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Researchers using functional near infrared spectroscopy (fNIRS) are increasingly aware

of the problem that conventional filtering methods do not eliminate systemic noise

at frequencies overlapping with the task frequency. This is a problem when signals

are averaged for analysis, even more so when single trial data are used as in online

neurofeedback or BCI applications where insufficiently preprocessed data means feeding

back noise instead of brain activity or when looking for brain-behavior relationships on a

trial-by-trial basis. For removing this task-related noise statistical approaches have been

proposed. Yet as evidence is lacking on how these approaches perform on independent

data, choosing one approach over another can be difficult. Here signal quality at the

single trial level was considered together with statistical effects to inform this choice.

Compared were conventional band-pass filtering and wavelet minimum description

length detrending and the combination of both with a more elaborate, published

preprocessing approach for a motor execution—motor imagery data set. Temporal

consistency between △[HbO] and △[HbR] and two measures of the spatial specificity

of signals that are proposed here served as measures of data quality. Both improved

strongly for the combinationed preprocessing approaches. Statistical effects showed a

strong tendency toward getting smaller for the combined approaches. This underlines

the importance to adequately deal with noise in fNIRS recordings and demonstrates how

the quality of statistical correction approaches can be estimated.

Keywords: fNIRS, EMG, neurofeedback, BCI, motor imagery, single trial analysis, signal improvement, global

component removal

1. INTRODUCTION

The functional near infrared spectroscopy (fNIRS) signal is intended to measure task-related
cortical hemodynamic responses. It typically also comprises physiological noise such as heart beat
(1–1.5 Hz), respiration (0.2–0.5 Hz) and low frequency content resulting from blood pressure
fluctuations (Mayer waves; 0.1 Hz) (Naseer and Hong, 2015; Kamran et al., 2016). Several methods
are available to remove these systemic, non-evoked components (Jang et al., 2009; Zhang et al.,
2013; Naseer and Hong, 2015; Kamran et al., 2016). The most widely used method is band-pass
filtering with cut-off frequencies of approximately 0.01–0.9 Hz (Naseer and Hong, 2015; Kamran
et al., 2016). However, depending on the context of an experiment (e.g., online vs. offline) filter
types [e.g., finite impulse response (FIR) vs. infinite filter response (IIR); Pinti et al., 2018] and
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cutoff frequencies differ substantially (e.g, offline filter with cutoff
frequencies of [0.01, 0.09] Hz as in Pinti et al., 2018 vs. online
filter with cutoff frequencies of [0.01, 1.5] Hz as in Kober et al.,
2014). Since the exact frequency characteristics of the systemic
components are unknown and might differ between subjects,
band-pass filtering might not eliminate all frequencies related
to this physiological contamination (Duan et al., 2018). One
possible approach to overcome this limitation might be the
application of wavelet filters since in this context it is not relevant
to know the exact frequency components (Jang et al., 2009; Duan
et al., 2018).

In addition to the non-evoked systemic noise signals, another
noise-component is task-dependent cerebral and extracerebral
hemodynamic activity. This noise signal component is present in
the signal due to near infrared (NIR) light passing cerebral and
highly vascularized extracerebral layers, that is scalp and skull
tissue, from a light source to a detector twice (Leff et al., 2011;
Scholkmann et al., 2014; Tak and Ye, 2014; Brigadoi and Cooper,
2015; Tachtsidis and Scholkmann, 2016; Zhang et al., 2016; Pfeifer
et al., 2018). During this journey the NIR light is contaminated by
changes in the hemodynamic signals originating in these layers,
mainly from the scalp veins (Takahashi et al., 2011; Kirilina
et al., 2012). This noise component, consisting of evoked systemic
cerebral and extracerebral components, here referred to as global
component (GC), is considerably more problematic to remove
than the non-evoked systemic noise because it is not constantly
distributed over the head but varies from channel to channel
(Gagnon et al., 2012). Moreover, it comprises the same task-
related frequency range as the brain-related neuronal signal and
can therefore not be removed by any filtering method. Although
awareness for this fNIRS-specific problem is rising (Scholkmann
et al., 2014; Tachtsidis and Scholkmann, 2016; Zhang et al.,
2016; Pfeifer et al., 2018), to date most researchers do not
correct for the GC and in consequence many of the reported
experimental fNIRS effects are at risk of being inflated by artifacts
(Brigadoi and Cooper, 2015; Pfeifer et al., 2018). In cases in
which single trial data are used, the danger of quantifying artifacts
is even more severe as here artifacts not properly removed by
the standard filters will have a much stronger impact. Examples
are neurofeedback or brain-computer interface (BCI) setups or
studies aiming to demonstrate a brain-behavior relationship at
the single trial level.

The use of additional short-distance channels (0.5–1 cm) is
by now considered the most efficient method to remove the
extracerebral component of the GC from the hemodynmaic
fNIRS data but most up-and-running fNIRS systems are not
equipped with the necessary hardware yet (Saager and Berger,
2005; Brigadoi and Cooper, 2015; Tachtsidis and Scholkmann,
2016; Nambu et al., 2017; Yücel et al., 2017; Pfeifer et al., 2018).
Alternatives are a number of statistical correction methods,
that however do not distinguish between the cerebral and
the extracerebral aspect of the GC (Scholkmann et al., 2014;
Tachtsidis and Scholkmann, 2016). Little is known of how these
methods affect signals and statistical results in independent data
sets (Zhang et al., 2005, 2016; Kohno et al., 2007; Santosa et al.,
2013; Pfeifer et al., 2018).

Pfeifer et al. (2018) compared different approaches two of
which included a self-implemented correction by means of a
global regression or a unilateral regression. They found major
differences between the averaged data in the tested approaches
and also in the corresponding statistical results which emphasizes
the extensive impact the GC might have on a study’s results and
corresponding conclusions.

This study continues this line of research with a particular
focus on single trial data quality. Aim of the study was to
quantify the impact of published preprocessing approaches on
single trial data and statistical outcome of an independent
data set. In a first step, the conventional band-pass filter was
compared with a wavelet minimum description length (MDL)
detrending filter (implemented in NIRS_SPM; Jang et al., 2009).
The latter was expected to provide a superior removal of the
non-evoked systemic noise from the fNIRS signal as compared
to band-pass filtering. In a second step, to additionally remove
the GC from the signal, both the band-pass filter and the
wavelet filter were combined with an approach based on singular
value decomposition (SVD) and a Gaussian kernel smoother
(Zhang et al., 2016). These methods were selected because they
can be easily implemented in an online neurofeedback or BCI
experiment, yet several more exist, also regarding the removal of
the GC (Zhang et al., 2005, 2016; Kohno et al., 2007; Santosa et al.,
2013; Pfeifer et al., 2018).

Across the four approaches it was expected that the
respectively more elaborate approaches, that is, each filtering
method in combination with the SVD and Gaussian kernel
method, would result in a higher signal quality as compared
to the filtering methods alone. Moreover, it was expected that
the task signal would be more spatially specific after applying
the spatial filter in addition as compared to either the band-
pass or the wavelet filter alone. Higher spatial specificity would
be reflected in lower correlations between channels and more
clearly defined activation patterns. These differences in signal
quality were predicted to affect experimental effect sizes in the
data set with a decrease from band-pass filtering to the wavelet
filter to the combination of the filtering methods and global
component removal.

2. METHODS

2.1. Subjects
The analyzed data was originally collected as part of a fNIRS-
based motor imagery (MI) neurofeedback group comparison
study. Data from the different neurofeedback groups were
pooled for the present analysis (for details see section 2 in the
Supplementary Material). In total, 50 data sets [27 females,
23 males; mean (± SD) age: 24.1 (±2.78) years, ranging from
19 to 30 years] were included. Another ten subjects were
excluded based on their electromyography (EMG) data (for
details see section 3 in Supplementary Material). Handedness
was assessed by means of the Edinburgh Handedness Inventory
(EHI; Oldfield, 1971). All participants were right handed with
a mean laterality quotient of 84.75 ± 17.33 (mean ± SD).
Participants were recruited by way of the virtual platform
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FIGURE 1 | Schematic illustration of the experimental design. All subjects started with a familiarization phase (A) in which they memorized the sequence, followed by

the pre-test (B), consisting of five trials ME and five trials MI. Afterwards subjects performed 20 trials of MI training (C) and at the end a post-test (D) was performed,

consisting of five trials of ME. The first seven trials in the MI training session (C) were defined as “early” trials and the last seven trials as “late” trials in order to

statistically test for a “time on task” effect within the MI data.

of the University of Oldenburg. Only participants without a
history of psychological and neurological disorders, with normal
or corrected-to-normal vision and without any experience in
piano playing were included. After explanation of the study, all
subjects gave written informed consent. Participants were paid
8 €/h as reimbursement. The study was approved by the Ethics
Committee of the University of Oldenburg.

2.2. Experimental Design
Figure 1 illustrates the structure of the experimental design.
Each subject participated in one experimental session consisting
of familiarization phase, pre-test [motor execution (ME) and
MI], training session (MI) and post-test (ME) that together
lasted no longer than 45 min. During the session, subjects
sat comfortably in a chair with their arms on the chair’s
armrests in a sound-shielded booth. Participants sat in front
of a computer monitor at a distance of approximately 175 cm.
The motor task was a sequential 8-position finger-tapping task
performed with the left hand. The task was semi self-paced in
that the duration of the tapping period was fixed, but not the
speed with which participants tapped. Participants memorized
the fixed sequence of numbers (3-2-3-5-4-2-5-4) during the
familiarization phase.

