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Electroencephalogram (EEG)-based affective brain-computer interfaces (aBCIs) have
been attracting ever-growing interest and research resources. Whereas most previous
neuroscience studies have focused on single-day/-session recording and sensor-
level analysis, less effort has been invested in assessing the fundamental nature
of non-stationary EEG oscillations underlying emotional responses across days and
individuals. This work thus aimed to use a data-driven blind source separation method,
i.e., independent component analysis (ICA), to derive emotion-relevant spatio-spectral
EEG source oscillations and assess the extent of non-stationarity. To this end, this
work conducted an 8-day music-listening experiment (i.e., roughly interspaced over
2 months) and recorded whole-scalp 30-ch EEG data from 10 subjects. Given the large
size of the data (i.e., from 80 sessions), results indicated that EEG non-stationarity was
clearly revealed in the numbers and locations of brain sources of interest as well as
their spectral modulation to the emotional responses. Less than half of subjects (two to
four) showed the same relatively day-stationary (source reproducibility >6 days) spatio-
spectral tendency towards one of the binary valence and arousal states. This work
substantially advances the previous work by exploiting intra- and inter-individual EEG
variability in an ecological multiday scenario. Such EEG non-stationarity may inevitably
present a great challenge for the development of an accurate, robust, and generalized
emotion-classification model.

Keywords: affective brain-computer interface, EEG, intra-individual difference, inter-individual difference,
independent component analysis

INTRODUCTION

Electroencephalogram (EEG)-based affective brain-computer interfaces (aBCIs) have been
attracting ever-growing interest and research resources. The aBCI represents an external device
with a capacity for emotional awareness based on its interaction with a user’s emotional responses.
Recent availability of user-friendly wearable EEG sensing technologies and their market profitably
bring laboratory-oriented aBCI research closer to practical applications in multidisciplinary
domains such as NeuroMarketing, NeuroRehabilitation, and NeuroGaming. To this end, an
embedded framework in aBCI that enables the accurate and reliable recognition of emotional
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states of interest from time-varying, spatio-spectral EEG
oscillations is of tremendous interest. Considerable work has
been carried out to develop a machine learning framework to
this end. The leveraged framework typically combines signal
processing, feature engineering, and feature classification (Lin
et al., 2010b; Jenke et al., 2014; Zheng, 2017; Xing et al., 2019).
This research in machine-learning has rapidly progressed and
contributed to our understanding of EEG oscillation modeling
underlying emotional responses in general.

Nonetheless, the brain often switches between different
operational modes while engaging in a task in realistic
environments (Lance et al., 2015). This may be attributed to
changes in several behavioral and/or psychophysiological states
such as attention, stress, anxiety, or sleep quality. For an
individual, the task-relevant EEG oscillations of interest may
change on a daily basis, especially in emotional perception and
experience. The EEG patterns are thus likely to be different
on different days, considered to be reflective of inter-day
non-stationarity or intra-individual variability. Some work has
focused on empirically assessing such day-to-day variability
and its negative impact on machine-learning proficiency in
affective computing (Chai et al., 2017; Lin et al., 2017; Liu
et al., 2018). In other words, the same emotion across days
tended to be more widely scattered than the data clusters of
different emotions within the same day (Lin et al., 2015). Such
inter-day non-stationarity inevitably makes emotion prediction
by a pre-trained emotion-aware model more difficult given
the discrepancy between EEG distributions from different
days. Until now, recent endeavors have focused on integrating
advanced signal processing techniques or additional data
calibration (Chai et al., 2017; Lin et al., 2017; Liu et al., 2018)
to tackle this intra-individual variability, though the proposed
scenario or the corresponding improvements still remain limited
in their ability to perform robust predictions.

In addition, substantial non-stationary EEG correlates
of emotional responses also exist between individuals,
reflective of, namely, inter-individual non-stationarity or
inter-individual variability. Due to intrinsic differences in
personality, culture, gender, educational background, and/or
living environment, individuals may have distinct behavioral
and/or neurophysiological responses even while perceiving
the same event. They are thus not likely to share common
EEG distributions corresponding to the same emotional states,
meaning that the performance of a generic machine-learning
model will either be compromised or fail for certain individuals.
Some related work has explored the negative impact of inter-
individual non-stationarity on affective computing (Lin et al.,
2010b; Soleymani et al., 2012; Lin and Jung, 2017; Li et al., 2019;
Xing et al., 2019). In other words, a subject-independent model
(i.e., in which learning has been carried out on the aggregated
data of all available individuals) did not exclusively outperform
a subject-dependent counterpart due to the increased amount
of training data. Taken together, EEG non-stationarity (intra-
and inter-individual counterparts) represents a great challenge
to the development of an accurate, robust, and generalized
emotion-classification model, and thereby considerately hinders
the practical applicability of an aBCI to a realistic environment.

While most work has searched for better cross-day or cross-
individual prediction by means of novel signal processing and
machine learning frameworks, less effort has been directed
at pinpointing the fundamental nature of the non-stationary
EEG oscillations underlying emotional responses across both
days and individuals. This work is thus devoted to using a
data-driven blind source separation method, i.e., independent
component analysis (ICA), to exploit emotion-relevant spatio-
spectral EEG source oscillations and assess the extent of the
non-stationarity in terms of the spatial configuration of cortical
sources and the statistical properties of their tempo-spectral
activities. To this end, this work conducted an 8-day music-
listening experiment (i.e., roughly interspaced over the course
of 2 months) and recorded whole-scalp 30-ch EEG data from
a group of 10 subjects. This big dataset (80 sessions) allowed
us to systematically investigate intra- and inter-individual EEG
non-stationarity through source-level analysis. The empirical
outcomes of this work not only advance previous work in EEG
neuroscience that focused on single-day/-session recordings (Lin
et al., 2010a; Rogenmoser et al., 2016) and sensor-level analysis
(Schmidt and Trainor, 2001; Sammler et al., 2007; Daly et al.,
2014), but also empirically demonstrate how challenging it is
to deploy a robust emotion-aware analytical infrastructure given
ecological EEG non-stationarity.

MATERIALS AND METHODS

Participants
Ten healthy subjects (six males, four females; age
23.3 ± 0.82 years) participated in an 8-day music-listening
experiment interspaced over the course of 2 months
(approximately once per week with an average time interval
of 7.94 ± 1.76 days). All subjects were undergraduate or
graduate students in the College of Engineering or Science.
They had not received professional training on musicology
or musical instruments and were thus considered to be non-
musicians. They read and signed a consent form prior to
the longitudinal experiment, which was approved by Human
Research Protections Program of the local ethics committee.
All subjects completed the entire eight-session experiment
even though they were allowed to voluntarily withdraw at any
time. The experiment facilitated an EEG analysis of emotional
responses from a total of 80 day-sessions.

Experimental Design and Procedure
Prior to themusic-listening experiment, all subjects were asked to
provide a list of their favorite songs which, in their daily life, are
able to emotionally arouse them. They were instructed, following
the 2D valence-arousal emotion model (Russell, 1980), to select
five songs from each of the four emotion quadrants (i.e., positive
valence–high arousal, negative valence–high arousal, negative
valence–low arousal, and positive valence–low arousal states) and
further extract from each song a 60-s excerpt for use in the
EEG-recording experiment. In order to avoid startling effects, the
beginning and end of each excerpt were each faded in and out
over the course of 10 s. The finalized 60-s song highlights were
confirmed by each subject prior to the experiment. In addition,
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along with a self-selected set per subject, this study randomly
recruited extra four excerpts (one per quadrant) from other
subjects to form his/her music procedure. This was intended
to explore the relationship between familiarity and emotional
responses in a longitudinal experiment, though this was not the
analytical focus of this study.

The 24 song excerpts from each subject were separated into
six four-trial blocks. Each block contained an excerpt for each
emotional quadrant in random order. Each trial began with
a 30-s resting phase followed by a 60-s music listening phase
and ended with a self-reported rating task. In the rating task,
subjects were required to rate songs on a five-point scale of
emotional valence (from negative to positive), emotional arousal
(from calm to excited), preference (from dislike to like), and
familiarity (from never heard to knew well) based on what they
had felt on each day. They did not necessarily assign the same
scores as those assigned previously or as those provided in the
selection of the songs. The experimental protocol was entirely
self-paced such that each subject decided the amount of rest time
before proceeding to the next trial or block. The music-listening
experiment took place in a dimly lit room. The subjects were
instructed to remain seated, keep their eyes closed (an auditory
cue for every self-rating task), minimize their body movements,
and fully attend to the song excerpts played through speakers
during the entire experiment. Each subject listened to his/her
unique set of 24 60-s songs in a shuffled order on each of
the 8 days.

