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In a social world, observing the actions of others is fundamental to understanding
what they are doing, as well as their intentions and feelings. Studies of the neural
basis and decoding of action observation are important for understanding action-related
processes and have implications for cognitive, social neuroscience, and human-machine
interaction (HMI). In the current study, we first investigated temporal-spatial dynamics
during action observation using a combined 64-channel electroencephalography (EEG)
and 48-channel functional near-infrared spectroscopy (fNIRS) system. We measured
brain activation while 16 healthy participants observed three action tasks: (1) grasping a
cup with the intention of drinking; (2) grasping a cup with the intention of moving it; and
(3) touching a cup with an unclear intention. The EEG and fNIRS source analysis results
revealed the dynamic involvement of both the mirror neuron system (MNS) and the theory
of mind (ToM)/mentalizing network during action observation. The source analysis results
suggested that the extent to which these two systems were engaged was determined by
the clarity of the intention of the observed action. Based on the difference in neural activity
observed among different action-observation tasks in the first experiment, we conducted
a second experiment to classify the neural processes underlying action observation using
a feature classification method. We constructed complex brain networks based on the
EEG and fNIRS data. Fusing features from both EEG and fNIRS complex brain networks
resulted in a classification accuracy of 72.7% for the three action observation tasks. This
study provides a theoretical and empirical basis for elucidating the neural mechanisms
of action observation and intention understanding, and a feasible method for decoding
the underlying neural processes.

Keywords: action observation, mirror neuron system, theory of mind, complex brain network, EEG, fNIRS

INTRODUCTION

Action observation is a cognitive process enabling understanding, choosing and imitating the form
and motion of an action by observing the actions of another person (Lee et al., 2012). Observing
the behavior of others and understanding their intentions is an essential component of social
behavior. Action understanding and imitation of others’ actions may help an observer understand
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the intention and emotional state of the agent involved (Libero
et al., 2014). Previous studies have indicated that action
observation can improve motor performance (Gatti et al.,
2013) and motor skill learning (Kim et al., 2017). Moreover,
as a safe and easy therapy for clinical rehabilitation and
treatment of stroke, Parkinson’s disease and autism spectrum
disorder, observing the actions of others has been reported
to improve motor function (Harmsen et al., 2015; Caligiore
et al., 2017) and facilitation of social interaction (Perkins et al.,
2015). Observation and understanding the intention of action
is a fundamental requirement for human-machine interaction
(HMI). In HMI scenarios, action intention understanding
between humans and machines is the basis of interaction.
During these interactions, it is important to enable the machine
to understand the human’s action intention (Casalino et al.,
2018). Previous studies have made substantial progress toward
enabling machines to understand the action intention of humans
(Hernandez et al., 2014; Foster et al., 2017; Bandara et al., 2018).
Meanwhile, it is also crucial to construct a feedback route from
the human to the machine, to let the machine know that the
human has understood the intention of the machine’s action
during the interaction. For example, in a home care situation
with HMI, a robot may have the intention to feed a user, while
the user may not notice the action of the robot. In such a case, the
robot should stop the action immediately to avoid a dangerous
situation. However, research on this topic is currently lacking.
Therefore, in the current study, we attempted to use brain signals
as feedback signals for the machine, to make the machine aware
of the human’s process of intention recognition.

The mirror neuron system (MNS) is believed to underlie
the human ability to understand others’ actions and intentions
during action observation, via a direct-matching process
(Rizzolatti and Craighero, 2004; Kanakogi and Itakura, 2010),
by which visuomotor information is transformed into motor
knowledge (Jeon and Lee, 2018). The MNS provides a neural
basis for recognizing the observed action. Consequently, action
recognition involves the recognition of the goal of an action
(i.e., action understanding; Rizzolatti et al., 2001; Iacoboni et al.,
2005). The MNS responds maximally when observing object-
directed interactions of a hand with an object (Rizzolatti et al.,
2001) and hand-object interaction is a necessary condition to
trigger the MNS (Umiltà et al., 2001). Intention understanding
involves the integration of representations of the meaning and
intent of the action based on hand-object interaction (Ortigue
et al., 2009). The MNS mainly includes the premotor cortex
(PMC), inferior frontal gyrus (IFG), superior parietal lobule
(SPL), and rostral inferior parietal lobule (IPL; Molenberghs
et al., 2012; Jeon and Lee, 2018).