In the ME parts of the pre-test and the post-test phases
participants physically performed the motor task as often as

possible in five 20 s trials. In the MI parts of the pre-test and
the training phase, participants were instructed to perform the
finger-tapping task as often as possible for five (pre-test phase) or
20 (training phase) 20 s trials using kinesthetic motor imagery.
Participants were asked not to move their hands throughout the
MI parts. In the training phase participants belonging to one of
the feedback groups (cf. section 2 in Supplementary Material for
details) were additionally instructed to increase a thermometer
bar from trial to trial by trying to intensify the imagination of
the motor task. Participants of the non-feedback group saw a
comparable bar to keep visual input as similar as possible across
groups. Trial structure was identical for MI and ME trials. A trial
started with a rest stage lasting for 18–22 s (pseudo-randomized)
indicated by a bright red fixation cross (cf. Figures 1B–D). The
bright red fixation cross was preceded and followed by a 1 s
dark red fixation cross indicating an upcoming change between
trial stages. The subsequent task stage lasted for 20 s and was
indicated by a blue fixation cross. In the training session the
task stage was followed by an 1 s dark red fixation cross and
either a visual feedback in shape of a thermometer filling up
from the bottom according to the achieved change in hemoglobin
concentration or a thermometer displaying the passing of time
till the next trial would start. For a more detailed description of
the experimental design including neurofeedback generation see
section 2 in Supplementary Material.
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FIGURE 2 | (A) The eight sources (pink) and the 12 detectors (green) resulted

in 24 channels (white). Analyses were restricted to channels covering the right

hemisphere (box). (B) Sensorimotor cortical regions covered by the layout,

approximated by means of the fOLD toolbox (Zimeo Morais et al., 2018),

together with the fNIRS channels. The regions include primary motor cortex

(M1; blue), premotor cortex and supplementary motor areas (PMC+SMA;

green) and the primary somatosensory cortex (S1; red). As in (A), the box

contains the channels used for analyses.

2.3. Data Recording
2.3.1. Electromyography (EMG) and

Electroencephalography (EEG)
Electromyography (EMG) data was recorded from the extensor
digitorum communis muscle on both arms during the whole
experiment. To this end two electrodes were placed on each
arm, resulting in two bipolar channels. A ground electrode was
attached to the processus styloideus ulnae (see Figure S1 in
Supplementary Material). EMG was recorded with a BrainVision
Recorder (version 1.10) using a BrainAmp DC Amplifier
(BrainProducts, Gilching, Germany). The sampling rate was 1
kHz with online filtering between 0.1 Hz and 250 Hz. The EMG
data served as a control variable for the offline analysis only. All
EMG-contaminated MI trials were removed from analysis (for
details see section 3 in Supplementary Material).

In addition to the fNIRS data, EEG data was simultaneously
recorded from 32 Ag/AECl electrodes placed together with the
NIRS optodes in an elastic cap (EasyCap, Herrsching, Germany)
according to the international 10–20 system. EEG data are of no
relevance for the present study and will not be considered further.

2.3.2. Functional Near Infrared Spectroscopy (fNIRS)
FNIRS data was recorded with a NIRScout 816 device
(NIRStar 14, NIRx Medizintechnik GmbH, Berlin, Germany).
As visualized in Figure 2, the eight LED sources (intensity 5
mW/wavelength) and the 12 detectors covered the premotor
cortex (PMC), primary motor areas (M1), supplementary
motor areas (SMA), and somatosensory areas (S1) of both
hemispheres (approximated with the fOLD toolbox; Zimeo
Morais et al., 2018). The NIRS optodes were placed according
to the international 10–20 system in a custom-made cap together
with the EEG electrodes. The Cz position was used as amarker for

correctly positioning the cap. The optodes were attached to the
cap with spring-loaded grommets (NIRxMedizintechnik GmbH,
Berlin, Germany) which reduce optode movement and, which
improve the contact between optode and skull. The distance
between a source and a neighboring detector was approx. 3 cm
and each of these source-detector pairs gave rise to one channel.
This layout resulted in a total of 24 channels. The sources emitted
NIR light at wavelengths 760 and 850 nm. Light intensity at the
detectors was sampled with a sampling rate of 7.81 Hz.

3. DATA PROCESSING AND STATISTICAL
ANALYSIS

3.1. Data Preprocessing
For offline preprocessing using the band-pass filter, fNIRS data
was imported via the MATLAB-based nilab2 toolbox (Rev. 2.0,
NIRx Medizintechnik GmbH, Berlin, Germany) using MATLAB
2012a (The MathWorks Inc., Natick, MA, USA). To allow for
the data to be preprocessed with the wavelet MDL detrending
approach (Jang et al., 2009) data was imported via the NIRS_SPM
toolbox (Version 4; Ye et al., 2009).

Raw data were then transformed into concentration
changes of △[HbO] and △[HbR] by means of the modified
Beer-Lambert law (mBLL; DPF = [5.98, 7.15] and
ǫ = [2.5264, 1.7986; 1.4866, 3.8437]). Data were preprocessed
with either conventional band-pass filtering, wavelet MDL
detrending, or a combination of either approach with the global
component removal.

3.2. Conventional Band-Pass Filter (BPF)
In the context of a general linear model (GLM) framework it is
recommended to apply a finite impulse response (FIR) filter with
very high filter orders (i.e., > 1, 000; Pinti et al., 2018). Since
the context of the present analyses differs, that is, the prospective
application within a (online) neurofeedback or BCI experiment,
a FIR filter with such a high filter order (i.e., the filter length
minus one data point) is not applicable without a very long
baseline (e.g., around 1, 000/8s−1 = 125s with a sampling rate
of approx. 8 Hz). In addition, MATLAB-based filter functions
such as filtfilt() require data lengths of at least three times the
filter order. Therefore, an infinite impulse response (IIR) filter
was used in the present study in order to have a better comparison
to the outcome of an online preprocessing version.

Although a broader frequency window of the band-pass
filter was applied in the online version of this experiment (i.e.,
[0.01, 0.7] Hz; cf. section 3 in Supplementary Material) the
guidelines regarding the cutoff frequency window of Pinti et al.
(2018) was followed. That is, for either the conventional band-
pass filtering (BPF) approach and its combination with the
global component removal (BPF+GCR) the data of the △[HbO]
and △[HbR] was firstly low-pass filtered with a third order
Butterworth filter (0.09 Hz) and afterwards high-pass filtered
by means of a first order Butterworth filter (0.01 Hz). The
filters were applied usingMATLAB-based functions [i.e., butter()
and filtfilt()].
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3.3. Wavelet Filter (WLF)
In order to eliminate the non-evoked systemic components
from the hemoglobin signal (i.e., respiration, blood pressure)
a wavelet MDL detrending method was applied (Jang et al.,
2009) which is implemented in the MATLAB-based NIRS_SPM
toolbox (Version 4; Ye et al., 2009). This wavelet filter (WLF)
has some advantages over conventional band-pass filtering.
For example, it is possible to remove the frequencies due to
physiological noise and fast varying trends, which can not be
removed by conventional filtering because otherwise parts of
the hemodynamic signal would be removed (Jang et al., 2009).
The method was originally developed for fMRI analysis and
later adapted for fNIRS data analysis. It is based on the discrete
wavelet transform and it is used to decompose the fNIRS data
into global trend (i.e., global drift), hemodynamic signals and
uncorrelated noise at distinct scales (Jang et al., 2009). For the
decomposition, the data is firstly temporally smoothed using a
canonical hemodynamic response function (HRF) (Friston et al.,
2000), whereupon a wavelet MDL detrending algorithm (Jang
et al., 2009) removes the global trend from the signal. In the
algorithm of Jang et al. (2009), this global trend is modeled within
the general linear model (GLM):

Y = Xβ + ǫ + θ (1)

where the fNIRS signal is indicated by Y , the design matrix by
X, β describes the weights and ǫ the residuals. The new term
denoted by θ characterizes the additional global drift for each
wavelength and at each channel location separately. Therefore,
a modified GLM is derived for each signal type HbX as follows:

YHbX = XHbXβHbX + ǫHbX + θHbX (2)

Then, a discrete wavelet transform is used to separate the global
trend θHbX into wavelets. In comparison to the infinite sine and
cosine waves used in Fourier analysis, wavelets are temporally
limited “mini waves” used to represent other functions. Fourier
analysis techniques use sine and cosine functions which are
defined by frequency and not by time. A small change in
frequency produces changes in the whole time domain, whereas
wavelets are local in frequency and time (Vidakovic and Müller,
1994). To denoise or filter the data by means of wavelets some
coefficients act as filters and others correspond to details in the
data set. The idea is to set all coefficients below a specified
threshold to zero before using them for reconstruction of the
data in an inverse wavelet transform. This way of filtering is
favored because it denoises the signal without removing sharp
structures and details (Graps, 1995). Therefore, Jang et al.
(2009) implemented a Cohen–Daubechies–Feauveau (CDF) 9/7
wavelet. For its usage in fMRI exists an implicit assumption
that all wavelet coefficients at the same scale are simultaneously
either all zero or all non-zero (Jang et al., 2009). However,
fNIRS data possesses a much higher number of data points and
if the same assumption is considered it could lead to under-
or overfitting. To avoid this, the MDL principle is additionally
implemented. Simplified, this procedure is based on Occam’s
razor (i.e., select the answer with the fewest assumptions) and

successively includes the descending ordered wavelet coefficients
until a sufficient complexity is found (Jang et al., 2009).

3.4. Wavelet Filter and GC Removal
(WLF+GCR) and Band-Pass Filter and GC
Removal (BPF+GCR)
In addition to both the BPF and the WFL method, the GC
was removed from the signal. One method for removing the
GC was introduced by Zhang et al. (2016). This method
is based on Gaussian spatial filtering and singular value
decomposition (SVD). For implementing the method, the
Montreal Neurological Institute (MNI) coordinates of each
channel are required. The MNI coordinates for this data set were
approximated by means of the ICBM-152 head model (ICBM
2009a Nonlinear Symmetric Atlas) with the NIRSite toolbox
(Version 1, NIRx Medizintechnik GmbH, Berlin, Germany).
The optodes were not digitized for any of the subjects, instead
uniform coordinates according to the international 10–20 system
(approximated by the fOLD toolbox; Zimeo Morais et al.,
2018) were used. Although subject specific coordinates would
have been more accurate, the distances between optodes are
primarily important for this approach and should be comparable
between subjects.

