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A number of experiments support the hypothetical utility of statistical information for
language learning and processing among both children and adults. However, tasks
in these studies are often very general, and only a few include populations with
developmental language disorder (DLD). We wanted to determine whether a stronger
relationship might be shown when the measure of statistical learning is chosen for its
relevance to the language task when including a substantial number of participants with
DLD. The language ability we measured was sensitivity to verb bias – the likelihood of
a verb to appear with a certain argument or interpretation. A previous study showed
adults with DLD were less sensitive to verb bias than their typical peers. Verb bias
sensitivity had not yet been tested in children with DLD. In Study 1, 49 children,
ages 7–9 years, 17 of whom were classified as having DLD, completed a task designed
to measure sensitivity to verb bias through implicit and explicit measures. We found
children with and without DLD showed sensitivity to verb bias in implicit but not explicit
measures, with no differences between groups. In Study 2, we used a multiverse
approach to investigate whether individual differences in statistical learning predicted
verb bias sensitivity in these participants as well as in a dataset of adult participants. Our
analysis revealed no evidence of a relationship between statistical learning and verb bias
sensitivity in children, which was not unexpected given we found no group differences
in Study 1. Statistical learning predicted sensitivity to verb bias as measured through
explicit measures in adults, though results were not robust. These findings suggest that
verb bias may still be relatively unstable in school age children, and thus may not play
the same role in sentence processing in children as in adults. It would also seem that
individuals with DLD may not be using the same mechanisms during processing as their
typically developing (TD) peers in adulthood. Thus, statistical information may differ in
relevance for language processing in individuals with and without DLD.

Keywords: developmental language disorder, sentence processing, statistical learning, language development,
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INTRODUCTION

Statistical learning is often studied in the context of language
learning because researchers have considered statistical learning
tasks as representative of the types of tasks that people face
when learning language. Language is full of statistical regularities
of different types, and statistical learning tasks can isolate
some of these features to determine how they are learned at
different points in development and in different populations.
Indeed, individual differences studies have documented that
variability in statistical learning ability can predict variability in
performance on measures of language comprehension. Misyak
and Christiansen, 2012 and Misyak et al. (2010) studies with
adults, and Kidd (2012) and Kidd and Arciuli (2016) studies
with children, for example, have shown positive correlations for
performance on statistical learning tasks and comprehension
tasks. Additionally, Lany et al. (2018) found evidence of a
relationship between segmenting ability in a statistical learning
task and how efficiently infants processed speech.

The relationship between statistical learning and language
ability has been important for understanding developmental
language disorder (DLD). DLD, formerly known as Specific
Language Impairment, is a disorder that affects an individual’s
ability to effectively learn and use language. This deficit in
language learning and use is not attributable to any other
biomedical cause. It affects approximately 13% of children (when
including children with low non-verbal intelligence scores as the
new terminology of DLD mandates; Tomblin et al., 1997; Bishop
et al., 2017) and has lifelong academic and social consequences
(Conti-Ramsden et al., 2018). Several researchers have posited
that learning the statistics of language may be a barrier for
people with DLD and may have some causal explanation for
the profiles we see in DLD. One of the first studies of statistical
learning in DLD showed a relationship between statistical
learning and receptive vocabulary (Evans et al., 2009). Arciuli
and Conway (2018), however, recently argued that “. . . research
on statistical learning and language acquisition in developmental
disabilities should be broadened beyond group comparisons to
consideration of individual differences and contextual factors that
contribute to variability in language difficulties within and across
disabilities” (p. 7). We agree that it is important to consider and
test the relationship between statistical learning and language
ability, especially given that recent research is casting some doubt
onto what statistical learning tasks can reveal about language.
For example, Spit and Rispens (2019) found that although gifted
children showed better comprehension of object relative clauses
than their same-age peers, performance on a serial reaction
time task did not account for this variability. This finding is
evidence that statistical learning in general may not have a strong
relationship with language ability. The modality of the statistical
learning task, especially if it differs from the language task, could
potentially mask any relationship. Siegelman et al. (2018a) make
a convincing argument that the vast experience people have with
sounds in their native language impacts their performance on
auditory learning tasks, unlike in visual statistical learning tasks
in which people do not have similar amounts of entrenched
experience. It is also possible that statistical learning involves

a number of underlying components that enable encoding and
abstraction, and that statistical learning tasks vary in how they
test these components (Arciuli, 2017).