EEG Acquisition
EEG signals were recorded using a 36-channel EEG system
(Neuroscan, Compumedics Ltd., Abbotsford, VIC, Australia).
The 30 scalp electrodes were placed according to the
International 10–20 system, with the linked mastoids (average
of A1 and A2) and forehead as reference and ground sites,
respectively. Four auxiliary electrodes were also placed to
monitor electrooculogram (EOG) activity (two for above and
below the left eye and another two on the outer canthi). All
electrode impedance values were kept below 15 kΩ for better
signal quality. EEG signals were sampled at 500 Hz and in a
bandwidth of 1–100 Hz with a 60 Hz notch filter to remove
powerline contamination.

Exploring Stationary Spatio-spectral EEG
Oscillations
The adopted analytical framework included a number of
steps to explore stationary spatio-spectral EEG oscillations of
emotional responses for the 8-day dataset of each subject,
including artifact suppression, ICA and clustering, and statistical
assessment of emotional valence and arousal states. Data
analysis and visualization were performed using the open
source EEGLab toolbox/scripts (Delorme and Makeig, 2004) and
MATLAB functions/scripts (The Mathworks, Inc., Natick, MA,
USA). Details of technical procedures and implementation are
provided below.

EEG data of each single-day session were band-passed filtered
to 1–50 Hz to suppress low-frequency drifts and high-frequency
artifacts. Artifact subspace reconstruction (ASR; Kothe and Jung,

2015) was then used to compensate for high-variance artifacts
from the filtered EEG signals (Mullen et al., 2015; Artoni et al.,
2017; the user-defined threshold was set to 5 standard deviations
in this study), followed by a visual inspection to ensure data
quality prior to the subsequent ICA analysis. Given the available
80 sessions (10 subjects × 8 sessions), only ∼1% on average
(within a range of 0.1%–7%) of data from a single-day session
was removed prior to further analysis.

The preprocessed single-day EEG data was submitted to ICA
separately to parse the multichannel signals into independent
components (ICs) via an extended infomax ICA algorithm. To
localize the sources of the decomposed ICs, a single-dipole source
model best fitted to the IC’s scalp projection was calculated
using a boundary element head model (BEM) based on the
MNI brain template (Montreal Neurological Institute, MNI,
Montreal, QC, Canada) implemented using the DIPFIT routine
(Oostenveld and Oostendorp, 2002). Among the 30 derived
ICs (four EOG and two reference channels excluded), this
study evaluated scalp maps, spectral profiles, single dipole-fitting
efficiency (explaining >85% of variance of the IC scalp map, as
in Onton andMakeig, 2006), and within-brain dipole locations to
retain cortical brain sources yet discard stereotyped non-cortical
artifactual counterparts (e.g., eye movements, sporadic muscle
tensions) prior to further analysis. The above ICA procedures
and screening criteria are commonly used in other studies
(Delorme et al., 2012; Wagner et al., 2016). On average,
88.50 ± 16.28 cortical ICs were retained in each subject in the
8-day dataset (11.20 ± 1.96 ICs per single-day session). Next,
to assess stationary spatio-spectral sources across days, a K-
means clustering algorithm was used to categorize similar ICs
across 8 days into distinct IC clusters for each individual based
on the attributes of their power spectral densities, scalp maps,
and 3D dipole locations. ICs with distance values more than
3 standard deviations from the mean of their cluster centroids
were relocated to another suitable one or classified as outliers.
Such a semi-automatic IC clustering procedure allowed for the
aggregation of neurophysiologically interpretable brain sources
featuring homogeneous scalp maps and spectral profiles, thereby
facilitating the assessment of their stationarity over the course of
multiple days. This work adopted two objective measurements,
namely dipolarity (Delorme et al., 2012) and reproducibility, to
quantify both how well dipolar brain sources of interest were
exploited on each single day and how frequently they emerged
across days. The dipolarity value in this study represented the
percentage of data variance accounting for a single dipole-fitting
of the IC scalp map. The higher the dipolarity value, the more
dipolar and prone to neurophysiological assessment of the brain
source. Reproducibility was intuitively defined as the percentage
of day sessions yielding the same dipolar ICs. In other words, a
dipolar IC with 100% reproducibility means it is present in each
of the 8 days.

In order to further assess spectral correlations between the
derived ICs and emotional responses in distinct frequency bands,
the short-time Fourier transform with a 50% overlapped 2-s
Hamming window was used to estimate their spectrograms. The
spectra were then grouped into five typical bands, namely delta
(1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz),
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and gamma (31–50 Hz) bands. Each logarithmic band-power
time series belonging to a 60-s music excerpt was normalized
by subtracting the mean power and dividing by the standard
deviation of its preceding 30-s resting phase, followed by the
single-trial baseline normalization manner in Grandchamp and
Delorme (2011).

Statistical Assessment of Spatio-spectral
Oscillations vs. Emotional States
This work attempted to exploit stationary spatio-spectral EEG
correlates of emotional responses. All neurophysiological and
behavioral responses regarding self-reported valence and arousal
ratings were evaluated across multiple days for each individual.
To this end, the 60-s band-specific spectral time series of
the grouped ICs were categorized according to their assigned
dichotomized valence (positive vs. negative) and arousal (high
vs. low) states and assessed for whether there was a set of
relatively day-stationary spatio-spectral oscillations modulated
by emotional responses. The dichotomization was determined
by setting a threshold at the middle of the five-point rating
scale, i.e., <3 for negative valence/low arousal and >3 for
positive valence/high arousal labels. This may have led to an
imbalance in the classification of samples according to this
binary classification scheme in each daily session. This work
thus employed an unpaired t-test to assess the relationship
across days between 8-day spatio-spectral EEG oscillations and
emotional responses in each individual. For the daily association,
a non-parametric permutation test was adopted since the limited
24 dichotomized trials per day may not comply with the
assumption of a parametric approach. The permutation was done
by iteratively shuffling the labels (n = 20,000) over trials and
computing the test statistic, forming a distribution of test statistic
values under the null hypothesis. Statistical assessment was then

conducted by comparing the observed test statistic value (without
shuffled data) against the distribution of null-hypothesis test
statistic values. This work further stressed the behavior of
emotion response-categorized EEG oscillations on each day
as a reference.

RESULTS

Behavioral Ratings
Figure 1 depicts the daily self-reported ratings of 10 subjects
while participating in the 8-day music-listening experiment.
The dichotomization (=3) on the five-point scale of valence
and arousal states led to averaged trials of 10.70 ± 0.25 vs.
11.30± 0.44 (positive vs. negative valence) and of 12.40± 0.47 vs.
9.40 ± 0.58 (high vs. low arousal) for each day session, and
corresponded to a total of 85.70 ± 12.70 vs. 90.70 ± 18.57 and
114.50 ± 28.30 vs. 56.70 ± 34.35 for binary valence and
arousal classes on average, accounting for eight sessions in each
individual. However, the data of two subjects who happened to
assign fewer labels with low arousal over the course of the eight
sessions (<mean-standard deviation) were excluded from the
arousal analysis. As can be seen, according to the unpaired t-
test, the valence ratings differed significantly between positive
and negative outcomes on each day session (p < 0.01). All
eight sessions resulted in mean scores of 4.49 ± 0.08 and
1.69 ± 0.04 for positive and negative states, respectively. On
the other hand, daily high arousal ratings were consistently
higher than the low ones (p < 0.01), yielding 8-day mean
ratings of 4.45 ± 0.05 and 1.68 ± 0.05 for high and low
arousal states, respectively. The derived 8-day EEG trials and
their self-reported binary labels from 10 subjects facilitated the
subsequent exploratory assessment of (non)stationary spatio-
spectral EEG dynamics of emotional responses.