3.4.1. Gaussian Spatial Filtering
To smooth the data with the Gaussian kernel channel distances
are required. In order to calculate the curved distance between
two channels (Fenn, 2001) the conversion from cartesian (x, y, z)
into spherical coordinates (r, θ ,ϕ) is necessary. The distance
between two channels is then calculated by means of the arc
length which is defined as the great-circle distance, i.e., the
shortest distance between two points (channels) on a curved
surface. To calculate this distance, information about the latitude
and longitude of two channels, given by ϕ1, θ1 and ϕ2, θ2,
is necessary, respectively. The central angle △c between the
channels is then defined as:

△c = arccos(sinϕ1 sinϕ2 + cosϕ1 cosϕ2 cos(△θ)) (3)

and distance d or arc length between these channels is then
calculated as follows:

d = r△c (4)

The distances between all channels are stored in a n× n distance
matrix D which is applied within the Gaussian filter defined by:

G(D) = e
−D2

2σ2 (5)

A Gaussian filter is a two-dimensional kernel smoother mainly
applied to remove detail and noise from a data set. The variable
σ represents the width of the kernel. The authors of the approach
suggested σ = 50◦ because the width of the kernel should be on
the one hand greater than the cortical neuronal activation and on
the other hand smaller than the GC. In a later paper, enhanced
results were reported by using a σ of 48◦ which is also applied in
this analysis (Zhang et al., 2017).
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3.4.2. Singular Value Decomposition
The fNIRS signal over all channels is represented by an m × n
matrix S where n specifies the number of channels and m the
number of data points. A singular value decomposition (SVD)
is basically a generalization of the eigendecomposition to non-
symmetric matrices. The SVD decomposes the matrix S into
three matrices:

S = U6VT (6)

where U is an m × n matrix consisting of left singular vectors
and represents the temporal waveform of the n channels (Harner,
1990; Zhang et al., 2016). The columns represent the principal
features in descending order starting with the first column which
is the highly correlated (most global) feature of the original
data (Harner, 1990). 6 is a n × n diagonal matrix with n non-
negative singular values as diagonal elements. The singular values
correspond to the square root of the variance of each spatio-
temporal feature which is the same as the square root of the
eigenvalues and are arranged in 6 in descending order (Harner,
1990). VT is the transpose of a n × n matrix and consists of
the right singular vectors containing the spatial information of
the channels corresponding to the temporal information of each
vector in U (Harner, 1990; Zhang et al., 2016). Since the matrix
V contains the spatial information of the fNIRS data, the next
step toward the GC removal is the smoothing of V by means of
the Gaussian filter. This kernel smoothing is done by a discrete
convolution of V , consisting of vectors vi, and the Gaussian
kernel G:

v∗i = vi ∗ G (7)

The resulting matrix V∗, consisting of the vectors v∗i , contains
only the spatial information of the GC, because the convolution
eliminates the localized neuronal pattern (Zhang et al., 2016). To
reconstruct the waveforms of the GC of each channel the matrix
V is replaced by the matrix V∗ in the SVD formula:

SGlobal = U6V∗ (8)

The difference between SGlobal and S results in a matrix
containing only data related to neuronal activity:

SNeuronal = S− SGlobal (9)

3.5. Channel Selection and Mean Value
Calculation
Once data were preprocessed with either the BPF, the WLF, the
BPF+GCR or the WLF+GCR approach, GLMs were fitted to
the cleaned data using a Boynton canonical HRF (6 s delay).
GLMs were fitted using the nilab2 toolbox (Rev. 2.0, NIRx
Medizintechnik GmbH, Berlin, Germany). Thereupon, all data
was epoched (−5 to 30 s around stimulus onset) and baseline
corrected (−5 to onset) using custom MATLAB-based code. All
steps were applied to both △[HbO] and △[HbR]. Individual
channel selection for statistical analysis was primarily based on
the beta values derived from the GLM for theMI andME pre-test
phases and restricted to channels covering the right hemisphere,

that is, the hemisphere contralateral to the active hand (cf.
Figure 2). To select the individual channel, all contralateral
channels were ranked according to their beta values separately
for MI and ME (cf. Figure 3A). Then a second ranking was
performed by averaging the ranks of ME andMI for each channel
and the channel with the highest average rank was then chosen
for further analyses (cf. Figures 3B,C). If there were two or more
channels with the same average rank an additional criterion was
applied. For this criterion, for each trial the mean value of the±2
s window around the trials’ peak was calculated (see Figure 3D).
The mean values were then averaged separately for MI and ME
trials. The resulting mean concentration changes for ME and MI
were multiplied, and the channel with the largest product was
selected for further analyses.

For the individually selected best channel, single trial mean
values were extracted from a time window ranging from 4 to
20 s after stimulus onset. This window was selected because
the hemodynamic response is not expected to peak before 4–
6 s after stimulus onset due to the delayed nature of the signal
and otherwise not task-related activity might influence the signal
values used for statistics. Single trial mean concentration changes
were derived as the mean value of the ±2 s window around the
trial’s peak. Single trial values were averaged separately forMI and
ME trials.

3.6. Statistical Analyses
For all statistical analyses R (version 3.6.0 “Planting of a Tree”;
R Core Team, 2017) together with RStudio (version 1.2.1335;
RStudio Team, 2015) was used. The data was always visually
checked for normally distributed residuals by means of a qq-
plot. In order to correct for violations of sphericity (ANOVA)
the Greenhouse-Geisser correction method was used. As post-
hoc tests, Bonferroni corrected paired student’s t-tests or pairwise
t-tests (for parametric tests) as well as pairwise comparisons
using Nemenyi multiple comparison test (for non-parametric
tests) were applied. Additionally, test specific effect sizes were
reported for all applied tests (i.e., Kendall’s W, Cohen’s d or
generalized η2G).

3.6.1. Temporal Consistency
To assess the quality of the neuronal signal SNeuronal, Zhang
et al. (2016) took advantage of the assumption that △[HbO] and
△[HbR] show a consistent spatial as well as a consistent temporal
pattern and that both signal types show a linear relationship.
They modeled the △[HbO] signal as a function of the △[HbR]
signal of the channels covering the motor areas:

Oxywave form = β · Deoxywave form + ǫ (10)

where Oxywave form and Deoxywave form are vectors containing the
grand average signal of the epoched data over all channels of
interest with mean value removed. The β value describes the
scalar to minimize the residual error ǫ. Zhang et al. (2016)
suggested this error as a measure of temporal consistency
and, this measure is predicted to decrease after GC removal.
Additionally, the authors measured the spatial consistency
by means of a similar model, and both measures showed
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FIGURE 3 | Schematic illustration of the channel selection based on the beta values (bars in A) for ME (blue) and MI (violet) of the pre-test phases. (A) Firstly, the

channels were ordered due to the ranking of the beta values for ME and MI data separately, then (B) a second ranking was performed based on the mean rank of ME

and MI ranks and finally (C), the channel with the best rank was selected (channel 13 in the example). In (D) the mean value calculation is exemplary visualized for

both △[HbO] (pink) and △[HbR] (blue) data. Therefore, for each trial a mean value over the peak ±2 s was calculated.

significantly decreased residuals for the models fitted for SNeuronal
(Equation 6) as compared to the models fitted for the signal S
(Equation 9) (Zhang et al., 2016). This reduced ǫ indicates an
enhanced temporal relationship between △[HbO] and △[HbR],
interpretable as resulting from a cleaner signal.

Temporal consistency was calculated as proposed by Zhang
et al. (2016) for the different preprocessing approaches to judge
preprocessing-related changes in data quality. In contrast to
Zhang et al. (2016) no block averaged but single trial linear
regression models were fitted separately for ME and MI data
with △[HbO] and △[HbR] as the response variable and the
explanatory variable (Equation 10). For all approaches, data for
temporal consistency analysis were derived from the individual
channels selected for the WLF+GCR preprocessed △[HbO] data
because it was expected that this combination results in the
cleanest signal and hence most accurate channel selection. For
each subject and separately for ME and MI data, the residuals
of the single trial regression models were extracted and a mean
residual value was calculated. Note that for ME this average
comprised all trials of pre- and post-test (ten trials in total) and
for MI all trials of the training session after removal of the trials
with significant EMG activity (17.72 ± 3.49 trials, ranging from

5 to 20 trials; for details of EMG analysis and EMG-based trial
removal, see section 3 in Supplementary Material).

The mean of the single trial residuals were then used to
test for differences in the temporal consistency of data derived
with the four preprocessing approaches. Because the residuals of
the data did not appear normally distributed a non-parametric
repeated measures ANOVA (Friedman test) was conducted with
the within-subject factor “approach” (BPF, WLF, BPF+GCR,
WLF+GCR) and the mean residuals as response variable. Non-
parametric tests are based on ranks which are in this case not
informative, therefore in addition to mean ranks (± SEM), mean
residuals (± SEM) are reported.

3.6.2. Spatial Specificity
Spatial specificity refers to whether the signals measured with a
given imaging technique are clearly defined in space or smeared,
where a clearly defined signal would be the desirable situation.
To quantify spatial specificity of△[HbO] and△[HbR], the mean
of single trial correlation matrices and spatial variances were
calculated and compared for the four preprocessing approaches.
To this end, for each subject Spearman correlation matrices
were calculated between the single trial hemodynamic data of
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all contralateral channels, separately for ME and MI as well as
△[HbO] and△[HbR]. Then two analyses were conducted.

For the first analysis, for each subject the single trial
correlation matrices were averaged for each condition (ME
and MI), signal type (△[HbO] and △[HbR]) and preprocessing
approach (BPF, WLF, BPF+GCR, and WLF+GCR), resulting
in 16 correlation matrices per subject. Then, for each of the
16 matrix types a mean correlation matrix over all subjects
was calculated and normalized (Fisher Z transformation). The
“cortest” function (“psych” package version 1.8.12) was used
to test for differences between matrices resulting from the
four preprocessing approaches. Matrices were expected to differ
between BPF, WLF, BPF+GCR, and WLF+GCR as a result of
improved artifact removal and, consequently, a more clearly
defined hemodynamic signal. A significant difference between
matrices is an indication that spatial specificity differs between
approaches, it is however not unequivocal in this regard. That is,

it could result from a spatially more clearly defined signal, but
also from a spatially unspecific, general shift in correlations for
one approach. This was addressed in the second analysis.