Three challenges contribute to difficulty in establishing reliable
relationships between statistical learning ability and variability
in language learning and processing. One is the problem of
how to appropriately measure language proficiency, given that
it entails numerous skills. Standardized tests of grammatical
proficiency may cover too broad a range of constructs to
demonstrate a strong relationship, with a limited number of
items on any one skill or knowledge type. Given that the
multi-factorial nature of global proficiency tasks may reduce the
likelihood of detecting relationships to statistical learning ability,
a more appropriate strategy for empirically documenting such
links involves employing language tasks designed to measure
more narrow (sub)components of grammatical competency. For
example, Misyak et al. (2010) documented such a relationship by
utilizing a non-adjacent dependency learning task to predict the
ease of processing relative clauses, a language task that involves
tracking the non-adjacent dependency between the embedded
and main verbs of the sentence.

Secondly, there is the appropriateness of the statistical learning
task. For example, the serial reaction time task has been used
many times, but we question its relevance to language learning for
reasons of modality and the statistics involved. Kidd et al. (2018)
make this point clearly in their paper: “Typically, studies quantify
SL [statistical learning] as the ability to learn simple transitional
probabilities, but SL-for-language likely requires more than
this. . .” (Box 1, p. 163). Erickson and Thiessen (2015) also note
that “language acquisition involves sensitivity to more kinds
of statistical information than simple transitional probabilities”
(p. 68) in their discussion of underlying processes of extraction
and integration. Proficient language use does not end with
learning that the always predicts boy, but requires learning that
the predicts a set of words that share a syntactic distribution
and semantic features. Statistical learning tasks should be chosen
based on the relevance of the potential component mechanisms
for the language skill being studied (as per the non-adjacent
dependency example discussed in the preceding paragraph).

Relatedly, we take the view that language learning involves
learning multiple types of probabilistic relationships among units
existing at multiple representational levels. Thus accordingly,
because language develops over time, we might expect statistical
learning to correlate differently to language ability at different
developmental time points (i.e., relationships may appear
stronger after a skill is mastered than before). To this point,
Arnon (2019) found reliability across three statistical learning
tasks in adults but not in children. Thus, the final challenge is to
choose the appropriate task for the age group being tested, taking
into consideration theories of language acquisition and cognitive
development in tandem.

We addressed these three challenges through the following
study design. First, we designed tasks that seemed to rely
upon one common skill: the ability to learn a word’s syntactic
distribution. For our language task, we used an adaptation
of Snedeker and Trueswell’s (2004) task that captures verb
bias sensitivity. Verb bias is the product of a certain type of
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grammatical category learning, the learning that some verbs
are more likely to occur with specific words, phrases, or
interpretations. For the statistical learning task, we chose an
auditory statistical learning task that employed linguistic stimuli.
We used an adaptation of the artificial grammar learning
experiment from Reeder et al. (2013) that focuses on grammatical
category learning. We used this design in experiments with
children (Hall et al., 2018a) and child and adult populations
with DLD (Hall et al., 2017, 2018b). Because distributional
learning drives successful performance on the artificial grammar
learning task and because of the distributional nature of the verb
bias information for differentiated performance, we think these
tasks tap into similar underlying components of grammatical
processing and representational knowledge. Accordingly, we
predict a significant relationship between scores on these two
measures. We employed an implicit measure of grammatical
comprehension ability, mouse tracking, to capture variability in
sentence processing at a more fine-grained level than provided
by off-line indices of comprehension. Preliminarily, we have
examined use of verb bias by college students with DLD (Hall
et al., 2019) and found that they were less sensitive than typically
developing (TD) peers, suggesting indeed that the presence of a
language disorder may be related in some way to deficits in the
processing and representation of verb bias.