Once others’ actions are mapped onto the observer’s own
motor representation of the same action, the observer can
understand the actions and predict the relationships between
external states of affairs and internal states of mind, which
leads to the activation of ‘‘theory of mind’’ (ToM; also referred
to as mentalizing or mental state reasoning; Rizzolatti et al.,
2001; Jeon and Lee, 2018). Unlike action observation, mental
state reasoning requires high-level cognitive and attentional
resources (Lin et al., 2010) and is believed to be unique to

humans (Call and Tomasello, 2008). Widely distributed neural
networks have been consistently implicated in ToM, including
the temporoparietal junction (TPJ), superior temporal sulcus
(STS), posterior cingulate cortex/precuneus (PCC/PC), medial
prefrontal cortex (MPFC), and anterior temporal lobes (ATL;
Rilling et al., 2004; Yang et al., 2015).

As a classical neural imaging methodology,
electroencephalography (EEG) provides a measure of the
electrical potentials generated by cortical postsynaptic currents.
EEG not only reflects the momentary activity of a population
located near the recording electrodes but also distal populations
via the volume conduction effect (He et al., 2011). EEG has the
advantage of low-cost, safety, portability, and high temporal
resolution, but is limited by electromagnetic and motion
interference. Functional near-infrared spectroscopy (fNIRS) is
an emerging non-invasive brain-imaging methodology using
near-infrared light to monitor changes in the concentration
of oxyhemoglobin (HbO), deoxyhemoglobin (HbR) and total
hemoglobin (HbT = HbO + HbR) in the superficial layers of the
cerebral cortex beneath a pair of source and detector optodes.
Because of its low cost, safety, portability, and acceptable spatial
resolution, fNIRS is increasingly used in research and clinical
applications (Boas et al., 2014; Kamran et al., 2016). fNIRS relies
on the relationship between local neural activity and changes in
regional cerebral blood flow (rCBF) affecting oxygenation and
hemoglobin content in blood vessels; local cortical activation
causes an increase in HbO and HbT, with a corresponding
decrease in HbR (Villringer and Chance, 1997). Compared with
fMRI, fNIRS has important advantages for measurement in
real-world situations, including a relative lack of constraints
of the experimental environment, and the robustness of the
signal against motion artifacts. These features enable fNIRS to
expand the potential applications of measurement in real-world
environments (Balardin et al., 2017).

EEG and fNIRS differ markedly in terms of the underlying
imaging principles and physiological concepts. Because EEG
and fNIRS each have specific limitations (e.g., low spatial
resolution for EEG, and low temporal resolution for fNIRS),
the advantages of combining EEG and fNIRS measurements
could provide an approach for overcoming the limitations of
eachmethod. EEG-fNIRSmeasurement acquires brain activation
from different physiological signals, which could increase data
quality and quantity. Moreover, bimodal EEG-fNIRS could
provide additional information about neurovascular coupling
(NVC), which is the cascade of processes by which neural activity
modulates local cerebral hemodynamic properties (Keles et al.,
2016). EEG electrodes and fNIRS optodes have good adaptability
in terms of spatial configuration. Finally, many studies have
found that bimodal EEG-fNIRS signals provide more feature
information than single-mode EEG or fNIRS systems, which
can significantly improve classification accuracy (Hong and
Khan, 2017; Khan and Hong, 2017). For these reasons, bimodal
EEG-fNIRS measurement has substantial potential in research
and practical applications (Fazli et al., 2012; Ahn and Jun, 2017;
Berger et al., 2018). Because action observation is a dynamic
and complex spatiotemporal process (Gardner et al., 2015; Ge
et al., 2017), bimodal EEG-fNIRS measurement has important
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advantages for exploring its dynamic processes in terms of
both temporal and spatial characteristics. To the best of our
knowledge, aside from previous studies in our laboratory (Zhang
et al., 2015; Ge et al., 2017), no action observation studies using
EEG-fNIRS bimodal measurement have been reported.

Recently, complex brain network-based graph theoretical
analysis has become a powerful and popular approach for
analyzing brain imaging data (Yu et al., 2018). Complex brain
networks can reveal the mechanisms and characteristics of
brain structure and function that cannot be discovered by past
analytical methods, such as modularity, hierarchy, centrality, and
the distribution of network hubs (Bullmore and Sporns, 2009).
The complex brain network is a powerful approach to identify
the similarities and differences of brain activation in many
applications, such as brain-computer interface classification
(Zhang et al., 2016), mental illness diagnosis (Fang et al., 2017;
Shon et al., 2018), fatigue detection (Han et al., 2019), and
emotional cognitive classification (Liang et al., 2018). However,
to date, few studies have used complex brain networks to classify
action observation and understanding. Consequently, exploring
the whole-brain complex brain network patterns during the
observation and understanding of different action intentions
would be meaningful.

The current study sought to investigate the neural basis
of action observation and to classify the action observation
process based on brain signals. To this end, we first used
bimodal EEG-fNIRS measurement to investigate temporal-
spatial dynamics during action observation.We then constructed
complex brain networks based on EEG and fNIRS data to
classify the brain activity corresponding to action observation
with different intentions. We expected that the brain activation
analysis method based on EEG-fNIRS bimodal signals in the
current study would extend understanding of the spatiotemporal
features of the neural mechanisms underlying action intention
understanding. In addition, the intention classification method
in the current study could provide a new research direction for
human-computer interaction research.