For the second analysis, the variances over the triangular
matrix of the single trial correlation matrices was calculated.
With this approach, a spatially unspecific signal would result in
a smaller variance than a signal clearly defined in space. On the
other hand, a spatially unspecific, general shift of correlations
would not reduce the variance. For each participant and
preprocessing approach, single trial variances were then averaged
for ME and MI and △[HbO] and △[HbR], respectively. These
values were used in four non-parametric repeated measures
ANOVAs (Friedman test), all with the within-subject factor
“approach” (BPF, WLF, BPF+GCR, WLF+GCR). Mean variances
were expected to increase from BPF to WLF to BPF+GCR to
WLF+GCR. Mean ranks (± SEM) and mean residuals (± SEM)
are reported for these analyses.

FIGURE 4 | Motor execution single subject plots of two exemplary subjects (A,B) of △[HbO] and △[HbR] data. The subplots in the left column contain epoched ([−5,

30] s) and baseline corrected ([−5, 0] s) data of a single ME trials preprocessed by BPF and BPF+GCR approaches (BPF vs. BPF+GCR) and the subplots in the right

column contain the data preprocessed by means of WLF and WLF+GCR approaches and the GC itself (WLF vs. WLF+GCR). For each subject, the first row contains

the pre-test and the second row the post-test ME data.
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FIGURE 5 | Motor imagery single subject plots of two exemplary subjects (A,B) of △[HbO] and △[HbR] data. The subplots in the left column contain epoched ([−5,

30] s) and baseline corrected ([−5, 0] s) data of a single MI trials preprocessed by BPF and BPF+GCR approaches (BPF vs. BPF+GCR) and the subplots in the right

column contain the data preprocessed by means of WLF and WLF+GCR approaches and the GC itself (WLF vs. WLF+GCR). For both subjects for a better

visualization only the first 10 trials of the training session after EMG correction are shown.

3.6.3. Consequences for Experimental Outcomes
Removing artifacts from fNIRS data with more elaborate
preprocessing pipelines has been shown to affect the outcome of a
study (Pfeifer et al., 2018). To examine whether the same applies
in the present study a 4× 2 ANOVA with repeated measures was
conducted for the within-subject factors “approach” (BPF, WLF,
BPF+GCR, WLF+GCR) and “time on task” (pre, post [ME] or
early, late [MI]), and the averaged single trial mean values of
the concentration changes as response variable for ME and MI
and signal type separately. With regard to the experimental factor
“time on task” it was expected that concentrations would change
from pre to post (ME) and from early to late (MI), reflecting
practice effects in the finger tapping task. For ME, the levels of
the “time on task” factor corresponded to the data collected in
pre- and post-test phases respectively. In contrast, for MI the two
levels of the “time on task” factor were defined as the first seven
trials (early) and the last seven trials (late) out of a total 20 trials of
the MI training session. Participants had to have at least two valid
trials for each level (i.e., 2 out of 7) in order to be entered into the

analysis. Due to the EMG-based epoch removal this criterion was
not fulfilled in three out of 50 participants, yielding a sample of
N = 47 for this analysis.

The actual number of trials entering the analysis was (mean±

SD) 6.38 ± 1.24 (range: 2–7) for MI early trials, and for MI late
trials 6.40± 1.06 (range: 2–7).

4. RESULTS

4.1. Temporal Consistency
In order to assess whether the temporal consistency between
△[HbO] and △[HbR] differs between the preprocessing
approaches, linear models were fitted for each trial for
the individually selected channel (see section Temporal
Consistency). Individual single trial residuals were averaged
and Friedman tests with the within-subject factor “approach”
(BPF, WLF, BPF+GCR, WLF+GCR) were conducted for ME and
MI separately.
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TABLE 1 | Temporal Consistency: Statistical results of the Friedman test and the post-hoc pairwise comparisons using Nemenyi multiple comparison test.

Channel Selection based on WLF+GCR

ME: χ2
(3)

= 146.62, p<0.00001, W = 0.89 MI: χ2
(3)

= 135.96, p<0.00001, W = 0.87

BPF BPF

+GCR

WLF µrank ± SEM µres ± SEM [µM] BPF BPF

+GCR

WLF µrank ± SEM µres ± SEM

[µM]

BPF – – – 125.40 ±6.73 1.06 ±0.08 – – – 126.04 ±7.10 0.77 ±0.05

BPF +GCR p<0.00001 – – 58.38 ±6.51 0.52 ±0.05 p<0.00001 – – 56.94 ±5.97 0.36 ±0.03

WLF p<0.001 p<0.00001 – 143.70 ±6.04 1.30 ±0.10 p<0.01 p<0.00001 – 143.58 ±6.43 0.93 ±0.06

WLF +GCR p<0.01 p<0.001 p<0.00001 74.52 ±6.86 0.62 ±0.05 p<0.01 p<0.001 p<0.00001 75.44 ±6.48 0.44 ±0.03

Channel Selection based on BPF+GCR

ME: χ2
(3)

= 142.01, p<0.00001, W = 0.90 MI: χ2
(3)

= 137.35, p<0.00001, W = 0.88

BPF BPF

+GCR

WLF µrank ± SEM µres ±SEM [µM] BPF BPF

+GCR

WLF µrank ±SEM µres ±SEM

[µM]

BPF – – – 123.72 ±6.87 1.05 ±0.08 – – – 125.06 ±6.87 0.76 ±0.05

BPF +GCR p<0.00001 – – 58.96 ±6.72 0.54 ±0.05 p<0.00001 – – 57.38 ±6.27 0.37 ±0.03

WLF p<0.001 p<0.00001 – 142.54 ±5.89 1.31 ±0.10 p<0.01 p<0.00001 – 142.40 ±6.22 0.91 ±0.06

WLF +GCR p<0.01 p<0.001 p<0.00001 76.78 ±7.16 0.65 ±0.06 p<0.01 p<0.001 p<0.00001 77.16 ±6.74 0.45 ±0.03

Additionally, the mean (± SEM) ranks and residuals are represented for each method and ME and MI data.

Figures 4, 5 illustrate the△[HbO] and△[HbR] data from two
representative participants for ME (Figure 4) and MI (Figure 5)
trials. Clearly, for both subjects the noise was highly reduced
after applying the GCR approach in addition to each of the two
filters in all trials. Furthermore, descriptively, after additionally
removing the GC from the data the amplitudes of both △[HbO]
and△[HbR] were greatly reduced as well as smoothed.

Results of the Friedman tests indicated for both MI and
ME residuals a highly significant effect [ME: χ2

(3)
= 146.62,

p < 0.00001,W = 0.89; MI: χ2
(3)

= 135.96, p < 0.00001,W =

0.87]. The subsequent pairwise comparisons using Nemenyi
multiple comparison test resulted for all approaches and for both
ME and MI in highly significant differences (p < 0.01).

Since the WLF+GCR approach was expected to result in
the cleanest signal the channel selection was based on the data
resulting from this approach. Against the expectations, the mean
(± SEM) ranks and residuals were highest for WLF and lowest
for BPF+GCR (cf. Table 1 for exact values), indicating that
the highest temporal consistency resulted from the BPF+GCR
approach. Hence, the analysis was repeated with the channel
selection based on the BPF+GCR approach for which the same
increments regarding the residuals were expected as found for
the channel selection based on WLF+GCR.

This was confirmed by the results of the Friedman test
which showed also a highly significant effect for both ME
[χ2

(3)
= 142.01, p < 0.00001, W = 0.90] and MI [χ2

(3)
=

137.35, p < 0.00001,W = 0.88] data. The post-hoc tests showed
highly significant differences in all comparisons (p < 0.01).
As reported in Table 1 the highest residuals resulted from the
WLF approach, followed by BPF and decreased further from
WLF+GCR to BPF+GCR approach, indicating the strongest
temporal consistency resulting from the BPF+GCR method.

4.2. Spatial Specificity
To examine whether the more elaborate approaches resulted in
a higher spatial specificity, single trial Spearman correlations
were computed between all contralateral channels separately for

△[HbO] and △[HbR], ME and MI and the four preprocessing

approaches. Afterwards, mean correlation matrices were
calculated, normalized and used to test for differences between

methods. Secondly, the variances of the single trial correlation
matrices were averaged. These values entered the Friedman
tests with “approach” (BPF, WLF, BPF+GCR, WLF+GCR) as
within-subject factor.

Figures 6, 7 show the mean magnitudes and mean
correlations averaged over all trials for each channel and
all subjects for each preprocessing approach and separately
for ME and MI as well as △[HbO] and △[HbR] data. As
illustrated in Figures 6A,B, 7A,B, the channel selection is for
all four preprocessing approaches comparable. However, for
BPF+GCR and WLF+GCR, descriptively, on the contralateral
hemisphere channels 12, 17, 18, 21, and 22 seem to capture
the sensorimotor △[HbO] response best. For △[HbR],
descriptively, this is the case for channels 13, 17, 18, and
22 (cf. Figures 6, 7).

The mean correlation matrices are visualized in Figures 6,
7C,D. Note that the figures show non-normalized values for
a clearer comparison. Descriptively, correlation matrices are
spatially unspecific and highly similar for approaches BPF
and WLF, whereas for approaches BPF+GCR and WLF+GCR,
although also highly comparable, correlations seem much
more spatially defined. This impression was confirmed by
statistical tests.