Finally, we chose an age group in which we expected these
skills to be nearing adult proficiency but possibly impaired
for children with DLD: ages 7–9. Snedeker and Trueswell
(2004) showed that children as young as five were sensitive
to verb bias, but verb bias had not yet been studied in
children with DLD. Peter et al. (2015) showed evidence of
stronger verb bias effects with age in a study of adults and
children ages 3–6. At 7–9, children are just beginning to
read, and reading may be a factor that further entrenches
verb bias (see Perfetti et al., 2001; Shankweiler et al., 2008;
Mani and Huettig, 2014; for evidence of a relationship between
literacy and sentence processing). We hoped to minimize the
impact of reading and so we did not choose older children.
We did not choose younger ages because, as Peter et al.
(2015) state, early on, verb bias is much weaker in young
children because their cumulative experience is smaller, and
thus more susceptible to “random fluctuations in the input.”
Fluctuations could take the form of uncommon constructions
in children’s storybooks and songs or in the speech of peers.
These studies, in combination with findings from studies that
show the manipulability of verb bias (Wells et al., 2009; Farmer
et al., 2011; Fine and Jaeger, 2013; Fine et al., 2013; Ryskin
et al., 2017), suggest that verb biases are still forming in
children as old as 9 and continue to be shaped by experience
throughout the lifespan. Further evidence of prolonged syntactic
development throughout adolescence comes from brain imaging
studies of sentence processing (Schneider et al., 2016, 2018;
Schneider and Maguire, 2018).

Although we are interested in group differences, we took
seriously the call of Kidd et al. (2018) to test this relationship
with a more rigorous methodological approach. We elected to
use a multiverse approach to more transparently characterize our
findings. The multiverse is a relatively new method for analyzing

and reporting data to increase transparency and rigor (Steegen
et al., 2016). In the multiverse approach, the many choices that
the researcher must make about data processing and selection
are made plain. For example, options such as removing outliers
or not, classifying SES by income alone or by income plus years
of education, and binning participants into subgroups according
to a numerical measure, among many others, are all presented,
and the data are then analyzed for each option. By presenting
all possible results (the multiverse), the researcher communicates
a more accurate assessment of the robustness of the findings.
Note that the multiverse approach is not a method for selecting
or evaluating models; instead, it is a principled way to show
the strength of findings given the number of arbitrary choices
researchers must make when analyzing complex datasets. The
multiverse approach is a method of avoiding both Type 1 and
Type 2 errors because it allows a wider lens through which to
view the data. We elected to use the multiverse given the large and
confusing number of measures that could be used to determine
learning within each task.

One challenge in using a multiverse approach is that the
complexity involved nearly necessitates using data that are
already available in the literature. With the exception of children’s
performance on the verb bias task, all data in this paper have
been previously reported. This includes sensitivity to verb bias
by adults with and without DLD (Hall et al., 2019) and artificial
grammar learning by both children with and without DLD (Hall
et al., 2018a,b) and adults with and without DLD (Hall et al.,
2017). Study 1 provides the findings for how children with and
without DLD perform on the verb bias task, completing the data
reporting required for the multiverse analysis. In Study 1, we
draw on the previously reported adult data to make clear the
range of performance and possible predictors of performance
and to support interpretation of the child data. In Study 2
we then report our findings using the multiverse approach
to determine evidence of a relationship between statistical
learning and language.

STUDY 1 INTRODUCTION

Snedeker and Trueswell (2004) used a visual world paradigm to
determine differences in verb bias and visual referent sensitivity
between TD adults and children. In their study, they used
syntactically ambiguous sentences (e.g., Feel the frog with the
feather) that required children to act out one of the two possible
interpretations (either using the object as an instrument to
complete the action or choosing an animal that was holding
the object in which it is as seen as a modifier). Stimuli varied
by the likelihood that the verb in the sentence was to appear
with one of the two interpretations in corpus and sentence-
completion norming data (poke occurs more often in instrument
interpretations whereas hug occurs more often in modifier
interpretations), or by the number of visual referents present
(one frog vs. two frogs). TD children showed no differences in
verb bias sensitivity compared with adults in both their choice of
interpretation and in eye tracking measures of where they looked
while completing the task. However, children did show different
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patterns of choice and looking behavior than adults when two
referents were present.

