latency

	RESULTS
	The Mu-Components for the Motor-Related Cortex
	The Success Rate Under Different Window Sizes
	The Mu-Suppression Detection Using Different Latency Settings

	DISCUSSION
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	SUPPLEMENTARY MATERIAL
	REFERENCES