For all mean correlation matrix comparisons of MI and ME
and△[HbR] and△[HbO] data, the comparison of the correlation
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FIGURE 6 | (A,B) Frequency of selected channels based on mean ranking of the ME and MI beta values resulting from the pre-test of (A) △[HbO] and (B) △[HbR]

data. (C,D) Mean correlation matrices (non-normalized) and channel maps of mean magnitudes of the ME (C) △[HbO] and (D) △[HbR] data. Each row corresponds to

one of the preprocessing approaches. For both signal types only WLF+GCR and BPF+GCR approaches resulted in a higher spatial specificity indicated by both mean

(Continued)
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FIGURE 6 | correlation matrices and mean magnitudes. The white numbers in the diagonal correspond to the channel number. Note that the order of the channels

might differ between matrices due to the hierarchical clustering applied only for visualization (“ggcorrplot” function from the package “ggcorrplot”). Exact mean ± SEM

Spearman correlation coefficients can be found in Figure S2 of the Supplementary Material. To represent the influence of the GC all channels are visualized in the

channel maps although only channels of the right hemisphere were of interest. For a better comparison the channel maps of the mean magnitudes are underlaid with

the corresponding ROIs (cf. Figure 2).

matrices derived for the WLF and BPF as well as the comparison
between BPF+GCR and WLF+GCR approaches did not result
in significant differences. All other comparisons showed highly
significant differences (all p < 0.00001; cf. Table 2). This pattern
of results indicates on the one hand a strong influence of the GC
on the spatial specificity of the signal and on the other hand,
regarding the spatial specificity, no differences between the two
applied filter types are evident. The results of all 24 correlation
matrix comparisons can be found in Table 2.

A second set of analyses tested for differences in the variances
of single trial Spearman correlations between all contralateral
channels. Regarding the ME data, the results of the Friedman
tests indicated highly significant differences for the factor
“approach” for both △[HbO] [χ2

(3)
= 128.76, p < 0.00001,

W = 0.56] and△[HbR] [χ2
(3)

= 127.32, p < 0.00001,W = 0.48]

data. The same pattern was evident for the MI data [△[HbO]:
χ2
(3)

= 131.62, p < 0.00001,W = 0.59]; [△[HbR]: χ2
(3)

= 132.53,
p < 0.00001,W = 0.58].

For the ME data, subsequent pairwise comparisons using
Nemenyi multiple comparison test showed highly significant
results (p < 0.05) for all comparisons except for the comparison
between BPF and WLF as well as between BPF+GCR and
WLF+GCR approaches. Regarding the MI data, the post-hoc
tests showed highly significant differences (p < 0.01) for
all comparisons besides the comparison of BPF+GCR and
WLF+GCR approaches. As showed in Table 3, the variances
increased to a large degree fromBPF to BPF+GCR and fromWLF
to WLF+GCR approaches but are highly comparable between
WLF and BPF andWLF+GCR and BPF+GCR. This is in support
of the conclusion that removing the GC has a particulary strong
influence on spatial specificity.

4.3. Consequences for Statistical
Outcomes
4.3.1. Motor Execution: Time on Task Comparison
In order to compare the approaches with respect to experimental
outcomes 4×2 ANOVAs with repeated measures and the within-
subject factors “approach” (BPF, WLF, BPF+GCR, WLF+GCR)
and “time on task” (pre, post) were conducted.

The results regarding the △[HbO] data indicated a highly
significantmain effect of “time on task” [F(1,49) = 9.03, p < 0.01,
η2G = 0.03] with a decreasing mean value from pre-test (3.53 ±
0.18µM) to post-test (2.91 ± 0.15µM). Furthermore, the main
effect of “approach” [F(3,147) = 139.08, p < 0.00001, η2G = 0.34]
as well as the interaction “approach:time on task” [F(3,147) = 7.84,
p < 0.001, η2G = 0.006] were highly significant.

The 4 × 2 ANOVA for △[HbR] indicated only a highly
significant main effect for “approach” [F(3,147) = 83.54, p <

0.00001, η2G = 0.20]. Regarding the main effect of “approach,” the

pairwise comparisons are documented in Tables 4, 5 and showed
for all comparisons a highly significant difference (p < 0.00001)
for△[HbO] and△[HbR] data, respectively.

To further explore the interaction for each preprocessing
approach a paired t-test was conducted with△[HbO] as response
variable and “time on task” (pre, post) as explanatory variable.
Except for the BPF+GCR approach all t-tests showed significant
differences with a general direction of a decrease from pre-
to post-test (see Figure 8A). The size of the statistical effects
decreased from WLF approach (|d| = 0.46) to the WLF+GCR
approach (|d| = 0.36) to the BPF method (|d| = 0.28) to the to
the BPF+GCR approach (|d| = 0.19).

4.3.2. Motor Imagery: Time on Task Comparison
For the MI data, 4 × 2 ANOVAs with the within-subject
factors “approach” (BPF,WLF, BPF+GCR,WLF+GCR) and “time
on task” (early, late) were performed to assess the effect of
preprocessing approach on experimental effects.

For both the △[HbO] and the △[HbR] data, a highly
significant main effect of “approach” was found [△[HbO]:
F(3,138) = 101.19, p < 0.00001, η2G = 0.28; △[HbR]: F(3,138) =

49.60, p < 0.00001, η2G = 0.15]. For the △[HbO] data, the
pairwise comparisons indicated a highly significant difference
between all approaches (p < 0.00001) except for the comparison
of the BPF and WLF methods (p > 0.05).

Neither the main effect of “time on task” nor an interaction
between the two factors was significant for both signal types. This
is illustrated in Figures 8C,D. Regarding both the △[HbO] and
the△[HbR] data, all pairwise comparisons resulted in significant
differences (p < 0.05).

4.3.3. Additional Exploratory Analyses
As evident from the statistical analyses and as illustrated in
Figures 8B–D, “time on task” had no effect on the ME △[HbR]
data as well as on the MI △[HbO] and △[HbR] data signal
irrespective of preprocessing approach. Exploratory analyses
were conducted to better understand this unexpected result. For
the sake of completeness, although a main effect of “time on task”
was evident for ME △[HbO] data, the exploratory analyses were
also applied for this data.

A possible explanation of the lacking “time on task” effect
could be that part of the subjects showed a decrease in signal over
time, while the remaining subjects showed an increase, effectively
averaging out any “time on task” effect at the group level. To test
this idea, the sample was regrouped into a group with a signal
increase (“increase”) and a signal decrease group (“decrease”),
separately for ME and MI, each preprocessing approach and
for △[HbO] and △[HbR] data. This grouping was based on the
difference of the mean signal value of pre- and post-test for ME
and early and late data for MI, respectively. For ME and MI, each
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FIGURE 7 | (A,B) Frequency of selected channels based on mean ranking of the ME and MI beta values resulting from the pre-test of (A) △[HbO] and (B) △[HbR]

data. (C,D) Mean correlation matrices (non-normalized) and channel maps of mean magnitudes of the MI (C) △[HbO] and (D) △[HbR] data. Each row corresponds to

one of the preprocessing approaches. For both signal types only WLF+GCR and BPF+GCR approaches resulted in a higher spatial specificity indicated by both mean

(Continued)
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FIGURE 7 | correlation matrices and mean magnitudes. The white numbers in the diagonal correspond to the channel number. Note that the order of the channels

might differ between matrices due to the hierarchical clustering applied only for visualization (“ggcorrplot” function from the package “ggcorrplot”). Exact mean ± SEM

Spearman correlation coefficients can be found in Figure S2 of the Supplementary Material. To represent the influence of the GC all channels are visualized in the

channel maps although only channels of the right hemisphere were of interest. For a better comparison the channel maps of the mean magnitudes are underlaid with

the corresponding ROIs (cf. Figure 2).

TABLE 2 | Spatial Specificity: Comparison of the (normalized) mean correlation matrices of △[HbO] and △[HbR] data for ME and MI △[HbO] as well as △[HbR] data.

△[HbO] △[HbR]

BPF BPF

+GCR

WLF BPF BPF

+GCR

WLF

Motor execution

BPF +GCR χ2
(66)

= 1379.46

p<0.00001

– – χ2(66) = 664.15

p<0.00001

– –

WLF χ2
(66)

= 1.64

p>0.05

χ2
(66)

= 1323.78

p<0.00001

– χ2
(66)

= 0.85

p>0.05

χ2
(66)

= 638.77

p<0.00001

–

WLF +GCR χ2
(66)

= 1378.46

p<0.00001

χ2
(66)

= 0.42

p>0.05

χ2
(66)

= 1322.32

p<0.00001

χ2
(66)

= 659.83

p<0.00001

χ2
(66)

= 1.06

p>0.05

χ2
(66)

= 634.213

p<0.00001

Motor imagery

BPF +GCR χ2
(66)

= 1176.21

p<0.00001

– – χ2(66) = 520.89

p<0.00001

– –

WLF χ2
(66)

= 4.67

p>0.05

χ2
(66)

= 1037.62

p<0.00001

– χ2
(66)

= 0.52

p>0.05

χ2
(66)

= 515.21

p<0.00001

–

WLF +GCR χ2
(66)

= 1179.57

p<0.00001

χ2
(66)

= 0.64

p>0.05

χ2
(66)

= 1040.48

p<0.00001

χ2
(66)

= 517.16

p<0.00001

χ2
(66)

= 1.27

p>0.05

χ2
(66)

= 511.10

p<0.00001

approach and signal type (△[HbO] and △[HbR]) a 2 × 2 mixed
repeated measures ANOVA with within-subject factor “time on
task” [pre, post (ME) or early, late (MI)] and between-subjects
factor “signal change” (increase, decrease) was conducted.

All test results, effect sizes and group sizes are
given in Tables 4–7.

4.3.3.1. Motor Execution
Regarding the ME data, the output of the ANOVAs are
documented in Tables 4, 5. Overall, the effect of most interest
was the interaction “signal change:time on task” which was for
both△[HbO] and△[HbR] data and all preprocessing approaches
highly significant (p < 0.00001; cf. Tables 4, 5). To further
explore this interaction, paired t-tests were conducted for both
△[HbO] and △[HbR] data and each preprocessing approach
separately in order to find a potential “time on task” effect for
the signal change subgroups. As illustrated in Figures 8E,F, the
results of all applied t-tests showed highly significant differences
between pre- and post-test data (p < 0.001).