We adapted this task for use with mouse tracking in our
study of verb bias sensitivity in college students with DLD
(Hall et al., 2019). In our study, participants viewed a computer
screen with illustrations of each interpretation of the ambiguous
sentence (e.g., The elephant pokes the camel with the feather) in
the two top corners. Participants were instructed to click on the
interpretation that went with the sentence. We used the trajectory
of their mouse movement to measure the amount that they
were attracted toward the competing picture for a given trial.
Previous mouse tracking studies have demonstrated that when
very little competition is present, participants move the mouse
in a straight trajectory toward their choice; whereas trials with
a great amount of competition result in trajectories that curve
toward the competitor (Spivey et al., 2005; Farmer et al., 2007;
Spivey, 2007; see Freeman et al., 2011, for an overview). Thus,
mouse trajectories provide a means to continuously measure
dynamic competition during sentence processing through time-
normalized x,y coordinates. In this way, we could measure the
role of verb bias in the choice of interpretation and in the
process of making that choice. We found that TD college students
chose interpretations that were consistent with verb bias more
often than their peers with DLD, and their mouse trajectories
also reflected greater sensitivity to verb bias, with more curved
mouse trajectories when they chose an interpretation that was
inconsistent with verb bias than when it was consistent. The
trajectories for the group with DLD did not show this pattern.

Two previous studies have shown poorer verb comprehension
in children with language deficits relative to TD peers. Kelly and
Rice (1994) showed that children with DLD had no preference
for a change-of-state vs. motion interpretations for a novel
verb form, whereas age-matched TD peers demonstrated a
preference for change-of-state interpretations, suggesting that the
children with DLD may not be as sensitive to subtle aspects
of verb subcategory that lead TD children to have a change-
of-state bias. Nation et al. (2003) showed that children with
poor comprehension skills were as quick to anticipate the
object of a verb as TD peers for verbs with specific semantic
restrictions (e.g., “eat” predicts something edible). However, these
participants spent less time overall looking at the target object
than more skilled comprehenders. This is further evidence that
although children with DLD may be sensitive to restrictive
semantics associated with verbs, they may not have well-
developed preferences for interpretations of verbs based on
statistical likelihood.

In this study, we examine the degree to which grammar
production skills, as measured by the Structured Photographic
Expressive Language Test, Third Edition (SPELT-3, Dawson et al.,
2003), a test that can diagnostically discriminate between children
with and without DLD, and text exposure, as measured by the
recognition of children’s book titles, predict verb bias sensitivity
in children ages 7–9. We predict that, like the adults with DLD in
our previous study, children with lower SPELT-3 scores will show
less sensitivity to verb bias than more grammatically productive
peers, both in the choices they make and at the level of cognitive
competition, as revealed by mouse-trajectories. We might expect

more differences in childhood than in adulthood because adults
could have developed compensatory strategies to aid them in
sentence processing. We examine the role of text exposure
because we expect that children who read or are read to more
often will have more entrenched verb biases than children with
less reading experience.