FIGURE 1 | Daily self-reported ratings of emotional (A) valence and (B) arousal states. Ratings were summarized from 10 subjects participating in an 8-day
music-listening experiment. The symbols are color-coded according to the adopted dichotomized threshold (= 3) in the five-point scale. Red symbols (>3) indicate
positive valence/high arousal ratings, whereas blue symbols (<3) indicate negative valence/low arousal ratings. ∗∗ Indicates a statistical significance of p < 0.01.
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Demonstrating Day-Stationary
Spatio-spectral EEG Oscillations and Their
Associations With Emotional Responses
From a Representative Subject
Figure 2 illustrates the neurophysiologically plausible IC clusters
commonly exploited in the 8-day dataset from a representative
subject. Nine ICs appeared to be relatively reproducible across
days (reproducibility >75%, at least 6 of 8 days) and returned
high estimated single-dipole brain sources (dipolarity >91%)
that were spatially located in left frontal, frontal central, right
frontal, left sensorimotor, central midline, right sensorimotor,
left occipital, superior parietal, and right occipital brain
regions. Each aggregated IC cluster corresponded to similar
characteristics in terms of their logarithmic spectral profiles
and 3D dipole source locations on the MNI brain template.
Among them, the three frontal clusters and central midline
cluster demonstrated a major peak in the theta band, and the
others demonstrated a prominent alpha peak, in which the

sensorimotor and superior parietal counterparts accompanied a
minor beta peak.

Figure 3 explores the association of the spectral oscillations
of the nine exploited IC clusters with the binary valence states
from the same representative subject (as shown in Figure 2). The
cross-day outcome was summarized by leveraging the trials of all
eight sessions together to benchmark the within-day counterpart.
As shown in Figure 3A, the cross-day analysis demonstrated
that four spatio-spectral oscillations were significantly altered
according to positive vs. negative valence (p < 0.05), consisting
of central midline beta, right frontal alpha, and frontal central
beta and gamma bands. A valence-irrelevant outcome of right
occipital alpha (p = 0.869) was also provided in the last row
as a technical control. As can be seen, after the eyes-closed
baseline, the state-wise spectral time series notably diverged
from one another over the course of the 60-s excerpt. The
negative valence led to a major drop in central midline beta
and right frontal alpha (p < 0.01) and a marginal drop in
frontal central beta (p = 0.049), whereas the positive valence

FIGURE 2 | Eight-day cortical source reproducibility from a representative subject. Each surrounding subplot refers to an aggregated independent component (IC)
cluster. Averaged and individual IC log-power spectra (dB) are plotted in red and gray lines, respectively, and the corresponding mean scalp maps of clusters are
superimposed. Rep and Dip indicate reproducibility and mean dipolarity per IC cluster, respectively. The centered subplot represents a 3D overview of the equivalent
dipole locations of the nine clusters and their projections onto the MNI brain template. Dots in the same color represent the ICs grouped into the same cluster, in
which bigger dots represent the cluster centroids.
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FIGURE 3 | Valence-relevant spatio-spectral oscillations using (A) cross-day and (B) within-day analyses from the same representative subject shown in Figure 2.
The cross-day analysis led to four meaningful spatio-spectral oscillations from the nine IC clusters. The insignificant right occipital alpha in the last row was also
provided as a technical control. Red and blue profiles represent the spectral oscillations associated with a positive and negative valence, respectively. ∗ and ∗∗ refer
to a statistical significance of p < 0.05 and p < 0.01, respectively.

accompanied a gamma decrease over the frontal central region
(p < 0.05). Moreover, the cross-day analysis reflected a similar
spectral tendency for most single days that were obtained by
the within-day analysis. However, certain days happened to
present reciprocal or distinctive outcomes. Taking the central
midline beta as an example, 5 of 8 days (days 3, 4, 5, 6,
and 8) exhibited a consistent decrease in negative compared
to positive valence (days 4, 6, and 8 with p < 0.05), on day
2 there was a tendency towards a drop in positive valence, on
day 7 positive valence tended to increase, and on day 1 spectral
distinction was barely re-established. Such discrepancies in the
cross- and within-day analysis more or less emerged in the
other three informative spatio-spectral oscillations of interest
from this representative subject. As the technical benchmark,
the cross-day outcome of the right occipital alpha did reflect a
common tendency towards indistinguishable spectral profiles on
each individual day.

Figure 4 further demonstrates the validity of the exploited
emotional valence-relevant spatio-spectral oscillations on the
initial five-point scale from the same representative subject,
as shown in Figures 2, 3. With respect to the baseline, the
spatio-spectral fluctuations of interest tended to be statistically
modulated by the rating scale. Stronger negative ratings resulted
in accentuated power attenuation in central midline beta
(r = 0.26, p < 0.01), right frontal alpha (r = 0.25, p < 0.01), and

frontal central beta (r = 0.16, p = 0.05) frequencies. In contrast,
stronger positive ratings were linked to attenuated frontal central
gamma deterioration (r = −0.21, p < 0.01). According to the
empirical demonstration on the representative subject, this work
as such applied the cross-day ICA analytical framework to each of
the 10 subjects separately, exploring inter-subject commonality
of the relatively day-stationary spatio-spectral EEG oscillations
associated with emotional responses.

Exploring the Inter-subject Commonality of
the Day-Stationary Spatio-spectral EEG
Oscillations and Their Associations With
Emotional Responses
Figure 5 summarizes the dipolarity and reproducibility of the
exploited 8-day aggregated nine IC clusters from 10 subjects.
Each IC cluster yielded a mean dipolarity of >94.28%, and
their grand mean dipolarity was 95.99 ± 1.04%, indicating
their neurophysiological adequacy for the sequential spectral
assessment of emotional responses. In contrast, mean
reproducibility in the nine clusters varied from 60.89 ± 28.36%
(in the left occipital cluster) to 88.57 ± 10.98% (in the frontal
central cluster) and the grand mean reproducibility was
76.03 ± 10.40%. In the worst-case scenario, some of them
happened to be completely absent from distinct subjects, such
as in the right frontal, central midline, left sensorimotor, left
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FIGURE 4 | The relationship between valence-relevant spatio-spectral oscillations and self-reported ratings from the same representative subject shown in
Figures 2, 3. The five-point scale of emotional valence was divided into two groups corresponding to scores below and above 3. Red and blue profiles represent
positive (>3, more positive) and negative valences (<3, more negative), respectively. The gray lines depict the linear relationship as assessed by linear regression
analysis. The mean scalp maps of the informative IC clusters are superimposed on each subplot.

FIGURE 5 | The mean dipolarity and reproducibility of the 8-day aggregated nine IC clusters for 10 subjects and their inter-subject commonality. Each surrounding
subplot refers to the mean of an IC cluster summarized across subjects. The centered subplot represents a 3D overview of the dipole centroids of the nine clusters
and their projections onto the MNI brain template, where the dipole size was scaled by the inter-subject commonality of the relatively day-stationary ICs (the
percentage of subjects with consistently the same IC appeared in 6 of 8 days).
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occipital, and superior parietal sources (extreme outliers are
shown in the boxplot). In order to evaluate the commonality of
relatively day-stationary ICs for most subjects, this work defined
a criterion by empirically counting ICs that were consistently
present at least over the course of N days in the 8-day recording
setting. N was set to six in this work due to the resultant
nine-cluster mean reproducibility (i.e., 75% represents 6 of
8 days). Given the 6-day criterion, the inter-subject commonality
(i.e., the percentage of the recruited 10 subjects with the same ICs
over 6 days) was found to vary from 50% to 100%. The frontal
central source was presented for each subject (100%), followed
by the central midline source (90%), the right sensorimotor and
the right occipital sources (80%), the left sensorimotor and the
superior parietal sources (70%). The remaining three sources
located in the left and right frontal regions and the left occipital
regions had lower commonality (50%). The mean inter-subject
commonality for the nine clusters was 71.11 ± 18.33% with
cross-day reproducibility >6 days. The discernible cluster-to-
cluster reproducibility and their inter-subject commonality
reflected the non-stationarity of IC sources for each day and for
each subject.