MATERIALS AND METHODS

Participants
Sixteen healthy adults [six females and 10 males; mean
age = 24.1 years, standard deviation (SD) = 1.3, range
22–26 years] participated in the study. None of the participants
reported a history of neurological conditions or psychosis, or
used medication. All participants had normal or corrected-
to-normal vision and were confirmed to be right-handed
using the Edinburgh Handedness Inventory. All participants
provided written informed consent in accordance with the
Declaration of Helsinki (World Medical Association, 2013)
before enrolment in the study, which was approved by The
Ethics Committee of Affiliated Zhongda Hospital, Southeast
University (2016ZDSYLL002.0 and 2016ZDSYLL002-Y01).
Each participant received 200 RMB for participating, after
the experiment.

Before recording, participants were informed that some of the
hand-cup interaction stimuli without context may be associated

with the following intentions: (1) grasping a cup with the
intention of drinking; (2) grasping a cup with the intention of
moving it; and (3) touching a cup with an unclear intention.
All participants were familiarized with each of the actions
in a 3.2 min training session. After the session, participants
were debriefed to ensure they understood the experimental
instructions and correctly understood the action intentions
shown. During EEG-fNIRS measurement, participants received
clear instructions to carefully observe the three different kinds of
hand-object interaction stimuli and attempt to understand the
intention behind the stimuli. There is no behavioral response
required from participants. To avoid eye and muscle movement
interference, participants were asked to look at the cross at the
center of screen and to make no verbal responses throughout
the experiment.

Experimental Procedure
There were three kinds of hand-cup interaction stimuli (Figure 1,
partially referring to Ortigue et al., 2010) corresponding to
different potential intentions: (a) A right hand grasping the
handle of the cup with the intention to drink from it (Sd);
(b) a right hand grasping the rim of a cup with the intention
to move it (Sm); and (c) a right hand touching the rim of a
cup without a clear intention (Su). Participants were seated in
a comfortable chair in a dark shielded room with their heads
placed on a chin-rest (Figure 2). The stimuli were displayed on
a computer monitor 80 cm away from the participants. The size
of the stimuli was H: 28 cm (19.85◦ of visual angle) × V: 16 cm
(11.42◦ of visual angle).

Figure 3 shows a schematic diagram of the bimodal
EEG-fNIRS measurement procedure used in the current study.
The visual stimuli were programmed in E-Prime (Version
2.0, Psychology Software Tools Inc., Sharpsburg, PA, USA).
Every trial included the following sequence. First, participants
underwent a pre-rest period in which a fixation cross was
presented for 6 s. This was followed by a preparation period,
in which a cup appeared as a cue on the screen for 0.5 s,
notifying the participant to prepare for the upcoming observation
period. Then, in the observation period, a hand-cup interaction
stimulus was presented for 3.5 s. Since the temporal interval
between the preparation and observation periods was very short,
a continuous image sequence could generate the perception
of an action (Brown et al., 2010; Ortigue et al., 2010).
During the observation period, participants were instructed
to try to understand the intention corresponding to each
observed stimulus. For convenience, the starting moment of
observation period was defined as 0 time point. Finally,
there was a post-rest period, in which participants rested
for 6 s. The post-rest and pre-rest of two subsequent trials
were used as the baseline period. To avoid an adaptation
effect, the three hand-cup interaction conditions were presented
in a random sequence. The color of the cup alternated
randomly among seven colors, and each color was shown
four times in the whole experiment. The whole experiment
for each participant consisted of a total of 84 trials (three
hand-cup interaction conditions × seven colors × four times)
and divided into four equal sessions lasting for 28.4 min.
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FIGURE 1 | Three kinds of hand-cup interaction stimuli corresponding to different potential intentions. (A) a right hand grasping the handle of the cup with the
intention to drink from it (Sd); (B) a right hand grasping the rim of a cup with the intention to move it (Sm); (C) a right hand touching the rim of a cup without a clear
intention (Su).

FIGURE 2 | Experimental environment.

Each session was composed of 21 trials, with a 2-min rest
between sessions.