For the △[HbO] data and all preprocessing approaches, the
“decrease” signal change group comprised the larger amount
of subjects as compared to the “increase” signal change group
(△N = 6 for BPF+GCR and △N = 18 for all other approaches)
which might be the reason for the main effect of “time on task”
of the primary analysis (cf. section Motor Execution: Time on
Task Comparison), which resulted in a signal decrease from pre-
to post-test. For the △[HbR] data the size of the subgroups are

more comparable (△N : 2–8) and is likely to be the reason for
the lacking “time on task” effect in the main analysis (cf. section
Motor Execution: Time on Task Comparison).

For all subgroups of both△[HbO] and△[HbR] data and each
preprocessing approach the effect sizes always decreased from
BPF to BPF+GCR and fromWLF to WLF+GCR.

4.3.3.2. Motor imagery
In terms of theMI data, neither a significant main effect of “signal
change” nor of “time on task” was evident. However, highly
significant interactions between the two factors were found for
all four preprocessing approaches (p < 0.0001; cf. Tables 6, 7).

In order to explore the significant interactions, paired t-tests
were performed to test for differences between early and late MI
data in the respective subgroups. The results are summarized
in Tables 6, 7 and visualized in Figures 8G,H. All comparisons
showed a highly significant difference between early and late MI
trials (p < 0.001).

As for the ME △[HbR] data, for both the MI △[HbO] and
△[HbR] data and all preprocessing approaches, the size of the
subgroups are comparable (△N : 1–7) and might be also here
the reason for the lacking main effect in the primary analysis (cf.
section Motor Imagery: Time on Task Comparison).

Regarding the effect sizes, for both △[HbO] and △[HbR]
data the effect sizes decreased in both subgroups from BPF
to BPF+GCR approaches. For both subgroups of the △[HbR]
data there was also a decrease in effect size from WLF to
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TABLE 3 | Spatial Specificity: Statistical results from the pairwise comparison of both the motor execution and the motor imagery data as well as mean ± SEM for

variances and ranks for each signal type and preprocessing approach.

Motor execution

△[HbO] △[HbR]

χ2
(3)

= 128.76, p<0.00001, W = 0.56 χ2
(3)

= 127.32, p<0.00001, W = 0.48

BPF BPF

+GCR

WLF µrank

±SEM

µvar

±SEM

[µM2 ]

BPF BPF

+GCR

WLF µrank

±SEM

µvar

±SEM

[µM2 ]

BPF – – – 47.22

±3.97

83.82

±8.61

– – – 47.14

±4.03

184.87

±10.76

BPF +GCR p<0.00001 – – 153.26

±4.21

453.39

±6.27

p<0.00001 – – 152.52

±4.36

465.55

±5.72

WLF p>0.05 p<0.00001 – 53.78

±4.21

98.04

±9.53

p>0.05 p<0.00001 – 54.78

±4.39

208.01

±0.06

WLF +GCR p<0.00001 p>0.05 p<0.00001 147.74

±3.99

444.58

±5.58

p<0.00001 p>0.05 p<0.00001 147.56

±4.04

460.63

±5.21

Motor imagery

△[HbO] △[HbR]

χ2
(3)

= 131.62, p<0.00001, W = 0.59 χ2
(3)

= 132.53, p<0.00001, W = 0.58

BPF BPF

+GCR

WLF µrank

±SEM

µres

±SEM

[µM2]

BPF BPF

+GCR

WLF µrank

±SEM

µres

±SEM

[µM2 ]

BPF – – – 44.84

±4.14

97.12

±7.99

– – – 45.38

±4.00

179.05

±9.29

BPF

+GCR

p<0.00001 – – 150.44

±4.19

413.41

±4.74

p<0.00001 – – 146.20

±4.11

428.51

±5.60

WLF p<0.01 p<0.00001 – 56.16

±3.95

117.80

±8.23

p<0.01 p<0.00001 – 55.66

±4.12

205.34

±9.86

WLF

+GCR

p<0.00001 p>0.05 p<0.00001 150.56

±4.05

412.60

±4.46

p<0.00001 p>0.05 p<0.00001 154.76

±4.05

441.00

±6.03

WLF+GCR approaches. However, for the △[HbO] data only the
“increase” subgroup showed a decrease in effect size from WLF
to WLF+GCR whereas the effect size of the “decrease” group
minimally increased.

Taken together, the results of the exploratory analyses indicate
that even though no experimental effect is evident for both the
△[HbO] and△[HbR] data of the MI training phase as well as the
△[HbR] data of theME tests when considering the whole sample,
significant experimental effects are evident for “signal change”
subgroups. Because these experimental effects are of opposing
direction they are annulled in the sample average. However, no
clear pattern emerged with regard to the relationship between
preprocessing approach and size of the “time on task” effect but,
except for the comparison of the “decrease” group of the ME
△[HbO] data, a decrease of effect size from one approach (BPF
orWLF) to its more elaborate version (BPF+GCR orWLF+GCR)
is evident. Notably, subgroup assignment was influenced by
preprocessing approach. That is, at least for some participants the
preprocessing approach determined whether △[HbO]/△[HbR]

magnitudes increased or decreased as a function of “time
on task.”

5. DISCUSSION

The present study investigated the effects of four fNIRS
preprocessing approaches on single trial data by means of
temporal consistency between △[HbO] and △[HbR], and of
spatial specificity of either signal. In addition, experimental
outcomes were compared between preprocessing approaches.
The preprocessing approaches chosen were conventional band-
pass filtering (BPF), a wavelet MDL detrending filter (WLF;
Jang et al., 2009) and the combination of each approach with
global component removal (WLF+GCR; Zhang et al., 2016 and
BPF+GCR). It was expected that the more elaborate approaches
lead to a higher signal quality and consequently in a higher
temporal consistency between △[HbO] and △[HbR] and a
greater spatial specificity of the signals. Experimental effects were
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TABLE 4 | Consequences for Statistical Outcome: Results of all statistical tests applied regarding the ME △HbO data, including main tests, post-hoc tests and

exploratory analyses.

Motor execution △[HbO]

4 × 2

ANOVA

Pairwise

t-tests

BPF BPF

+GCR

WLF µpre

±SEM

[µM]

“Time on task” F(1,49) = 9.03,

p < 0.01, η2
G
= 0.03

BPF p < 0.00001 – 3.53

±0.18

“Approach”

F(3,147) = 139.08,

p < 0.00001, η2
G
= 0.34

BPF

+GCR

p < 0.00001 – – µpost

± SEM

[µM]

“Time on task:approach”

F(3,147) = 7.84,

p < 0.001, η2
G
= 0.006

WLF

+GCR

p < 0.00001 p < 0.00001 p < 0.00001 2.91

±0.15

Paired t-tests for each approach

BPF BPF+GCR

t(49) = −3.13, p < 0.01 µpre

± SEM

[µM]

µpost

± SEM

[µM]

t(49) = −1.38, p > 0.05 µpre

± SEM

[µM]

µpost

± SEM

[µM]

|d| = 0.28 4.27

±0.29

3.50

±0.27

|d| = 0.19 1.77

±0.18

1.56

±0.16

WLF WLF+GCR

t(49) = −3.28, p < 0.01 µpre

± SEM

[µM]

µpost

± SEM

[µM]

t(49) = −2.54, p < 0.05 µpre

± SEM

[µM]

µpost

± SEM

[µM]

|d| = 0.46 5.61

±0.39

4.60

±0.35

|d| = 0.36 2.46

±0.26

1.98

±0.20

Exploratory analyses

BPF BPF+GCR

2× 2 ANOVA 2× 2 ANOVA

“Signal change” F(1,48) = 0.09, p > 0.05, η2
G
= 0.002 “Signal change” F(1,48) = 2.57, p > 0.05, η2

G
= 0.04

“Time on task” F(1,48) = 19.30, p < 0.0001, η2
G
= 0.04 “Time on task” F(1,48) = 3.61, p > 0.05, η2

G
= 0.009

“Signal change:time on task” F(1,48) = 48.81, p < 0.00001, η2
G
= 0.10 “Signal change:time on task” F(1,48) = 19.54, p < 0.0001, η2

G
= 0.06

“Increase” (N = 16) “Decrease” (N = 34) “Increase” (N = 22) “Decrease” (N = 28)

Paired t-test Paired t-test Paired t-test Paired t-test

t(15) = −5.29, p < 0.0001 t(33) = 6.69,

p < 0.00001

t(21) = −4.19, p < 0.001 t(27) = 3.32, p < 0.01

|d| = 1.32 |d| = 1.15 |d| = 0.89 |d| = 0.63

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

3.49

±0.46

4.50

±0.51

4.63

±0.36

3.04

±0.28

1.71

±0.25

2.16

±0.25

1.82

±0.27

1.08

±0.15

WLF WLF+GCR

2× 2 ANOVA 2× 2 ANOVA

“Signal change” F(1,48) = 0.03, p > 0.05, η2
G
= 0.0005 “Signal change” F(1,48) = 0.15, p > 0.05, η2

G
= 0.003

“Time on task” F(1,48) = 20.01, p < 0.0001, η2
G
= 0.04 “Time on task” F(1,48) = 8.57, p < 0.01, η2

G
= 0.02

“Signal change:time on task” F(1,48) = 43.02, p < 0.00001, η2
G
= 0.08 “Signal change:time on task” F(1,48) = 17.04, p < 0.0001, η2

G
= 0.04

(Continued)
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TABLE 4 | Continued

“Increase” (N = 16) “Decrease” (N = 34) “Increase” (N = 16) “Decrease” (N = 34)

Paired t-test Paired t-test Paired t-test Paired t-test

t(15) = −4.52,

p < 0.001

t(33) = 6.56,

p < 0.00001

t(15) = −4.65,

p < 0.001

t(33) = 4.03,

p < 0.001

|d| = 1.13 |d| = 1.13 |d| = 1.16 |d| = 0.69

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

4.61

±0.61

5.76

±0.67

6.08

±0.48

4.05

±0.38

2.09

±0.21

2.59

±0.27

2.63

±0.38

1.70

±0.25

expected to be reduced for the more elaborate preprocessing
approaches as compared to BPF and WLF alone.