Figure 6 shows how the relatively day-stationary, subject-
common ICs behaved in accordance with the emotional
responses and whether they demonstrated the same spectral
tendency towards the same binary state. Two main findings are
mapped onto the MNI brain template in Figure 6A, including
the percentage of subjects with the same ICs whose spectral
oscillation statistically differed between the two binary states
(p < 0.05) and the percentage of subjects with the same
spatio-spectral tendency towards one of the two binary states
(p < 0.05). The use of a large and more solid dipole means
that analogous day-stationary spatio-spectral EEG correlates
of an emotional state can be seen across more subjects. The
Talairach coordinates of the centroids of the dipole distribution
for each IC cluster and the relatively stationary outcomes
for each emotion category are represented in Table 1. In
general, the valence category yielded a higher inter-subject
commonality for the spatio-spectral association across days.
Four of 10 subjects similarly possessed central midline beta
oscillations that significantly differed between the two binary
states (i.e., the same emotion-related IC: 40%). They further led
to more beta suppression for the negative valance compared

FIGURE 6 | The relatively day-stationary, subject-common spatio-spectral oscillations in response to the binary valence and arousal states. Panel (A) refers to a 3D
overview of emotion-relevant IC cluster centroids and their projections onto the MNI brain template (FC: frontal central, CM: central midline, RO: right occipital, SP:
superior parietal). Sphere size was scaled to indicate the percentage of subjects with the same day-stationary IC significantly related to emotional responses
(p < 0.05), and transparency further represents the percentage of subjects with the same spectral tendency towards an emotional label of the target ICs (annotated
%). Only results above 20%, i.e., with at least two subjects in common, are shown. Red and blue colors represent the power suppression associated with positive
valence/high arousal and negative valence/low arousal states, respectively. Panel (B) demonstrates valence and arousal outcomes with the highest inter-subject
commonality. ∗ and ∗∗ refer to a statistical significance of p < 0.05 and p < 0.01, respectively. Two subjects with highly imbalanced labels were excluded from the
arousal analysis.
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TABLE 1 | Major day-stationary independent component (IC) clusters and their inter-subject commonalty to the binary valence and arousal states.

Emotional category Source Talairach BA Band power Subjects (%) with Label Subjects (%) with the
coordinates the same emotion- same spatio-spectral

x y z related IC (>6 tendency
days)

Valence Frontal central 0 52 6 10 Beta 40 Negative 30

Gamma 40 30

Central midline 3 1 49 6 Beta 40 Negative 40

Delta 30 30

Right occipital 20 −56 −6 19 Beta 40 Positive 30

Arousal Superior parietal 3 −42 58 5 Beta 25 Low 25

The percentage of subjects with the same relatively day-stationary spatio-spectral oscillations correlated with the binary states and with the same tendency towards one of the binary
states are identified.

to the positive counterpart (i.e., spatio-spectral tendency:
40%), as shown in Figure 6B. The negative valence also
manifested the suppression in central midline delta power and
frontal central beta and gamma power (i.e., spatio-spectral
tendency: 30%). In addition, the positive valence tended to be
associated with more right occipital beta suppression (30%).
Other spatio-spectral tendencies typically had less commonality
(20%). Unlike the valence outcome, the arousal category had
worse inter-subject commonality. Only two of eight subjects
(25%) were found to have similar superior parietal beta
suppression in low arousal compared to high counterpart.
Other spatio-spectral oscillations behaved quite inconsistently
across individuals (<20%, with no consensus found between
two subjects).

DISCUSSION

This work explored the extent of intra- and inter-individual
EEG non-stationarity associated with emotional responses using
the data-driven approach of an ICA. For the analysis of the
8-day EEG sessions of 10 subjects, an ICA-based analytical
framework was conceived to identify the neurophysiologically
interpretable spatio-spectral source oscillations for each
single-day session, exploit their statistical link to the
dichotomized emotional states, and assess the (non)stationary
emotion-related EEG patterns along days and their inter-
subject commonality. Results indicated substantial salient
EEG non-stationarity in the numbers and locations of brain
sources of interest as well as their spectral modulations to
the emotional responses. However, this work did not attempt
to disentangle the underlying neural mechanisms driving
such vivid non-stationarity; rather, it sought to empirically
demonstrate how clearly they emerge through source-level
analysis. Leveraging neuroscience and machine-learning
approaches, previous studies have yielded many important
insights regarding affective computing, yet they mostly focused
on single-day analysis given a group of subjects. This work
substantially advanced the previous work by addressing
the EEG non-stationarity in an ecologically valid multiday
scenario that is considered to be a great challenge to the
development of a robust, accurate, and generalized aBCI model
for realistic applications.

Integrity of the ICA for Exploring
(Non)stationary Sources
In this work, we used ICA to parse scalp channel data
into spatially fixed and temporally independent sources and
evaluate their association with emotional responses. Unlike
channel-level analysis which may be compromised by volume
conduction (Jung et al., 2000; Onton and Makeig, 2006), the ICA
algorithm theoretically isolates cortical and non-cortical source
signals, such as muscle tension and eye movements, from the
spontaneous signal mixtures recorded from the scalp sensors.
Once the respective best-fitting equivalent dipoles of the derived
ICs have been localized, the source-level outcomes enable a better
understanding of brain source-specific neural oscillations and
their behavior over time and across individuals. Nevertheless, the
number of resolved ICs is the same as the number of sensors
used to record the signal mixtures. Using a limited number
of sensors is not likely to fully reflect the underlying sources,
which could be unlimited (Onton andMakeig, 2006). In addition,
among the decomposed sources, only a few of them, with
homogeneous scalp maps, within-brain dipoles, and meaningful
spectral oscillations, explain the relatively large data variance
of the signals, potentially leading to more neurophysiologically
accessible associations. The remaining ones, which either have
stereotypical artifacts or low-energy non-dipolar scalp maps, are
less relevant and can be omitted. The analytical rationale of
an ICA has been successfully demonstrated for the analysis of
various phenomena using different numbers of scalp channels
(e.g., 32–250), such as motor imagery (Wang et al., 2012),
motion sickness (Chuang et al., 2012), music appreciation
(Cong et al., 2013; Lin et al., 2014), walking locomotion
(Wagner et al., 2016; Artoni et al., 2017), stress level (Schlink
et al., 2017), and affective state (Onton and Makeig, 2009;
Rogenmoser et al., 2016; Banaei et al., 2017). Comparing
previously reported IC outcomes in terms of the number of
cortical ICs vs. the number of channels, e.g., 5–15 ICs with
31 channels (Onton and Makeig, 2006), 8–15 ICs (mean: 11.2)
with 32 channels (Wang et al., 2012), 12–29 ICs (mean: 20.3)
with 128 channels (Banaei et al., 2017), 15–25 (mean: 18.4)
with 248 channels (Gramann et al., 2010), and 9–31 ICs (mean:
16.0) with 250 channels (Onton and Makeig, 2009), this work,
yielding an average of 11.20 ± 1.96 interpretable cortical ICs
from 30-channel EEG signals across 80 single sessions, was
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deemed acceptable. Moreover, the meaningful brain ICs derived
from this work were all located in frontal, central, sensorimotor,
parietal, and occipital regions of the cortex, consistent with
previous findings (Onton and Makeig, 2006; Chen et al., 2010;
Lin et al., 2014; Rogenmoser et al., 2016; Wagner et al., 2016;
Banaei et al., 2017; Schlink et al., 2017), regardless of the channel
set up used. No ICs located in deeper sub-cortical regions
were resolved. This may be attributed to the fact that scalp
EEG signals are less sensitive to neural activation stemming
from deep subcortical structures. This work therefore cannot
draw any conclusions on whether deeper structurers behave
more (non)stationarily compared to the explored cortical ICs,
especially for limbic and paralimbic areas involved in emotion
processing revealed by other neuroimaging modalities, such as
functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET; Blood et al., 1999; Phan et al., 2002;
Trost et al., 2015). Accordingly, this issue needs to be taken into
account during the interpretation of the stationary EEG sources
in the present work.