Data Acquisition and Pre-processing
The current study used a 64-channel EEG and 48-channel fNIRS
bimodal signals with simultaneous measurement (Figure 4).
EEG signals were recorded with a Synamps2 EEG system
(Neuroscan Synamps amplifier; Scan 4.5 Compumedics Corp.,
TX, USA) according to the international 10–20 system of
electrode placement (Figure 4A). The reference electrode was
placed on the left mastoid. Bipolar horizontal and vertical
electrooculogram (EOG) derivations were recorded via two pairs
of electrodes placed near the eyes. All electrode impedances
were kept below 5 kΩ. EEG was recorded with a sampling
frequency of 1,000 Hz and band-limited from 0.05 to 100 Hz, and

a notch filter was used to suppress powerline interference. An
independent component analysis (ICA) based on EEG and EOG
was performed to remove eye movement and blink artifacts (see
Ge et al., 2017 for details). During the data analysis, EEG signals
were pre-processed with a bandpass filtered between 1 and 30Hz.
EEG data for each trial were corrected by subtracting the average
of the data points between−700 ms and−500 ms.

The fNIRS signals recording were recorded with a LABNIRS
system (Shimadzu Company Limited, Kyoto, Japan). The
absorption of three wavelengths (780, 805 and 830 nm) of
continuous near infrared light was measured with a sampling
interval of 27 ms, then transformed into concentration changes
of HbO, HbR and HbT by the modified Beer-Lambert law (Delpy
et al., 1988). fNIRS optodes were positioned over the 64-channel
EEG cap (Neuroscan, Charlotte, NC, USA) and the optodes and
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FIGURE 3 | Experimental paradigm for bimodal electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) measurement.

the electrodes were placed at intervals with a distance between
the emitters and detectors of approximately 3 cm (Boas et al.,
2004). We used a 48-channel system with 32 optodes (consisting
of 16 emitters and 16 detectors) placed above the bilateral parietal
areas. Channels 13 and 36 were set above the C3 and C4 areas,
respectively (Figure 4B). In the current study, the locations of
the optodes were measured using a 3D digitizer (FASTRAK;
Polhemus, VT, USA). The fNIRS signals were pre-processed and
bandpass filtered between 0.01 and 0.1 Hz. The fNIRS data for
each trial were baseline-corrected by subtracting the average of
the data points between −6.5 s to −0.5 s before observation
period onset.

Sensor-Level Analysis
The averaged event-related potential (ERP) and HbO waveforms
of all channels for all participants were analyzed, respectively
to investigate time series characteristics. In addition, a t-test of
the HbO signal between the observation and baseline block of
each channel was conducted from 1 to 5 s with 1-s steps to
investigate the characteristics of fNIRS signals over time. Based
on this analysis, the topographical maps of the t-test results of
HbO concentration over the bilateral parietal areas were obtained
using an interpolation method (using the griddata.m function of
MATLAB 2013a, The MathWorks, Natick, MA, USA).

Source-Level Analysis
For EEG source analysis, the grand average for 16 participants
was first calculated with MATLAB. Next, the standardized

low resolution electrical tomographic analysis (sLORETA)1,
a functional imaging method based on electrophysiological
and neuroanatomical constraints (Pascual-Marqui, 2002) was
applied to the 16-participant grand average. sLORETA estimates
the intracerebral electrical sources by calculating the scalp
current source density (CSD) based on EEG signals (Pascual-
Marqui et al., 2002). The sLORETA method has relatively
good accuracy for source localization, even for deep sources
(Keeser et al., 2011) and the average localization error is less
than one grid unit (Pascual-Marqui, 2002). The sLORETA
algorithm calculates the standardized CSD values at each of the
6,239 voxels of cortical gray matter, hippocampus, and amygdala
at 5 mm spatial resolution in the digitized Montreal Neurological
Institute (MNI) coordinates, corrected to Talairach coordinates
(Talairach and Tournoux, 1988). This calculation of the
standardized CSD is based upon a linear weighted sum of scalp
electric potentials. The sLORETA algorithm solves the inverse
problem by assuming that the neighboring neuronal sources
have related dipole orientations and amplitudes (represented by
adjacent voxels; Pascual-Marqui, 2002).

For fNIRS source analysis, the 3D coordinates of the
anatomical markers (i.e., the nasion, inion, Cz, and left and
right preauricular points) and fNIRS optodes (16 emitters,
16 detectors) were first digitized using the FASTRAK digitizer
(Polhemus, Colchester, VT, USA). Meanwhile, the coordinates
of the midpoints between each pair of the emitters and detectors
were automatically calculated as the coordinates of the fNIRS

1http://www.uzh.ch/keyinst/loreta.htm
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FIGURE 4 | Arrangement of EEG and fNIRS channels. (A) EEG 64-channel arrangement based on the international 10–20 system. (B) Optode arrangement for
fNIRS. The optodes were arranged above the bilateral parietal areas. Sixteen emitters and 16 detectors in the arrangement resulted in a total of 48 channels.

channel. Second, the spatial registration was implemented
between each fNIRS channel and t-test topographical maps.
Third, the t-test topographical maps were superposed onto the
surface of the MNI standard 3D head model using FUSION 3D
imaging software (Shimadzu Co., Ltd.).