STUDY 1 METHODS

Participants
Participants were 55 children ages 7–9, 19 who were classified
as having DLD and 36 who were classified as TD. All of the
participants with DLD and 22 of the TD participants in this study
also participated in the statistical learning study reported in Hall
et al. (2018b); their demographics are reported in the first two
rows of Table 1 for the purpose of data transparency. Thirty-
four of the 36 TD children participated in the study reported
in Hall et al. (2018a). Six children with DLD participated in the
current study after completing a treatment study on morpheme
production (Owen Van Horne et al., 2017, 2018). All children
had normal hearing verified by a screening (American Speech-
Language-Hearing Association, 1997), had normal or corrected
vision, passed a non-verbal intelligence test (Kaufman Brief
Intelligence Test-2, matrices; Kaufman and Kaufman, 2004), and
had no history of autism spectrum disorders or neurological
disorders by parent report. Children in the DLD group scored
a standard score of 95 or below on the SPELT-3 (Dawson
et al., 2003). Although our children were older ages than those
in Perona et al. (2005), which recommends the 95 cut off
score for highest sensitivity and specificity, we think that this
categorization is reasonable because all but three children in the
DLD group received services for speech and language. Of those
three, two received reading services. Children in the TD group
scored above 95 on the SPELT-3 and had no history of speech
or language difficulties. Children in both groups completed the
Peabody Picture Vocabulary Test, 4th edition (PPVT-4, Dunn
and Dunn, 2007), and the title recognition task (Montag and
MacDonald, 2015). In the title recognition task, designed to
measure the amount children ages 8–12 are exposed to text, the
examiner reads aloud titles of real and fake children’s books, and
the child responds yes if they have heard of that book before.
Data were screened as described in section “Data Screening,” and
data from three TD and three DLD participants were excluded.
Participant demographics and test scores for those 49 participants
included in the final analyses are reported in Table 1.

Materials
We again used the mouse tracking adaptation of the visual
world paradigm task from Snedeker and Trueswell (2004) that
we used in Hall et al. (2019). Sentences in the experimental
trials were syntactically ambiguous, e.g., “The giraffe brushes
the zebra with the sponge.” Two possible interpretations were
displayed, an instrument interpretation (the giraffe using a
sponge to brush the zebra) and a modifier interpretation (the
giraffe using its foot to brush a zebra that holds a sponge).
We compared mouse trajectory curvature on trials when
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TABLE 1 | Participant demographic and testing information by diagnostic category (DLD, developmental language disorder; and TD, typically developing), after excluding
participants as described in the screening measures of section “Data Screening,” for child datasets in Studies 1 and 2.

Maternal
Age education

(months) (years) PPVT-4 raw PPVT-4 SS SPELT-3 SS KBIT-2 SS TRT

n n male M SD M SD M SD M SD M SD M SD M SD

DLD 16 12 92.9 8.6 15.0 2.2 133.1 13.0 103.8 9.2 84.3 10.1 106.8 14.3 −7.1 7.0

Age-matched TD 17 9 95.2 8.0 17.1 3.5 153.6 11.1 119.6 12.6 110.3 7.7 117.2 11.6 −2.2 6.9

Additional TD 16 4 105.1 14.9 18.2 4.4 162.9 19.0 120.9 11.1 111.4 5.7 109.4 13.1 4.0 12.5

PPVT, Peabody Pictures Vocabulary Test, 4th Edition. Raw, raw scores; SS, standard scores; SPELT-3, Structured Photographic Expressive Language Test, 3rd Edition;
K-BIT 2, Kaufman Brief Intelligence Test, 2nd Edition, non-verbal subtest. Scores on the title recognition task (TRT) are out of a range of −30 to 30, with −30 being
the lowest score.

participants chose an interpretation that matched the verb bias
vs. trials in which the choice did not match bias. We defined
sensitivity to verb bias as greater mouse curvature on mismatched
trials than matched trials. We also had comprehension trials
which displayed only one of the two correct interpretations.
The alternative picture showed an impossible interpretation
(the giraffe holding a sponge but not brushing the zebra).
These trials provided a screener for children who did not
understand the sentences. We expected more incorrect trials
in the DLD group due to comprehension difficulties, though
these should still be somewhat rare in both groups because of
the simple nature of sentences. Pictures across all trial types
were made to appear as similar as possible, with the object
and animals roughly the same size so as to neutralize the
salience of items in the visual display. Verbs in the sentences
were either biased to appear with instrumental phrases (The
butterfly hits the grasshopper with the flower) or biased to
appear with modifier phrases (The gorilla hugs the cat with
the blanket), based on the norming data and classification
reported in Snedeker and Trueswell (2004). Filler trials had
two pictures of different animals and sentences that asked
participants to “Click on the (animal name) that (animal
attribute).” These were used as a measure for overall mouse
movement because DLD is associated with poorer motor
control (Hill, 2001) and were entered in our models as a
covariate. Practice trials in the beginning required matching
color and shape (“The red circle is bigger than the blue”) and
familiarized participants with the task. See the Appendix in Hall
et al. (2019) for a description of experimental sentence and
picture stimuli.