From the 8-day EEG signals of 10 subjects, each subject
returned an 8-day average of 88.50 ± 16.28 cortical ICs, from
which was assessed which ICs were relatively reproducible across
the 8 days. Nine aggregated cortical IC clusters located in
frontal (left, right, and central), central midline, sensorimotor
(left and right), superior parietal, and occipital (left and
right) regions showed an average 8-day reproducibility of
76.03 ± 10.40 (min: 60.89 ± 28.36, max: 88.57 ± 10.98%) over
10 subjects (mean dipolarity: 95.99 ± 1.04%, see Figure 5).
In other words, the nine identified ICs appeared at least, on
average, for four (50%) and six (75%) of the 8 days. In an
attempt to further quantify inter-subject commonality across
the 10 subjects (as reflected in an IC present over 6 days,
i.e., with a reproducibility >75%), 5 to 10 subjects possessed
the same distinctive relatively day-stationary sources with a
mean inter-subject commonality of 71.11 ± 18.33%. In all
subjects, the frontal central source could be repeatedly seen on
at least 6 days. If the criterion for cross-day reproducibility
became more stringent (not presented in Results), the range
and mean of inter-subject commonality considerably decreased
towards the value reached at 8 days (7 days: 20%–90% (mean:
54.44 ± 23.51%), 8 days: 0%–70% (33.33 ± 22.91%). Among
these cross-day criteria, the central midline source, rather
than the frontal central source, was found relatively stationary
across days and individuals (6 days: 90%, 7 days: 90%, and
8 days: 70% vs. 6 days: 100%, 7 days: 70%, and 8 days:
40%, respectively). Such varied cluster-to-cluster reproducibility
indicated that the cortical EEG sources of interest behaved
distinctly across multiple days, precisely considered to reflect
intra-individual non-stationarity. The absence of the ICs on
certain single-day sessions may be in part due to the source
origins whose projected signals were neither strong nor distinct
enough to be detected at the scalp and subsequently resolved
by ICA (Onton et al., 2006). Previous EEG-ICA studies
mostly assessed task-related spatio-spectral EEG oscillations
by summarizing single-day analyses from a group of subjects
(Onton and Makeig, 2006; Chen et al., 2010; Gramann et al.,
2010; Chuang et al., 2012; Wang et al., 2012; Lin et al., 2014;

Rogenmoser et al., 2016; Wagner et al., 2016; Banaei et al.,
2017; Schlink et al., 2017). Less effort was invested in the issue
of intra-individual differences across EEG sources. We believe
that the qualitative IC outcomes from the 8-day sessions in
this work have provided an opportunity to better understand
EEG non-stationarity.

Intra- and Inter-individual Differences in
Spatio-spectral Correlates of Emotional
Responses
Even though the nine cortical IC clusters were significantly
compromised by EEG non-stationarity, some remained relatively
consistent across days and individuals in response to the
dichotomized emotional states (see Figure 6 and Table 1),
especially in the valence category. Four of 10 subjects possessed
the central midline source (BA 6, premotor cortex) on 6
of the 8 days, accompanying the beta suppression with the
negative valence. Other outcomes included negative valence-
induced beta and gamma suppression over the frontal central
region (BA 10, anterior prefrontal cortex), negative valence-
induced delta suppression over the central midline region,
and positive valence-induced beta suppression over the right
occipital region (BA 19, visual cortex), as derived from three
subjects. In contrast, only two of eight subjects (2 of 10 subjects
were excluded due to highly imbalanced labels) showed beta
suppression in the superior parietal region (BA 5, superior
parietal lobule) in low arousal. To the best of our knowledge,
this work represents the first attempt to extract information
from spatio-spectral EEG oscillations of emotional responses
in the context of a longitudinal experiment (i.e., in the form
of 8-day music-listening recordings interspaced over 2 months,
roughly once per week). Due to a lack of direct evidence,
the obtained outcomes were related to previous single-day
work in terms of the localized brain regions and spectral
oscillations. A meta-analysis study (Phan et al., 2002) that
aggregated the findings of emotional activation from 55 PET
and fMRI studies summarized the role of medial prefrontal
cortex in emotional processing (reported by at least 40% of
the included studies), which may support our findings on
frontal central ICs. Further, it is plausible that emotional states
reached during exposure to consonant music stimulate the
additional drive of the motor system (Sammler et al., 2007;
Lin et al., 2014). Several neurophysiological studies have also
found that some music-modulated brain activity intervenes in
emotion processing (Blood et al., 1999; Khalfa et al., 2005).
Similarly, our results demonstrated informative IC sources
located around the premotor cortex. Posterior (parietal and
occipital) regions have been reported to be associated with
emotional affect and intensity (Heller, 1993; Schmithorst, 2005),
which may explain the engagement of parietal and occipital
sources in this work. Engagement of multiple brain sources was
ecologically true since music-induced emotion was accompanied
by a rich involvement of reward, memory, self-reflective, and
sensorimotor processes and engaged distributed brain networks
across both cortical and subcortical regions (Trost et al.,
2015). In contrast, with regards to the distinguishable spectral
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oscillations, most of them were seen in the beta band (frontal
central, central midline, superior parietal, and right occipital
regions), with fewer in the delta (central midline region) or
gamma (frontal central region) bands. Previous EEG findings
may provide partial support to these findings, notably those
related to prefrontal beta and gamma asymmetry in valence
(Daly et al., 2014), parietal beta asymmetry for motivation
and emotion (Schutter et al., 2001), and widespread delta
synchronization formusic processing (Bhattacharya and Petsche,
2005). However, this work did not replicate certain representative
spectral outcomes, such as fronto-midline theta enhancement
for the positive valence (Sammler et al., 2007; Lin et al.,
2010a) or frontal alpha asymmetry for valence distinction
(Schmidt and Trainor, 2001; Davidson, 2004). Frontal central
theta was sparsely observed in two subjects (yet did not result
in an augmentation in positive valence), while frontal alpha
modulation was only seen in the representative subject (see
Figures 3, 4). This may be partly attributed to inter-day
variability due to changes in mental states over the course of
a multiday recording, such as in the form of mental fatigue
modulating the lower frequency power of delta, theta, and alpha
bands (Lal and Craig, 2002).

With regards to the within- vs. cross-day analysis of
the representative subject (see Figure 3), it may be that
the emotion-discriminative sources analyzed in the cross-day
analysis could have been absent, and their spectral associations
to the binary states could have behaved either reciprocally
or even indiscriminately on certain days. Such day-to-day
spectral variability was similar to findings using peripheral
bio-signals (Picard et al., 2001) and in other EEG-related topics
(Christensen et al., 2012). The underlying mechanisms of this
cross-day discrepancy remain unclear based on this study’s
outcomes, but could be partly attributed to the physiological
modulation of behavioral and mental states, such as attention,
stress, anxiety, and sleep quality. Previous EEG studies have
reported that these factors indeed somehow modulate tasked-
related EEG patterns. For example, neurophysiological correlates
of mental fatigue differed between sleep-deprived and well-rested
controls (Ahn et al., 2016), spectral oscillations fluctuated
according to attentional demands (Wang et al., 2018), and
acute stress affected the cognitive ability of brain-computer
interface control (Garcia et al., 2019). It is reasonable to
conclude that each of the aforementioned factors and their
plausible interactions more or less concurrently confound the
EEG patterns, leading to non-stationarity on different days.
As such, exploring inter-subject commonalty for the relatively
day-stationary sources is presumably more challenging. Given
the criterion for IC’s cross-day reproducibility (>6 of 8 days),
only a few subjects demonstrated same day-stationary ICs with a
significant relationship to emotional responses (valence: 3–4 of
10 subjects, arousal: two of eight subjects). The inter-subject
commonality more or less deteriorated if the same spectral
tendency was involved (see Table 1). Previous neuroimaging
studies have proven that individual differences associated with
morphological differences in brain anatomy (e.g., gray and white
matter volume), exhibiting a wide range of basic and higher
cognitive functions (Kanai and Rees, 2011). The distinctive brain

structures and functional patterns involved may serve as a useful
source of information to study their links to human personality,
behavior and cognition (Kanai and Rees, 2011; Liu et al.,
2019). Particularly, personality is considered a dominant factor
contributing to individual differences in emotion perception
and experiences (Eysenck, 1998) and regulation strategies (Gross
and John, 2003). These data could thus serve as a physiological
indicator, for example, to correlate with stress resilience
(Brouwer et al., 2015) and emotional states (Subramanian et al.,
2018). In addition, recent work has demonstrated that the EEG
variability was considerably larger across individuals than across
repeated sessions. Such inter-subject variability may be increased
while engaging in a more cognitive-oriented task (Melnik et al.,
2017). In contrast, with regards to the ICA, the non-identical
cortical and subcortical brain volumes likely make the size
and/or orientation of EEG sources quite variable. Therefore,
all individuals may not contribute the same ICs located in
brain regions of interest (Onton and Makeig, 2006). Taken
together with intra-individual variability, this low inter-subject
commonality for the same tendency of day-stationary spatio-
spectral correlates of psychophysiological emotional responses
seems reasonable and realistic.