Intention Classification Based on Complex
Brain Network
For graph theoretical analysis, the complex brain network
(Bullmore and Sporns, 2009) method is an emerging approach
that can be applied to both anatomical and functional brain
networks (Sporns, 2013). In the current study, we classified
three different action intentions via complex brain networks
based on EEG and fNIRS signals. First, we constructed two
complex brain networks for EEG and fNIRS training datasets
by treating EEG and fNIRS channels as nodes separately
and determining their connections according to the Pearson’s
correlation coefficient between each pair of channels. Second,
five nodal features (i.e., nodal network properties), including
the degree (the number of neighbors connecting to a node),
clustering coefficient (the degree to which nodes in the network
tend to cluster together), betweenness centrality (the proportion
of the shortest paths pass through a node), eigenvector centrality
(the degree of a node correlates with other nodes that are
themselves central within the network) and local efficiency (how
well information is exchanged by a node’s neighbors when
it is removed) were calculated for EEG and fNIRS networks
separately, according to the method reported in previous studies

(Santiago et al., 2016; Fang et al., 2017; Zhao et al., 2017).
Third, we combined the nodal features of EEG and fNIRS
networks together, and selected the features based on the
Relief-F algorithm (Kononenko, 1994), scoring the features
based on the identification of feature value differences between
nearest neighbor instance pairs using the relieff.m function
of MATLAB with the nearest neighbors k = 10. Fourth, we
used the programming library LIBSVM (C-supporting vector
classification; Chang and Lin, 2011) for support vector machine
(Yu et al., 2006) as the classifier. The grid search algorithm was
employed to find the optimal values of the kernel parameter γ

and penalty factor C (Ge et al., 2014). Finally, the classification
accuracy was obtained using the averaged accuracies of 10 times
10-fold cross-validation (25 and three trials for training and
testing, respectively).

RESULTS

The averaged ERP waveforms of all channels for Sd, Sm and
Su intentions for all participants are shown in Figure 5 and
Supplementary Figure S1. Statistical analysis was performed
with one-way analysis of variance (ANOVA) and a Bonferroni
test for the multiple comparisons procedure was performed as
a post hoc analysis (IBM SPSS version 21.0). The statistical
results revealed a statistically significant difference in the mean
amplitude of ERPs during 350–400 ms for the three intentions
at 43 channels (see channels marked with two asterisks in
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FIGURE 5 | The averaged event-related potential (ERP) waveforms of all EEG channels for Sd, Sm and Su intentions for all participants. All channels have a
negative amplitude at the 0 point because they were affected by the visual evoked potential induced by the −500 ms cue stimulus. Channel marked with two
asterisks indicates a statistically significant difference in the amplitude (P < 0.001).

FIGURE 6 | The EEG source analysis results between 350–400 ms for Sd, Sm and Su intentions for all participants.

Figure 5, among these 43 channels the lowest F(2,150) = 50.7,
P < 0.001). Moreover, the post hoc tests showed that among these
43 channels, Sd had a significantly greater amplitude than Sm
and Su (highest P < 0.001, Bonferroni-corrected, respectively),
while Sm had a significantly greater amplitude than Su (highest
P < 0.001, Bonferroni-corrected).

EEG source analysis was implemented for the three intentions
between 350–400 ms, revealing that, stable and identical
activation regions were found during 350–400 ms, the Sd task
mainly induced activation in the left hemisphere, including the

middle occipital gyrus (MOG; BA18, 19), superior occipital gyrus
(SOG; BA19), middle temporal gyrus (MTG; BA19, 39), superior
temporal gyrus (STG; BA39), and angular gyrus (AG; BA39). The
Sm task also induced activation that was mainly located in the
left hemisphere, including the same activation areas, although
this activation was weaker. In contrast, Su mainly induced right
hemisphere activation, including theMOG (BA19), SOG (BA19),
cuneus (BA19), MTG (BA19, 39), AG (BA39) and SPL (BA
7). The source analysis results between 350–400 ms are shown
in Figure 6.
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The grand averaged HbO waveforms of fNIRS for three
intentions are shown in Figure 7 and Supplementary Figure
S2. The same ANOVA process used for grand averaged ERPs,
as described in the previous paragraph, was used to analyze
the difference of HbO waveforms among three intentions. The
ANOVA statistical results revealed a statistically significant
difference in the mean amplitude of HbO during 0–3.5 s
for the three intentions at 11 channels (see channels marked
with an asterisk in Figure 7, among these 11 channels the
lowest F(2,387) = 16.5, P < 0.05). Moreover, the post hoc
tests showed that there are statistically significant differences
between pairwise contrasts of the three conditions among these
11 channels (highest P < 0.05, Bonferroni-corrected). However,
the differences were not identical in the three conditions among
these 11 channels.