Participants completed eight practice trials first, and then
16 experimental trials, 16 comprehension trials, and 24
fillers for a total of 56 items, presented in a completely
randomized order. Pictures were counterbalanced for position
of the modifier and instrument interpretation, position of the
impossible interpretation on comprehension trials, and position
of the correct interpretation on filler trials. Within each of
the experimental and comprehension trials there were eight
sentences with instrument-biased verbs and eight with modifier-
biased verbs. Direct objects in the sentences were from Snedeker
and Trueswell (2004) and were chosen to have little impact on the
interpretation of the sentence as instrument or modifier with the
verb they appeared with.

We used MouseTracker software (Freeman and Ambady,
2010) to deliver the task and to measure mouse curvature on each
trial. The mouse was reset to the same location at the beginning
of the trial, and x,y coordinates were used to determine curvature.
MouseTracker software calculates the maximum deviation of
the mouse from an imaginary straight line drawn between
actual start and end points of each mouse movement. Warning
messages appeared at the end of a trial if the participant took
longer than three seconds to initiate movement. The examiner
read the message to the child and explained that she could
look at the pictures as long as she liked before pressing the
button, but she needed to choose as quickly as possible after she
heard the sentence.

Measures
Using the lme4 package (Bates et al., 2015) and the lmerTest
package (Kuznetsova et al., 2017) in R version 3.5.1 (R Core
Team, 2018), we ran linear mixed effects models to explore
subject and linguistic factors influencing choice of interpretation
and mouse trajectories for experimental trials.

Choice of Interpretation
Because the interpretations shown during experimental trials
were both possible, we examined overt choice to determine
children’s sensitivity to the bias of the individual verb. We
were also curious if children would be sensitive to the global
bias in which instrument interpretations are overall more likely
in English. We used a mixed effects logistic regression with
likelihood of instrument choice as the dependent variable and the
bias of the verb as a fixed factor. SPELT-3 served as a measure of
participants’ grammar production skills and the title recognition
task as a measure of text exposure. Categorical variables were
effects coded, and the reference variable was instrument verb.
Continuous variables were centered. The maximal random effects
structure included a subject slope for verb bias and intercepts for
subject and item. Akaike information criterion (AIC) was used to
determine model fit, using the maximal random effects structure
when the difference between models’ AIC was less than 2.

Consistent with the results of five-year-old typical children
in Snedeker and Trueswell (2004), we predicted that children
would show sensitivity to the bias of individual verbs and a slight
tendency to choose instrument interpretations more often, and
reflecting knowledge of the global instrument bias in English.
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We predicted that this sensitivity would vary based on language
proficiency and/or text exposure.

Mouse Movements
We used a linear mixed effects model in which the dependent
variable was mouse curvature as measured by maximum
deviation, and fixed effects included the bias of the verb, the
consistency of choice of interpretation with verb bias, the
expected strength of verb bias according to Snedeker and
Trueswell (2004) norms (see Table 2), SPELT-3 scores, title
recognition task scores, and interactions between consistency,
bias, and proficiency measures. Strength of verb bias was a
continuous variable used to account for variability in items
attributed to the linguistic cue rather than the visual cues. We
included participants’ average maximum deviation for filler trials
to control for individual differences in motor control. For all
analyses, variables were dummy coded, and instrument bias and
consistent choice served as the reference categories. The maximal
random effects structure included subject slopes for verb bias,
consistency of choice of interpretation, their interaction, as well
as strength of bias, and random subject and item intercepts.
AIC was used to determine model fit using the same criterion
as above. We included random effects and measures of motor
control and strength of bias because the latter two are attributable
and meaningful in the consideration of differences between
individuals with and without DLD, and therefore not random.

We predicted that measures of proficiency would predict
sensitivity to verb bias, with straighter trajectories (small
maximum deviation) across all trial types representing poor use
of verb bias information. Greater verb bias sensitivity would
be demonstrated by straighter trajectories on trials in which
interpretation choice was consistent with verb bias, and more

TABLE 2 | List of verbs by bias type and the nouns that appear with the verbs
in the sentences.