Negative Impact of Nonstationary
Spatio-spectral Oscillations to aBCI
This work has empirically demonstrated strong intrinsic intra-
and inter-individual variability in emotional responses using
source-level analysis. The numbers and locations of EEG sources
of interest and their discriminative spectral profiles were found
to be different across days and individuals. As such, EEG
signals recorded from the scalp may be more substantially
different from one another since they consist of linear mixtures
projected from multiple non-stationary cortical sources (in
addition to non-cortical artifactual sources). This source-to-
channel projection may explain why the inter-day data clusters
of the same emotion had more variability more than the
inter-emotion data clusters within one day, as revealed by
the channel-level analysis (Lin et al., 2015). Our exploratory
findings also demonstrate why the day-independent (Chai
et al., 2017; Lin et al., 2017; Liu et al., 2018) and subject-
independent (Soleymani et al., 2012; Li et al., 2018, 2019)
emotion prediction scenarios (i.e., a single generic model
works on multiple days or on multiple subjects) were more
challenging than their day-dependent and subject-dependent
counterparts. Accordingly, this work highlights an urgent need to
incorporate typical machine-learning frameworks with advanced
signal processing [e.g., robust principal component analysis
(Lin et al., 2017) stationary subspace analysis (Kaltenstadler
et al., 2018)] and model calibrating steps (Chai et al., 2017; Liu
et al., 2018; Li et al., 2019) to obviate the negative interference
of discrepant EEG distributions across sessions obtained on
different days or from different individuals. Furthermore,
alternative to leveraging a unique model for the prediction
of different days or individuals, future effort can be devoted
to evaluate an ensemble learning framework (Chuang et al.,
2014) that generates multiple classifiers to learn distinctive EEG
distributions of emotional responses and strategically combines
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their multiple decisions. Thus, effectively monitoring/alleviating
the EEG non-stationarity and adapting an existing model(s)
accordingly will facilitate the translation of laboratory-oriented
demonstrations to real-life aBCI applications.

CONCLUSION

This work exploratorily demonstrated the extent of intra-
individual and inter-individual EEG non-stationarity associated
with emotional responses using the data-driven approach of
an ICA. To this end, this work conducted an 8-day music-
listening experiment (i.e., roughly interspaced over 2 months)
and recorded whole-scalp 30-ch EEG data from a group of
10 subjects. Results from this large dataset (i.e., 80 sessions)
indicated substantial EEG non-stationarity in the numbers
and locations of brain sources of interest as well as their
spectral modulations to emotional responses. Only less than
half of subjects (two to four) demonstrated the same relatively
distinct day-stationary (source reproducibility >6 days) spatio-
spectral tendency towards one of the binary emotion states.
Since previous works mostly focused on single-day/-session
recordings and sensor-level analysis, this work substantially
advances the work of these previous studies by exploiting
EEG non-stationarity in an ecological multiday scenario.
This is considered a great challenge to the development of
a robust, accurate, and generalized aBCI model aimed at
realistic applications.

DATA AVAILABILITY STATEMENT

The datasets for this manuscript are not publicly available at this
moment because the data recording is ongoing for more subjects.
Future requests to access the datasets should be directed to the
corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Human Research Protection Program of Kaohsiung
Medical University, Taiwan. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

Y-WS conducted the experiments, analyzed the data, and wrote
the corresponding parts of the article. Y-PL conceived and
supervised the experiments and data analysis and wrote and
revised the article.

FUNDING

This work was supported in part by the Ministry of Science
and Technology, Taiwan, under Grant MOST 106-2628-E-110
-002-MY3.

REFERENCES

Ahn, S., Nguyen, T., Jang, H., Kim, J. G., and Jun, S. C. (2016). Exploring neuro-
physiological correlates of drivers’ mental fatigue caused by sleep deprivation
using simultaneous EEG, ECG, and fNIRS data. Front. Hum. Neurosci. 10:219.
doi: 10.3389/fnhum.2016.00219

Artoni, F., Fanciullacci, C., Bertolucci, F., Panarese, A., Makeig, S., Micera, S.,
et al. (2017). Unidirectional brain to muscle connectivity reveals motor cortex
control of leg muscles during stereotyped walking. Neuroimage 159, 403–416.
doi: 10.1016/j.neuroimage.2017.07.013

Banaei, M., Hatami, J., Yazdanfar, A., and Gramann, K. (2017). Walking
through architectural spaces: the impact of interior forms on human
brain dynamics. Front. Hum. Neurosci. 11:477. doi: 10.3389/fnhum.
2017.00477

Bhattacharya, J., and Petsche, H. (2005). Phase synchrony analysis of EEG during
music perception reveals changes in functional connectivity due to musical
expertise. Signal Process. 85, 2161–2177. doi: 10.1016/j.sigpro.2005.07.007

Blood, A. J., Zatorre, R. J., Bermudez, P., and Evans, A. C. (1999). Emotional
responses to pleasant and unpleasantmusic correlate with activity in paralimbic
brain regions. Nat. Neurosci. 2, 382–387. doi: 10.1038/7299

Brouwer, A., van Schaik, M. G., Korteling, J. E., van Erp, J. B. F., and Toet, A.
(2015). Neuroticism, extraversion, conscientiousness and stress: physiological
correlates. IEEE Trans. Affect. Comput. 6, 109–117. doi: 10.1109/taffc.2014.
2326402

Chai, X., Wang, Q. S., Zhao, Y. P., Li, Y. Q., Liu, D., Liu, X., et al.
(2017). A fast, efficient domain adaptation technique for cross-domain
electroencephalography(EEG)-based emotion recognition. Sensors 17:E1014.
doi: 10.3390/s17051014

Chen, Y. C., Duann, J. R., Chuang, S. W., Lin, C. L., Ko, L. W., Jung, T. P., et al.
(2010). Spatial and temporal EEG dynamics of motion sickness. Neuroimage
49, 2862–2870. doi: 10.1016/j.neuroimage.2009.10.005

Christensen, J. C., Estepp, J. R., Wilson, G. F., and Russell, C. A. (2012). The
effects of day-to-day variability of physiological data on operator functional
state classification. Neuroimage 59, 57–63. doi: 10.1016/j.neuroimage.2011.
07.091

Chuang, S. W., Ko, L.W., Lin, Y. P., Huang, R. S., Jung, T. P., and Lin, C. T. (2012).
Co-modulatory spectral changes in independent brain processes are correlated
with task performance. Neuroimage 62, 1469–1477. doi: 10.1016/j.neuroimage.
2012.05.035

Chuang, C. H., Ko, L. W., Lin, Y. P., Jung, T. P., and Lin, C. T. (2014).
Independent component ensemble of EEG for brain-computer interface. IEEE
Trans. Neural Syst. Rehabil. Eng. 22, 230–238. doi: 10.1109/TNSRE.2013.
2293139

Cong, F. Y., Alluri, V., Nandi, A. K., Toiviainen, P., Fa, R., Abu-Jamous, B.,
et al. (2013). Linking brain responses to naturalistic music through analysis of
ongoing EEG and stimulus features. IEEE Trans. Multimedia 15, 1060–1069.
doi: 10.1109/tmm.2013.2253452

Daly, I., Malik, A., Hwang, F., Roesch, E., Weaver, J., Kirke, A., et al. (2014). Neural
correlates of emotional responses to music: an EEG study. Neurosci. Lett. 573,
52–57. doi: 10.1016/j.neulet.2014.05.003

Davidson, R. J. (2004). What does the prefrontal cortex ‘‘do’’ in affect: perspectives
on frontal EEG asymmetry research. Biol. Psychol. 67, 219–233. doi: 10.1016/j.
biopsycho.2004.03.008

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis. J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.
10.009

Delorme, A., Palmer, J., Onton, J., Oostenveld, R., and Makeig, S. (2012).
Independent EEG sources are dipolar. PLoSOne 7:e30135. doi: 10.1371/journal.
pone.0030135

Eysenck, H. (1998). Dimensions of Personality. Piscataway, NJ: Transaction
Publishers.