Topographical maps of t-test results of the HbO signal
between the observation and baseline block of each channel
from 1 to 5 s for all participants are shown in Figure 8. A
peak value can be clearly seen at 3 s. For this reason, we
implemented fNIRS source analysis at 3 s. The results are shown
in Figure 9. The results in Figure 9 indicate strong activations
in the bilateral PMC, IFG, and TPJ for all three conditions, while
activation in the left hemisphere was stronger than that in the
right hemisphere. The t-values of the topographical map revealed
that activation intensity exhibited a pattern of Sd > Sm > Su.

In this study, we used a cross-correlation calculation method
(Pfurtscheller et al., 2012; Sood et al., 2016) to compute the
correlation between grand averaged ERP and HbO waveforms.
For 0–Xms EEG data [X∈(100 600)ms, in steps of 1ms], an equal
length fNIRS data was selected and lagged Y ms behind EEG
[Y∈(0 3,000) ms, in steps of 27 ms]. The correlation coefficients
between ERP and HbO data for three different conditions (Sd,
Sm and Su) were calculated, corresponding to every combination
of X and Y. Areas with correlation coefficients greater than 0.8 for
all three conditions (Sd, Sm and Su) were plotted with contour
lines in Figure 10. The correlation analysis indicated a strong
correlation between EEG and fNIRS when the length of the EEG
and fNIRS recording was approximately 385 ms, and the fNIRS
signal was around 1700 ms behind the EEG signal.

The complex brain networks for the 0–3.5 s observation
period of the EEG and fNIRS grand averaged datasets
were calculated, respectively by treating channels as nodes,
and determining the connections according to the Pearson’s
correlation coefficient between each pair of channels, and
normalizing these values to Fisher’s Z-values. A typical example
of complex brain networks in the EEG and fNIRS datasets
(participant No. 10) is shown in Figure 11. In this figure, a clear
distinction can be seen between the complex networks of the
three intentions.

The averaged classification results for three intentions of each
participant based on the five features of complex brain networks
calculated from EEG, fNIRS and EEG-fNIRS signals are shown
in Table 1. The ANOVA results revealed a strong significant
difference between three action observation tasks (F(2,45) = 39.12,
P < 0.001). In addition, EEG-fNIRS and EEG had significantly
higher accuracy than fNIRS (P < 0.001, Bonferroni-corrected,
respectively). Although the accuracy of EEG-fNIRS was higher

than EEG, there was no significant difference between this two
modes (P = 0.28, Bonferroni-corrected).

The averaged confusion matrices for EEG, fNIRS and
EEG-fNIRS classifications for all participants are shown in
Figure 12.

DISCUSSION

In the current study, we found particularly strong activation
in the AG, which is the main part of the IPL. This
finding is consistent with previous human neuroimaging
studies identifying the IPL as a key region for the coding
of intention. This structure is part of a frontoparietal system
that links observed and stored actions through direct matching
(Rizzolatti et al., 2014) in terms of the actions themselves
(Iacoboni, 2009) or goals (Hamilton, 2015). In addition, Reader
et al.’s (2018) findings indicated that the IPL plays a role in
kinematic processing of actions, regardless of whether they are
meaningful ormeaningless, which provides direct support for the
current results.

The SPL has previously been reported to be activated during
both action observation and execution (Rizzolatti et al., 2014)
and is considered to play a critical role in mental rotation and
spatial transformation (Buneo and Andersen, 2006; Lamm et al.,
2007). Oh et al.’s (2019) model indicated that the SPL may
be involved in visuospatial transformation, allowing the MNS
to observe and imitate actions independently of demonstrator-
imitator spatial relationships.

In accordance with Jelsone-Swain et al.’s (2015) findings,
we observed activity in the MTG for all three task conditions.
Accordingly, Kilner identified the MTG as the primary region
bridging the two neural pathways involved specifically in action
understanding (Kilner, 2011).

The current results revealed activation in primary visual
regions including the MOG, SOG and cuneus for all three
intention conditions. STG activation was observed in both the
Sd and Sm tasks. The STG is a higher-order visual region and
has been reported to play key roles in the identification of
goal-directed movements (Schultz et al., 2004) and observation
of biological motion (Matthys et al., 2009).

Previous studies using similar tasks reported that the mirror
function of the brain is increased when the observed actions
are familiar and have clear intentions (as in the ‘‘grasping a
cup for drinking’’ and ‘‘grasping a cup for moving’’ conditions).
In contrast, in the ‘‘touching a cup without clear intention’’
condition, the mirror function of the brain would be expected
to be suppressed because the perceived action is outside the
observer’s repertoire of familiar movements, which induces a
lower level of activity (de Lange et al., 2008; Ge et al., 2017;
Zhang et al., 2018). This tendency was observed in the current
study, indicating that, during familiar action observation (Sd
and Sm tasks), the processing of motor information leading
to goal understanding (direct-marching process) requires more
effort because of the complexity of the observed grip and its
relationship with the object. However, such a process does not
occur in the case of unfamiliar actions (Su), in which a less direct
matching process is implemented.
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FIGURE 7 | The averaged HbO waveforms of all fNIRS channels for Sd, Sm and Su intentions for all participants. All channels have a positive amplitude at the
0 point because they were affected by the visual evoked potential induced by the −500 ms cue stimulus. Channel marked with an asterisk indicates a statistically
significant difference in the amplitude (P < 0.05).