Bias Verb Instrument/modifier Strength

Instrument Hit Flower 24

Tickle Fan 24

Poke Feather 29

Clean∗ T-Shirt 38

Bop∗ Ball 38

Brush∗ Sponge 43

Cover∗ Book 43

Feed∗ Glass 43

Modifier Look at Glass 19

Hug Blanket 19

Find Stick 24

Talk to Tube 24

Sing to Funnel 29

Yell at∗ Funnel 30

Listen to∗ Tube 38

Choose∗ Fork 81

Strength is determined by the percentage of time that the verb appeared
with the biased interpretation in the norming sentence completion study
reported in Appendix B of Snedeker and Trueswell (2004). Asterisks denote
“strongly biased” verbs.

curved trajectories (large maximum deviation) on trials when
participants chose an interpretation inconsistent with bias.

Procedures
This is the same experiment as was reported in Hall et al. (2019)
and the same procedures were followed for children as the adults
in that study. We briefly discuss them here. Procedures were
approved by the Institutional Review Board at the University
of Iowa. Children participated in this study during a one-
hour session that sometimes also included other tasks, including
standardized testing and the artificial grammar learning task
reported in Hall et al. (2018a,b).

Children sat at a laptop computer and listened to the examiner
give instructions. The examiner told children to carefully view the
two pictures located at the top corners of the screen on each trial
to find the differences between the pictures. When they saw the
differences, they could then click on the Start button to begin the
trial and listen to the sentence. Children were instructed to move
the mouse as quickly as possible to the picture that went with
the sentence after the sentence played. If children had difficulty
with this, they were told to wait until the star appeared on the
screen to move the mouse. Children were reminded to choose
as quickly as possible several times during the experiment, and
they were given stickers and encouragement and occasionally
short breaks if their attention waned. All children completed the
experiment with their right hand. Many children reported never
having used a computer mouse before, so although we did not
collect handedness information, it likely did not matter because
children were not especially dexterous and because we included a
measure of movement on control trials as a covariate.

STUDY 1 RESULTS

Data Screening
We did not include practice trials in any analysis. We
measured accuracy on comprehension trials to screen trials and
participants. We excluded three participants with DLD and three
TD participants for choosing incorrect interpretations for more
than half of the 16 comprehension trials, leaving us with 37
participants. With these children excluded, a Mann-Whitney U
test confirmed that participants with DLD had more incorrect
responses than TD children, U = 113, p < 0.05. The average
number of incorrect responses for a participant with DLD
was 6.5 (SD = 1.3) and for TD children was 4.3 (SD = 2.3).
Table 1 provides demographic information for non-excluded
participants only.

We also screened each experimental trial mouse trajectory
for the remaining participants for aberrant mouse movements
(i.e., non-interpretable looping cycling leftward and rightward;
Freeman et al., 2008; excluding 37 trials by children with DLD
and 33 trials by TD children; 70 trials total). We also excluded
trials with a reaction time exceeding 5000 ms (10 trials by children
with DLD; 14 trials total); and trials in which initiation time
exceeded 2000 ms (1 trial by children with DLD; 2 trials total).
Overall, 18.8% of experimental trials for children with DLD
and 7.4% of the TD children’s experimental trials, or 11.2% of
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TABLE 3 | Summary of logistic regression analysis for variables predicting the
probability that child participants choose instrument interpretation in the verb
bias task.

Factor Variance SD β SE p

Random factors

Subject 0.65 0.81

Item 0.89 0.94

Fixed factors

(Intercept) 1.50 0.32 <0.0001

Bias (reference category = instrument) 0.45 0.27 0.10

SPELT-3 standard score, centered −0.01 0.01 0.60

Title recognition task, centered −0.01 0.02 0.43

Bias × SPELT-3 0.01 0.01 0.33

Bias × Title recognition task −0.01 0.01 0.54

Model χ2 = 5.92

SPELT-3, Structured Photographic Expressive Language Test, 3rd Edition.