5.1. Temporal Consistency
Descriptively, and as illustrated in Figures 4, 5, against the
expectations, for the WLF approach, in most cases signal
amplitude and morphology were quite similar to that resulting
from the BPF approach. However, as hypothesized after the
combination of each filtering method with the GCR method,
the signal amplitude was greatly reduced as compared to the
BPF and WLF alone (cf. Figures 4, 5). Furthermore, multiple
peaks were strongly suppressed, suggesting an origin in evoked
systemic activity. Temporal consistency was statistically assessed
based on the residuals of the linear models fitted for△[HbO] and
△[HbR] data, where a small residual would indicate clean data
and high signal quality (Zhang et al., 2016).

It was hypothesized that the WLF method results in a
higher temporal consistency as compared to the BPF method,
consequently a further increase in temporal consistency was
expected from BPF+GCR toWLF+GCR. This was not confirmed
by means of the statistical results. Although, for both the
ME and the MI data, the mean residuals resulting from
preprocessing with the BPF andWLF approach were nearly twice
as high as those resulting from the BPF+GCR and WLF+GCR
approaches (cf. Table 1), the temporal consistency decreased
from BPF to WLF and from BPF+GCR to WLF+GCR. Overall
and independent of whether the channel selection was based
on BPF+GCR or WLF+GCR, the lowest residuals resulted
from the BPF+GCR approach which was also confirmed by
statistical outcomes.

For block averaged data and using the WLF+GCR approach
only, Zhang et al. (2016) proposed that a decrease in residuals
reflects higher data quality. The results of the present study
indicate that both BPF+GCR and WLF+GCR strongly reduce
residuals also when applied to single trial data, and, following
the notion of reduced residuals reflecting higher data quality,
specifically BPF+GCR can be assumed to significantly improve
single trial signal quality.

5.2. Spatial Specificity
Spatial specificity was quantified by means of (contralateral)
channel correlationmatrices and (contralateral) channel variance
comparisons. Mean normalized correlation matrices differed
significantly between all preprocessing approaches of both
MI and ME and △[HbO] and △[HbR] data except for the

comparison of BPF and WLF and of BPF+GCR and WLF+GCR
approaches. Whereas for the BPF andWLF approaches nearly all
contralateral channels were highly positively correlated in spite
of considerable distances between the channels, descriptively,
for the BPF+GCR and WLF+GCR approaches only adjacent
channels formed positive correlation clusters, and negative and
zero-correlation clusters appeared to be present as well (cf.
Figures 6, 7). Variance increased significantly from BPF to
BPF+GCR and fromWLF toWLG+GCR, indicating that channel
signals became increasingly independent from one another.
However, likewise in these analyses no difference between BPF
and WLF and between BPF+GCR and WLF+GCR approaches
for the ME data and between BPF and WLF approaches in the
MI data were evident. These results were unexpected in that it
was hypothesized that WLF resulted in higher spatial specificity
as compared to BPF, followed by BPF+GCR to WLF+GCR.

Taken together, differences in correlation matrices and the
increase in variance support the conclusion that the removal
of the global component results in a more specific signal.
Furthermore, these results indicate no difference in terms of
spatial specificity between BPF and WLF approaches.

The increased spatial specificity in particular for the
BPF+GCR andWLF+GCR preprocessed data was clearly evident
in the mean activation maps (cf. Figures 6, 7). Here, for△[HbO]
and △[HbR] the contralateral channels with the largest signals
(respectively 12, 17, 21, and 22; and 13, 17, 18, and 22) covered
supplementary motor and premotor areas (SMA/PMC) and
primary motor areas (M1). This is in line with typical activation
patterns for sequential tasks found in MI and motor learning
research (Dayan and Cohen, 2011; Mizuguchi and Kanosue,
2017).

Interestingly, a high influence of the GC on spatial specificity
was evident for both △[HbO] and △[HbR] data. This is in
contrast to previous findings (Yücel et al., 2015; Zhang et al.,
2016) where it has been suggested that mostly △[HbO] data
are affected by global component activity. At present, the cause
of this discrepancy is not clear, but our results should caution
against relying on uncorrected△[HbR] data in the hope that here
the GC poses no problem.

5.3. Consequences for Experimental
Outcomes
For both ME and MI and respectively △[HbO] and △[HbR], the
data resulting from the four preprocessing approaches differed
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TABLE 5 | Consequences for Statistical Outcome: Results of all statistical tests applied regarding the ME △HbR data, including main tests, post-hoc tests and

exploratory analyses.

Motor execution △[HbR]

4 × 2

ANOVA

Pairwise

t-tests

BPF BPF

+GCR

WLF µpre

±SEM

[µM]

“Time on task” F(1,49) = 0.16,

p > 0.05, η2
G
= 0.0001

BPF p < 0.00001 – −1.05

±0.05

“Approach” F(3,147) = 83.54,

p < 0.00001, η2
G
= 0.20

BPF

+GCR

p < 0.00001 – – µpost

± SEM

[µM]

“Time on task:approach”

F(3,147) = 1.58,

p > 0.05, η2
G
= 0.0008

WLF

+GCR

p < 0.00001 p < 0.00001 p < 0.00001 −1.04

±0.06

Exploratory analyses

BPF BPF+GCR

2× 2 ANOVA 2× 2 ANOVA

“Signal change” F(1,48) = 0.80,

p > 0.05, η2
G
= 0.02

“Signal change” F(1,48) = 2.19,

p > 0.05, η2
G
= 0.04

“Time on task” F(1,48) = 1.56,

p > 0.05, η2
G
= 0.0009

“Time on task” F(1,48) = 3.25,

p > 0.05, η2
G
= 0.003

“Signal change:time on task”

F(1,48) = 57.32,

p < 0.00001, η2
G
= 0.03

“Signal change:time on task”

F(1,48) = 34.61,

p < 0.0001, η2
G
= 0.03

“Increase” (N = 21) “Decrease” (N = 29) “Increase” (N = 26) “Decrease” (N = 24)

Paired t-test Paired t-test Paired t-test Paired t-test

t(20) = −5.86, p < 0.0001 t(28) = 5.34, p < 0.00001 t(25) = −4.36, p < 0.001 t(23) = 4.54, p < 0.001

|d| = 1.28 |d| = 0.99 |d| = 0.85 |d| = 0.93

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

−1.18

±0.15

−0.92

±0.14

−1.10

±0.12

−1.36

±0.15

−0.65

±0.08

−0.45

±0.06

−0.66

±0.10

−0.78

±0.10

WLF WLF+GCR

2× 2 ANOVA 2× 2 ANOVA

“Signal change” F(1,48) = 0.77,

p > 0.05, η2
G
= 0.02

“Signal change” F(1,48) = 1.18,

p > 0.05, η2
G
= 0.02

“Time on task” F(1,48) = 0.004,

p > 0.05, η2
G
= 0.000002

“Time on task” F(1,48) = 2.54,

p > 0.05, η2
G
= 0.002

“Signal change:time on task”

F(1,48) = 69.10,

p < 0.00001, η2
G
= 0.03

“Signal change:time on task”

F(1,48) = 42.48,

p < 0.00001, η2
G
= 0.03

“Increase” (N = 23) “Decrease” (N = 27) “Increase” (N = 28) “Decrease” (N = 22)

Paired t-test Paired t-test Paired t-test Paired t-test

t(22) = −7.23, p < 0.00001 t(26) = 5.03, p < 0.0001 t(27) = −5.03, p < 0.00001 t(21) = 4.45, p < 0.001

|d| = 1.51 |d| = 0.97 |d| = 0.95 |d| = 0.95

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

−1.58

±0.19

−1.26

±0.18

−1.51

±0.16

−1.78

±0.20

−0.88

±0.10

−0.67

±0.08

−0.86

±0.12

−1.03

±0.15
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FIGURE 8 | (A,B) Differences of (A) △[HbO] and (B) △[HbR] ME data between the preprocessing approaches from pre- (bright blue) to post-test (dark blue). (E,F) ME

data after exploratory regrouping of data in “increase” and “decrease” signal change groups for each approach, (E) for △[HbO] and (F) for △[HbR] data. (C,D)

Differences of (C) △[HbO] and (D) △[HbR] MI data between the preprocessing approaches from early (bright violet) to late MI (dark violet). (G,H) MI data after

exploratory regrouping of data in “increase” and “decrease” signal change groups for each approach, (G) for △[HbO] and (H) for △[HbR] data. Error bars show

standard error of the mean. Significance level: *p < 0.05, **p < 0.01, ***p < 0.001.

highly significantly from each other. In addition, regarding
the ME data, for the △[HbO] data a significant “time on
task” effect was evident as well as an significant interaction
between the effects of “preprocessing approach” and “time on
task.” The largest effect size for “time on task” was found
for the WLF approach, followed by the WLF+GCR and then
the BPF and BPF+GCR approaches. Concerning the MI data,
the experimental factor “time on task” was neither associated
with a significant main effect nor a significant interaction.
Subsequent exploratory analyses performed on “signal change”-
based subsamples indicated that “time on task” effects were
present and that they varied between preprocessing approaches.
However, the expected decrease in effect size of the “time on task”
effect fromBPF to BPF+GCR and fromWLF toWLF+GCR could
not be reliably observed across all subsamples.

The pattern observed for ME data indicates that for an
experimental task where a strong and reliable hemodynamic
response can be expected, experimental outcomes will likely be
more affected by artifactual sources when based on △[HbO]
as compared to △[HbR] data, as reported in previous studies
(Zhang et al., 2016; Pfeifer et al., 2018). Yet when responses
are smaller and perhaps less reliable as for MI the present
results suggest that this might not hold true, as experimental
effects varied with preprocessing approach both for △[HbO]
and △[HbR]. This variation indicates that the presumed
insensitivity of △[HbR] to artifacts might be a misconception.
However, MI results were derived from exploratory analyses
and rely on a much smaller sample than those obtained
for ME, hence future research is needed to consolidate
this observation.
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TABLE 6 | Consequences for Statistical Outcome: Results of all statistical tests applied regarding the MI △HbO data, including main tests, post-hoc tests and exploratory

analyses.