FIGURE 8 | The topographical maps of t-test results of the HbO signal between the observation and baseline block of each channel from 1 to 5 s.

Several previous studies concluded that the MNS network
is active during the visual processing of others’ actions (how
and what), while the ToM network is additionally recruited
to process their intentions (why; de Lange et al., 2008; Spunt

et al., 2010). In a recent review, Eren proposed that MNS and
ToM functions are more complex than traditionally thought,
with interrelated rather than independent functions (Eren, 2009).
Based on Rizzolatti et al.’s (2014) definition, understanding the
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FIGURE 9 | fNIRS source analysis results at 3 s for Sd, Sm and Su intentions for all participants.

FIGURE 10 | Correlation between ERP and HbO data under Sd, Sm and Su conditions. Areas with correlation coefficients greater than 0.8 for all the three
conditions were plotted with contour lines.

goal of a motor act performed by another individual involves
two levels of insight: first, understanding of ‘‘what’’ the other is
doing (e.g., grasping a cup); second, the understanding of ‘‘why’’
the other is doing it, which is considered the action overarching
intention (e.g., grasping a cup for drinking). Previous studies
have indicated that in low-level action understanding, the MNS
obtains direct awareness of the goal of an action by recognizing
what an action is and how it is being performed, particularly
for familiar or frequently executed actions, whereas at a higher
level of action understanding, the MNS might respond to why an
action is being performed (Thioux et al., 2008; van Overwalle and

Baetens, 2009). Many previous studies of action understanding
suggested that the left hemisphere MNS is primarily related
to the encoding of the motor act itself (what). In contrast,
the right hemisphere MNS may be involved in the process
of understanding the intentions underlying the actions (why;
Ortigue et al., 2010; Ge et al., 2017). Some studies have proposed
that, in the absence of context information or when observing
unusual actions, the ToM network might be particularly strongly
recruited to supplement insufficient information by inferring
others’ mental states (de Lange et al., 2008; Spunt et al.,
2011). In the current study, we found clear activation shifts
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FIGURE 11 | Complex brain networks of EEG and fNIRS datasets for participant No. 10.

from the left to the right hemisphere when changing from
observing familiar actions with clear intentions (Sd and Sm
tasks) to observing unfamiliar actions without a clear intention
(Su task). This finding is in accord with previous studies
by Ortigue et al. (2010), Ge et al. (2017) and Zhang et al.
(2018). We assumed that when an action was more familiar
or clear, direct-matching processing in the left hemisphere
would be more strongly engaged. In contrast, we assumed
that a more novel or ambiguous action would engage more
inferential or mentalizing processes in the right hemisphere. The
current results support the notion that observing the actions
of people with clear intentions recruits the MNS, enabling an
immediate understanding of the observed acts and of the agent’s
intentions. However, when actions without clear intentions are
observed, inferential or mentalizing processes based on the ToM
appear to be engaged (Ge et al., 2017). Thus, our findings
indicate that information processing during action observation
is a complex process that cannot be attributed to a single
neuronal mechanism.

Bimodal EEG-fNIRS measurement provides an approach to
investigate brain activation with different spatial and temporal
resolutions. EEG measures functional brain activity directly by
detecting variations in electrical activity, which is a rapidly
changing signal. In contrast, fNIRS measures functional brain
activity indirectly via changes in the concentration of oxygenated
and deoxygenated hemoglobin, which is a slowly changing signal.
Previous ERP studies reported early mirror neuron activation
of the P1, N170 and N400 components (Mohring et al., 2014),
while the ToM or mentalizing network exhibited activation of
the late negative ERP component at approximately 300–1,100 ms
(Beudt and Jacobsen, 2015). The ERP waveforms revealed that
mirror neuron ERP components oscillated between positive
and negative components in a short time period, while the
ToM or mentalizing network activation exhibited a long-term
stable ERP component. Thus, the EEG source analysis in the
current studymay have reflected rapidly changingmirror neuron
activation, while fNIRS source analysis may have reflected

slowly changing activation of the ToM or mentalizing network.
Because EEG and fNIRS have different imaging mechanisms and
measure different physiological signals, the bimodal EEG-fNIRS
measurement used in the current study may provide more
complete biological information with different spatial and
temporal resolutions (Putze et al., 2014). Thus, this combined
method could enable more comprehensive knowledge of action
observation and understanding.