Frontiers in Human Neuroscience | www.frontiersin.org 12 October 2019 | Volume 13 | Article 366

https://doi.org/10.3389/fnhum.2016.00219
https://doi.org/10.1016/j.neuroimage.2017.07.013
https://doi.org/10.3389/fnhum.2017.00477
https://doi.org/10.3389/fnhum.2017.00477
https://doi.org/10.1016/j.sigpro.2005.07.007
https://doi.org/10.1038/7299
https://doi.org/10.1109/taffc.2014.2326402
https://doi.org/10.1109/taffc.2014.2326402
https://doi.org/10.3390/s17051014
https://doi.org/10.1016/j.neuroimage.2009.10.005
https://doi.org/10.1016/j.neuroimage.2011.07.091
https://doi.org/10.1016/j.neuroimage.2011.07.091
https://doi.org/10.1016/j.neuroimage.2012.05.035
https://doi.org/10.1016/j.neuroimage.2012.05.035
https://doi.org/10.1109/TNSRE.2013.2293139
https://doi.org/10.1109/TNSRE.2013.2293139
https://doi.org/10.1109/tmm.2013.2253452
https://doi.org/10.1016/j.neulet.2014.05.003
https://doi.org/10.1016/j.biopsycho.2004.03.008
https://doi.org/10.1016/j.biopsycho.2004.03.008
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1371/journal.pone.0030135
https://doi.org/10.1371/journal.pone.0030135
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Shen and Lin Non-stationary Spatio-Spectral EEG Oscillations

Garcia, L., Zak, M., Grenier, C., Hanrio, S., Henry, D., Randriamanantena, R.,
et al. (2019). ‘‘Is stress state an important factor in the BCI-P300 speller
performance?,’’ in Advances in Computational Intelligence, eds I. Rojas, G. Joya
and A. Catala (Cham: Springer International Publishing), 442–454.

Gramann, K., Gwin, J. T., Bigdely-Shamlo, N., Ferris, D. P., and Makeig, S. (2010).
Visual evoked responses during standing and walking. Front. Hum. Neurosci.
4:202. doi: 10.3389/fnhum.2010.00202

Grandchamp, R., and Delorme, A. (2011). Single-trial normalization for event-
related spectral decomposition reduces sensitivity to noisy trials. Front. Psychol.
2:236. doi: 10.3389/fpsyg.2011.00236

Gross, J. J., and John, O. P. (2003). Individual differences in two emotion
regulation processes: implications for affect, relationships, and well-being.
J. Pers. Soc. Psychol. 85, 348–362. doi: 10.1037/0022-3514.85.2.348

Heller, W. (1993). Neuropsychological mechanisms of individual differences
in emotion, personality, and arousal. Neuropsychology 7, 476–489.
doi: 10.1037/0894-4105.7.4.476

Jenke, R., Peer, A., and Buss, M. (2014). Feature extraction and selection for
emotion recognition from EEG. IEEE Trans. Affect. Comput. 5, 327–339.
doi: 10.1109/taffc.2014.2339834

Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., Mckeown, M. J.,
Iragui, V., et al. (2000). Removing electroencephalographic artifacts by blind
source separation. Psychophysiology 37, 163–178. doi: 10.1017/s0048577200
980259

Kaltenstadler, S., Nakajima, S., Müller, K., and Samek, W. (2018). Wasserstein
stationary subspace analysis. IEEE J. Sel. Top. Signal Process. 12, 1213–1223.
doi: 10.1109/jstsp.2018.2873987

Kanai, R., and Rees, G. (2011). The structural basis of inter-individual differences
in human behaviour and cognition. Nat. Rev. Neurosci. 12, 231–242.
doi: 10.1038/nrn3000

Khalfa, S., Schon, D., Anton, J. L., and Liegeois-Chauvel, C. (2005). Brain regions
involved in the recognition of happiness and sadness in music. Neuroreport 16,
1981–1984. doi: 10.1097/00001756-200512190-00002

Kothe, C. A. E., and Jung, T. P. (2015). Artifact Removal Techniques with Signal
Reconstruction. United States Patent Application.

Lal, S. K. L., and Craig, A. (2002). Driver fatigue: electroencephalography
and psychological assessment. Psychophysiology 39, 313–321.
doi: 10.1017/s0048577201393095

Lance, B. J., Touryan, J., Wang, Y.-K., Lu, S.-W., Chuang, C.-H., Khooshabeh, P.,
et al. (2015). ‘‘Towards serious games for improved BCI,’’ in Handbook of
Digital Games and Entertainment Technologies, eds R. Nakatsu, M. Rauterberg
and P. Ciancarini (Singapore: Springer), 1–28.

Li, X., Song, D. W., Zhang, P., Zhang, Y. Z., Hou, Y. X., and Hu, B. (2018).
Exploring EEG features in cross-subject emotion recognition. Front. Neurosci.
12:162. doi: 10.3389/fnins.2018.00162

Li, Y., Zheng, W., Wang, L., Zong, Y., and Cui, Z. (2019). From Regional
to Global Brain: A Novel Hierarchical Spatial-Temporal Neural Network
Model for EEG Emotion Recognition. IEEE T AFFECT COMPUT.
doi: 10.1109/TAFFC.2019.2922912

Lin, Y. P., Duann, J. R., Chen, J. H., and Jung, T. P. (2010a).
Electroencephalographic dynamics of musical emotion perception revealed by
independent spectral components. Neuroreport 21, 410–415. doi: 10.1097/wnr.
0b013e32833774de

Lin, Y. P.,Wang, C. H., Jung, T. P.,Wu, T. L., Jeng, S. K., Duann, J. R., et al. (2010b).
EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng.
57, 1798–1806. doi: 10.1109/TBME.2010.2048568

Lin, Y. P., Duann, J. R., Feng, W. F., Chen, J. H., and Jung, T. P. (2014). Revealing
spatio-spectral electroencephalographic dynamics of musical mode and tempo
perception by independent component analysis. J. Neuroeng. Rehabil. 11:18.
doi: 10.1186/1743-0003-11-18

Lin, Y. P., Hsu, S. H., and Jung, T. P. (2015). ‘‘Exploring day-to-day variability in
the relations between emotion and EEG signals,’’ in Foundations of Augmented
Cognition: 9th International Conference, AC 2015, Held as Part of HCI
International 2015, Los Angeles, CA, USA, August 2-7, 2015, Proceedings,
eds D. D. Schmorrow and C. M. Fidopiastis (Cham: Springer International
Publishing), 461–469.

Lin, Y. P., Jao, P. K., and Yang, Y. H. (2017). Improving cross-day EEG-based
emotion classification using robust principal component analysis. Front.
Comput. Neurosci. 11:64. doi: 10.3389/fncom.2017.00064

Lin, Y. P., and Jung, T. P. (2017). Improving EEG-based emotion classification
using conditional transfer learning. Front. Hum. Neurosci. 11:334.
doi: 10.3389/fnhum.2017.00334

Liu, S., Chen, L., Guo, D., Liu, X., Sheng, Y., Ke, Y., et al. (2018).
Incorporation of multiple-days information to improve the generalization of
EEG-based emotion recognition over time. Front. Hum. Neurosci. 12:267.
doi: 10.3389/fnhum.2018.00267

Liu, W., Kohn, N., and Fernández, G. (2019). Intersubject similarity of personality
is associated with intersubject similarity of brain connectivity patterns.
Neuroimage 186, 56–69. doi: 10.1016/j.neuroimage.2018.10.062

Melnik, A., Legkov, P., Izdebski, K., Kärcher, S. M., Hairston, W. D., Ferris, D. P.,
et al. (2017). Systems, subjects, sessions: to what extent do these factors
influence EEG data? Front. Hum. Neurosci. 11:150. doi: 10.3389/fnhum.2017.
00150

Mullen, T. R., Kothe, C. A. E., Chi, Y. M., Ojeda, A., Kerth, T., Makeig, S.,
et al. (2015). Real-time neuroimaging and cognitive monitoring using wearable
dry EEG. IEEE Trans. Biomed. Eng. 62, 2553–2567. doi: 10.1109/tbme.2015.
2481482

Onton, J., and Makeig, S. (2006). Information-based modeling of event-
related brain dynamics. Prog. Brain Res. 159, 99–120. doi: 10.1016/s0079-
6123(06)59007-7

Onton, J., and Makeig, S. (2009). High-frequency broadband modulations
of electroencephalographic spectra. Front. Hum. Neurosci. 3:61.
doi: 10.3389/neuro.09.061.2009

Onton, J., Westerfield, M., Townsend, J., and Makeig, S. (2006). Imaging human
EEG dynamics using independent component analysis. Neurosci. Biobehav.
Rev. 30, 808–822. doi: 10.1016/j.neubiorev.2006.06.007

Oostenveld, R., and Oostendorp, T. F. (2002). Validating the boundary element
method for forward and inverse EEG computations in the presence of a hole in
the skull. Hum. Brain Mapp. 17, 179–192. doi: 10.1002/hbm.10061