Motor imagery △[HbO]

4 × 2

ANOVA

Pairwise

t-tests

BPF BPF

+GCR

WLF µpre

±SEM

[µM]

“Time on task” F(1,46) = 1.87,

p > 0.05, η2
G
= 0.004

BPF p < 0.00001 – 1.90

±0.10

“Approach” F(3,138) = 101.19,

p < 0.00001, η2
G
= 0.28

BPF

+GCR

p < 0.00001 – – µpost

± SEM

[µM]

“Time on task:approach”

F(3,138) = 0.18,

p > 0.05, η2
G
= 0.002

WLF

+GCR

p < 0.01 p < 0.05 p < 0.00001 1.78

±0.09

Exploratory analyses

BPF BPF+GCR

2× 2 ANOVA 2× 2 ANOVA

“Signal change” F(1,45) = 2.51,

p > 0.05, η2
G
= 0.05

“Signal change” F(1,45) = 3.71,

p > 0.05, η2
G
= 0.07

“Time on task” F(1,45) = 1.17,

p > 0.05, η2
G
= 0.002

“Time on task” F(1,45) = 5.38,

p > 0.05, η2
G
= 0.01

“Signal change:time on task”

F(1,45) = 70.45,

p < 0.00001, η2
G
= 0.11

“Signal change:time on task”

F(1,45) = 39.25,

p < 0.00001, η2
G
= 0.08

“Increase” (N = 25) “Decrease” (N = 22) “Increase” (N = 24) “Decrease” (N = 23)

Paired t-test Paired t-test Paired t-test Paired t-test

t(24) = −6.48, p < 0.0001 t(21) = 5.65, p < 0.00001 t(23) = −5.43, p < 0.0001 t(22) = 4.57, p < 0.001

|d| = 1.30 |d| = 1.20 |d| = 1.11 |d| = 0.95

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

1.72

±0.18

2.32

±0.22

2.94

±0.26

2.06

±0.23

0.70

±0.10

0.99

±0.12

1.61

±0.25

0.96

±0.18

WLF WLF+GCR

2× 2 ANOVA 2× 2 ANOVA

“Signal change” F(1,45) = 6.43,

p < 0.05, η2
G
= 0.12

“Signal change” F(1,45) = 1.34,

p > 0.05, η2
G
= 0.03

“Time on task” F(1,45) = 1.43,

p > 0.05, η2
G
= 0.003

“Time on task” F(1,45) = 6.63,

p < 0.05, η2
G
= 0.008

“Signal change:time on task”

F(1,45) = 61.63,

p < 0.00001, η2
G
= 0.10

“Signal change:time on task”

F(1,45) = 54.94,

p < 0.00001, η2
G
= 0.06

“Increase” (N = 24) “Decrease” (N = 23) “Increase” (N = 20) “Decrease” (N = 27)

Paired t-test Paired t-test Paired t-test Paired t-test

t(23) = −6.23, p < 0.00001 t(22) = 5.32, p < 0.0001 t(19) = −5.51, p < 0.0001 t(26) = 5.83, p < 0.00001

|d| = 1.27 |d| = 1.11 |d| = 1.23 |d| = 1.12

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

1.97

±0.19

−2.63

±0.21

3.63

±0.28

2.69

±0.31

0.95

±0.12

1.33

±0.15

1.17

±0.19

1.73

±0.24
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TABLE 7 | Consequences for Statistical Outcome: Results of all statistical tests applied regarding the MI △HbR data, including main tests, post-hoc tests and exploratory

analyses.

Motor imagery △[HbR]

4 × 2

ANOVA

Pairwise

t-tests

BPF BPF

+GCR

WLF µpre

±SEM

[µM]

“Time on task” F(1,46) = 0.03,

p > 0.05, η2
G
= 0.00005

BPF p < 0.00001 – −0.521

±0.028

“Approach” F(3,138) = 49.60,

p < 0.00001, η2
G
= 0.15

BPF

+GCR

p < 0.00001 – – µpost

± SEM

[µM]

“Time on task:approach”

F(3,138) = 0.80,

p > 0.05, η2
G
= 0.001

WLF

+GCR

p < 0.01 p < 0.0001 p < 0.00001 −0.516

±0.027

Exploratory analyses

BPF BPF+GCR

2× 2 ANOVA 2× 2 ANOVA

“Signal change” F(1,45) = 0.54,

p > 0.05, η2
G
= 0.01

“Signal change” F(1,45) = 0.27,

p > 0.05, η2
G
= 0.005

“Time on task” F(1,45) = 0.38,

p > 0.05, η2
G
= 0.0006

“Time on task” F(1,45) = 3.44,

p > 0.05, η2
G
= 0.009

“Signal change:time on task”

F(1,45) = 67.05,

p < 0.00001, η2
G
= 0.10

“Signal change:time on task”

F(1,45) = 42.50,

p < 0.00001, η2
G
= 0.10

“Increase” (N = 22) “Decrease” (N = 25) “Increase” (N = 24) “Decrease” (N = 23)

Paired t-test Paired t-test Paired t-test Paired t-test

t(21) = −5.40, p < 0.0001 t(24) = 6.39, p < 0.00001 t(23) = −4.58, p < 0.001 t(22) = 5.95, p < 0.001

|d| = 1.15 |d| = 1.28 |d| = 0.94 |d| = 1.24

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

−0.71

±0.10

−0.46

±0.07

−0.43

±0.05

−0.61

±0.06

−0.43

±0.05

−0.23

±0.06

−0.31

±0.04

−0.42

±0.04

WLF WLF+GCR

2× 2 ANOVA 2× 2 ANOVA

“Signal change” F(1,45) = 0.52,

p > 0.05, η2
G
= 0.01

“Signal change” F(1,45) = 0.03,

p > 0.05, η2
G
= 0.0005

“Time on task” F(1,45) = 0.03,

p > 0.05, η2
G
= 0.00004

“Time on task” F(1,45) = 0.78,

p > 0.05, η2
G
= 0.0009

“Signal change:time on task”

F(1,45) = 77.35,

p < 0.00001, η2
G
= 0.09

“Signal change:time on task”

F(1,45) = 79.05,

p < 0.00001, η2
G
= 0.08

“Increase” (N = 22) “Decrease” (N = 25) “Increase” (N = 20) “Decrease” (N = 27)

Paired t-test Paired t-test Paired t-test Paired t-test

t(21) = −5.84, p < 0.00001 t(24) = 6.63, p < 0.00001 t(19) = −6.24, p < 0.00001 t(26) = 4.45, p < 0.00001

|d| = 1.33 |d| = 1.33 |d| = 1.39 |d| = 1.16

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

µpre

± SEM

[µM]

µpost

± SEM

[µM]

−0.94

±0.12

−0.67

±0.09

−0.59

±0.07

−0.84

±0.08

−0.55

±0.07

−0.35

±0.06

−0.40

±0.05

−0.53

±0.05
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5.4. Constraints and Conclusions
The results of the present study are object to a number of
constraints. Regarding the GCR approach (Zhang et al., 2016) a
possible issue is the optode coverage, which the authors of the
approach recommended to be “much larger than the expected
pattern of activity” (Zhang et al., 2016) due to the large-sized
kernel. More specifically, they indicate the coverage to be 9 cm
or more. Though total coverage in the present study was not
as extensive as in Zhang et al. (2016), the subset of channels
selected for GCR and hence relative coverage was comparable
between the studies and fit the 9 cm criterion. As visualized in
Figures 6C,D, 7C,D, applying the GC removal results for some
of the frontal channels in a reversed hemodynamic response.
Reversed response patterns have been reported before for motor
imagery tasks (Holper et al., 2011; Kober and Wood, 2014),
and were for instance interpreted as a sign of motor inhibition
due to a reduction of activation of the underlying brain regions
(Kober and Wood, 2014). Alternatively, these negative responses
could also be due to the fact that the SVD algorithm is not able
to account for local differences within the global physiological
changes. Hence, it offers a good but not perfect estimation of
the systemic activity and therefore the results should always be
considered with care.

GCR, in combination with either WLF and BPF, might
be an option not only for offline analyses of averaged and
single trial data, but also for fNIRS online implementations
such as intermittent neurofeedback. Intermittent neurofeedback
describes the situation where, in contrast to continuous
neurofeedback, feedback on brain responses is given only
following the end of a trials’ task period, giving room for some
online signal correction. Besides, regarding nowadays’ computer
hardware, also the implementation of these approaches in a
continuous online experiment should be possible since these
approaches are not computationally demanding. Before being
used for this purpose, the approach should however be validated
online, in line with a recent proposal regarding the validation
of methods and approaches intended for EEG-based brain-
computer interfaces (Lotte et al., 2018).

In single-trial analyses in general and in neurofeedback or
BCI setups specifically, clean signals are of particular relevance to
ensure reliable measurements and, for neurofeedback, to ensure
that a functionally specific modulation of brain activity can be
achieved. The results of the present study show that for ME
and MI both the WLF+GCR and the BPF+GCR are promising
preprocessing approaches to obtain cleaner signals, as it was
consistently linked to single trial signal improvement in terms of
temporal consistency and spatial specificity. More generally, this
studies’ results highlight the tremendous need for an agreement
on appropriate preprocessing pipelines in fNIRS. Notably, for
other tasks which might not result in a strong hemodynamic

response, as is typically found in motor tasks, a proper correction
is not guaranteed.

Notwithstanding, the major constraint in the present study
is the lack of a validation by means of a short-distance
channel approach, that would allow to measure and remove
the extracerebral component of the GC, and similarly, a means
of validation the removal of the cerebral component of the
GC. Thus, our results, similar to those of others (Zhang et al.,
2016; Pfeifer et al., 2018), should be considered tentative until
corresponding data sets and analyses are available.
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