In addition, bimodal EEG-fNIRS measurement can
quantitatively study the NVC (Govindan et al., 2016), reflecting
the mechanism linking transient neural activity to subsequent
changes in CBF. A high temporal and spatial correlation
exists between neuronal activity and CBF [i.e., brain regions
with high activity exhibit an accompanying increase in the
amount of blood flow (Hendrikx et al., 2019)]. In the current
study, we also investigated the NVC between EEG and fNIRS
signals and found a high correlation between these signals.
This result was consistent with previous reports (Girouard
and Iadecola, 2006; Govindan et al., 2016), indicating that
neural activity is closely related to CBF. The correlation
analysis between the grand averaged ERPs and HbO waveforms
revealed a high correlation between EEG and fNIRS when the
EEG and fNIRS length was approximately 385 ms (starting
from 0 ms) and the fNIRS signal lagged approximately
1,700 ms behind the EEG signal. These results demonstrate
the lag of the fNIRS signal behind the EEG signal and help to
elucidate the temporal features of NVC corresponding to action
intention understanding.

As we discussed in the preceding three paragraphs, the
findings of previous studies and the current study indicated
distinct differences in the timing and location of activation
in response to different types of action intention observation.
Such temporal and spatial dynamics of cortical activity can
cause different topological characteristics of complex brain
networks corresponding to observations of different types of
action intentions (e.g., Figure 11), enabling the possibility
of intention classification. Specifically, the current results
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TABLE 1 | The classification results for three intentions of each participant based on the five features of complex brain networks calculated from
electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS) and EEG-fNIRS signals.

Accuracy (%) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 Avg SD

EEG 65.1 68.9 80.2 60.2 82.5 73.3 76.4 63.3 69.9 56.9 64.6 71.6 62.6 68.2 70.4 63.7 68.6 6.8
fNIRS 56.3 61.4 51.8 53.2 55.2 57.2 50.1 48.0 55.1 59.0 54.7 70.1 50.4 37.7 44.3 38.9 52.7 7.9
EEG-fNIRS 73.4 70.2 79.5 65.9 80.1 71.5 81.2 74.3 75.1 73.5 67.1 73.0 68.3 69.4 68.9 72.3 72.7 4.4

Avg: average; SD: standard deviation.

FIGURE 12 | The averaged confusion matrices for EEG, fNIRS and EEG-fNIRS classifications for all participants.

indicated that three types of complex brain networks exist,
each corresponding to the observation of different action
intentions. Because different action intention observations cause
differences in cortical activation, the topological characteristics
of the three complex brain networks appear to be different.
In the current study, we used complex brain networks to
classify different types of action observations based on bimodal
EEG-fNIRS signals. Table 1 reveals that the classification
accuracy of EEG-fNIRS was 72.7%, which was higher than
that of EEG or fNIRS alone. In addition, single-mode
EEG achieved better performance than fNIRS (68.6% vs.
52.7%). This finding indicated that EEG provided more
distinguishable complex network features than fNIRS for
some participants. In addition, the results revealed that the
fNIRS accuracy was very low for some participants, which
reduced the corresponding EEG-fNIRS accuracy compared
with the single-mode EEG accuracy for those participants.
This finding suggests the possibility that future studies
may be able to improve feature extraction and selection
for fNIRS signals. Despite these limitations, the current
study demonstrated that complex brain networks based on
bimodal EEG-fNIRS provide a powerful classification method
for action observation classification, which may have useful
applications in HMI.

In addition, according to Figure 12, bimodal EEG-fNIRS
achieved better classification performance than single-mode EEG
and fNIRS, while fNIRS exhibited the worst performance. For
EEG, no classification difference was observed among the three
classes. For fNIRS, the Sm class was most often misclassified.
For EEG-fNIRS, the Sd class exhibited higher classification

accuracy than the Sm and Su classes. These results suggest that
although single-mode fNIRS achieved intermediate classification
performance, bimodal EEG-fNIRS signals could further improve
classification performance. These findings suggest the possibility
that further studies examining feature extraction and selection
for fNIRS signals may be able to improve the classification
performance of bimodal fNIRS and EEG-fNIRS systems.

CONCLUSION

To investigate the neural basis of action observation and
understanding, we used bimodal EEG-fNIRS measurement to
investigate the sensor- and source-level activations for action
observation. The results indicated that information processing
during action observation is a complex process involving the
MNS and ToM networks. In addition, we tested a proposed
method using complex brain networks to classify the brain
activations for different action observation tasks. By combining
the features of EEG and fNIRS complex brain networks, the
method achieved a satisfactory classification accuracy (72.7%),
demonstrating the possibility of encoding action observation
and understanding.
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