Phan, K. L., Wager, T., Taylor, S. F., and Liberzon, I. (2002). Functional
neuroanatomy of emotion: a meta-analysis of emotion activation studies in
PET and fMRI. Neuroimage 16, 331–348. doi: 10.1006/nimg.2002.1087

Picard, R. W., Vyzas, E., and Healey, J. (2001). Toward machine emotional
intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal.
Mach. Intell. 23, 1175–1191. doi: 10.1109/34.954607

Rogenmoser, L., Zollinger, N., Elmer, S., and Jancke, L. (2016). Independent
component processes underlying emotions during natural music listening. Soc.
Cogn. Affect. Neurosci. 11, 1428–1439. doi: 10.1093/scan/nsw048

Russell, J. A. (1980). A circumplex model of affect. J. Pers. Soc. Psychol. 39,
1161–1178. doi: 10.1037/h0077714

Sammler, D., Grigutsch, M., Fritz, T., and Koelsch, S. (2007). Music and emotion:
electrophysiological correlates of the processing of pleasant and unpleasant
music. Psychophysiology 44, 293–304. doi: 10.1111/j.1469-8986.2007.
00497.x

Schlink, B. R., Peterson, S. M., Hairston, W. D., König, P., Kerick, S. E., and
Ferris, D. P. (2017). Independent component analysis and source localization
on mobile EEG data can identify increased levels of acute stress. Front. Hum.
Neurosci. 11:310. doi: 10.3389/fnhum.2017.00310

Schmidt, L. A., and Trainor, L. J. (2001). Frontal brain electrical activity (EEG)
distinguishes valence and intensity of musical emotions. Cogn. Emot. 15,
487–500. doi: 10.1080/0269993004200187

Schmithorst, V. J. (2005). Separate cortical networks involved in music perception:
preliminary functional MRI evidence for modularity of music processing.
Neuroimage 25, 444–451. doi: 10.1016/j.neuroimage.2004.12.006

Schutter, D. J. L., Putman, P., Hermans, E., and Van Honk, J. (2001).
Parietal electroencephalogram β asymmetry and selective attention to angry
facial expressions in healthy human subjects. Neurosci. Lett. 314, 13–16.
doi: 10.1016/s0304-3940(01)02246-7

Soleymani, M., Lichtenauer, J., Pun, T., and Pantic, M. (2012). A multimodal
database for affect recognition and implicit tagging. IEEE Trans. Affect.
Comput. 3, 42–55. doi: 10.1109/t-affc.2011.25

Subramanian, R., Wache, J., Abadi, M. K., Vieriu, R. L., Winkler, S., and Sebe, N.
(2018). ASCERTAIN: emotion and personality recognition using commercial
sensors. IEEE Trans. Affect. Comput. 9, 147–160. doi: 10.1109/taffc.2016.
2625250

Trost, W., Frühholz, S., Cochrane, T., Cojan, Y., and Vuilleumier, P. (2015).
Temporal dynamics of musical emotions examined through intersubject

Frontiers in Human Neuroscience | www.frontiersin.org 13 October 2019 | Volume 13 | Article 366

https://doi.org/10.3389/fnhum.2010.00202
https://doi.org/10.3389/fpsyg.2011.00236
https://doi.org/10.1037/0022-3514.85.2.348
https://doi.org/10.1037/0894-4105.7.4.476
https://doi.org/10.1109/taffc.2014.2339834
https://doi.org/10.1017/s0048577200980259
https://doi.org/10.1017/s0048577200980259
https://doi.org/10.1109/jstsp.2018.2873987
https://doi.org/10.1038/nrn3000
https://doi.org/10.1097/00001756-200512190-00002
https://doi.org/10.1017/s0048577201393095
https://doi.org/10.3389/fnins.2018.00162
https://doi.org/10.1109/TAFFC.2019.2922912
https://doi.org/10.1097/wnr.0b013e32833774de
https://doi.org/10.1097/wnr.0b013e32833774de
https://doi.org/10.1109/TBME.2010.2048568
https://doi.org/10.1186/1743-0003-11-18
https://doi.org/10.3389/fncom.2017.00064
https://doi.org/10.3389/fnhum.2017.00334
https://doi.org/10.3389/fnhum.2018.00267
https://doi.org/10.1016/j.neuroimage.2018.10.062
https://doi.org/10.3389/fnhum.2017.00150
https://doi.org/10.3389/fnhum.2017.00150
https://doi.org/10.1109/tbme.2015.2481482
https://doi.org/10.1109/tbme.2015.2481482
https://doi.org/10.1016/s0079-6123(06)59007-7
https://doi.org/10.1016/s0079-6123(06)59007-7
https://doi.org/10.3389/neuro.09.061.2009
https://doi.org/10.1016/j.neubiorev.2006.06.007
https://doi.org/10.1002/hbm.10061
https://doi.org/10.1006/nimg.2002.1087
https://doi.org/10.1109/34.954607
https://doi.org/10.1093/scan/nsw048
https://doi.org/10.1037/h0077714
https://doi.org/10.1111/j.1469-8986.2007.00497.x
https://doi.org/10.1111/j.1469-8986.2007.00497.x
https://doi.org/10.3389/fnhum.2017.00310
https://doi.org/10.1080/0269993004200187
https://doi.org/10.1016/j.neuroimage.2004.12.006
https://doi.org/10.1016/s0304-3940(01)02246-7
https://doi.org/10.1109/t-affc.2011.25
https://doi.org/10.1109/taffc.2016.2625250
https://doi.org/10.1109/taffc.2016.2625250
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Shen and Lin Non-stationary Spatio-Spectral EEG Oscillations

synchrony of brain activity. Soc. Cogn. Affect. Neurosci. 10, 1705–1721.
doi: 10.1093/scan/nsv060

Wagner, J., Makeig, S., Gola, M., Neuper, C., and Muller-Putz, G. (2016). Distinct
β band oscillatory networks subserving motor and cognitive control during gait
adaptation. J. Neurosci. 36, 2212–2226. doi: 10.1523/JNEUROSCI.3543-15.2016

Wang, Y. K., Jung, T. P., and Lin, C. T. (2018). Theta and alpha oscillations in
attentional interaction during distracted driving. Front. Behav. Neurosci. 12:3.
doi: 10.3389/fnbeh.2018.00003

Wang, Y. J., Wang, Y. T., and Jung, T. P. (2012). Translation of EEG spatial filters
from resting to motor imagery using independent component analysis. PLoS
One 7:e37665. doi: 10.1371/journal.pone.0037665

Xing, X., Li, Z., Xu, T., Shu, L., Hu, B., and Xu, X. (2019). SAE+LSTM: a
new framework for emotion recognition from multi-channel EEG. Front.
Neurorobot. 13:37. doi: 10.3389/fnbot.2019.00037

Zheng, W. M. (2017). Multichannel EEG-based emotion recognition via group
sparse canonical correlation analysis. IEEE Trans. Cogn. Dev. Syst. 9, 281–290.
doi: 10.1109/tcds.2016.2587290

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Shen and Lin. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 14 October 2019 | Volume 13 | Article 366

https://doi.org/10.1093/scan/nsv060
https://doi.org/10.1523/JNEUROSCI.3543-15.2016
https://doi.org/10.3389/fnbeh.2018.00003
https://doi.org/10.1371/journal.pone.0037665
https://doi.org/10.3389/fnbot.2019.00037
https://doi.org/10.1109/tcds.2016.2587290
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Challenge for Affective Brain-Computer Interfaces: Non-stationary Spatio-spectral EEG Oscillations of Emotional Responses
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Experimental Design and Procedure
	EEG Acquisition
	Exploring Stationary Spatio-spectral EEG Oscillations
	Statistical Assessment of Spatio-spectral Oscillations vs. Emotional States

	RESULTS
	Behavioral Ratings
	Demonstrating Day-Stationary Spatio-spectral EEG Oscillations and Their Associations With Emotional Responses From a Representative Subject
	Exploring the Inter-subject Commonality of the Day-Stationary Spatio-spectral EEG Oscillations and Their Associations With Emotional Responses

	DISCUSSION
	Integrity of the ICA for Exploring (Non)stationary Sources
	Intra- and Inter-individual Differences in Spatio-spectral Correlates of Emotional Responses
	Negative Impact of Nonstationary Spatio-spectral Oscillations to aBCI

	CONCLUSION
	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	REFERENCES