FIGURE 1 | Mean number of trials (out of 8) in which participants chose each
interpretation (instrument and modifier) for instrument- and modifier-biased
trials. Error bars represent standard error.

total data, were discarded. We did not exclude any participants
for missing trials because mixed effects models can adequately
handle missing data. The children with the largest number of
missing trials in each diagnostic group were a child with DLD
with 7 missing trials and a TD child with 6 missing trials. The
mean total number of missing trials for children with DLD was
3.0 (SD = 1.8) and 1.2 (SD = 1.3) for TD children, a difference
that was significant according to a two-tailed independent sample
t-test, t(47) = 4.00, p < 0.01.

Finally, we ran a linear mixed effects model with a random
subject intercept with only filler trials included to test for
baseline motor control differences between groups. There was no
difference between children with and without DLD for maximum
deviation of mouse trajectories on control trials, p = 0.48.

Choice of Interpretation
We first examined choice of interpretation. The best fit model
included random intercepts for subject and item. The dependent

TABLE 4 | Results of the mixed effects linear model for maximum deviation of
mouse trajectories as influenced by consistency of choice with verb bias, choice
of interpretation, measures of text exposure (title recognition task) and language
proficiency (SPELT-3 standard score), and their interactions, as well as expected
strength of verb bias and average maximum deviation on control trials.

Factor Variance SD β SE p

Random factors

Subject intercept 0.004 0.07

Verb bias 0.07 0.26

Consistency of
choice

0.04 0.20

Fixed factors

(Intercept) 0.14 0.06 0.01

Verb bias (reference category = instrument) 0.11 0.09 0.20

Consistency of choice of interpretation
(reference category = consistent)

0.14 0.10 0.15

SPELT-3 standard score, centered −0.002 0.002 0.25

Title recognition task score, centered 0.004 0.003 0.17

Strength of verb bias −0.002 0.001 0.18

Average maximum deviation on control trials 0.50 0.18 0.01

Verb bias × Consistency of choice −0.29 0.15 0.01

Verb bias × SPELT −0.003 0.005 0.51

Verb bias × Title recognition task 0.003 0.007 0.66

Consistency of choice × SPELT 0.0006 0.006 0.91

Consistency of choice × Title recognition task 0.008 0.008 0.33

Verb bias × Consistency of choice × SPELT 0.005 0.006 0.47

Verb bias × Consistency of choice ×

Title recognition task
−0.02 0.01 0.09

Bold indicated significance (p = 0.05) or near significance (p < 0.1).

variable was the probability that a participant would select an
instrument interpretation on a given trial. See Table 3 for log odds
(reported as β) and Figure 1 for an illustration of means by trial
type. Recall that the instrument interpretation is the more likely
overall interpretation of “with the X” phrases in English. Children
were sensitive to this global bias: participants were 82% likely to
choose instrument on a given trial, z = 4.71, p < 0.0001. The bias
of the verb did not significantly influence choice of interpretation,
z = 1.65, p = 0.10, and measures of text exposure and language
proficiency did not significantly interact with bias or have any
effect on participants’ likelihood of choosing instrument, ps > 0.3.

Mouse Movements
Although we did not find that children’s grammatical
proficiency or exposure to text influenced their choice of
interpretation, it is possible they will predict sensitivity as
represented in mouse trajectories. Sensitivity to bias in mouse
trajectories would be indicated by a significant main effect
or interaction with consistency of interpretation. This would
be interpreted as more curved trajectories, and thus more
competition, when participants chose responses that were
inconsistent with bias.

Model results are reported in Table 4 and mean maximum
deviation of mouse trajectory by trial type illustrated in Figure 2.
The best fit model included random subject slopes for bias and
consistency. There were two significant factors: an interaction
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FIGURE 2 | Mean maximum deviations of mouse trajectories by verb bias
(instrument and modifier) and consistency of choice (consistent and
inconsistent). Error bars represent standard error.

between bias and consistency, t(620.4) = 2.52, p = 0.01, and
maximum deviation on control trials, t(87.8) = 2.75, p < 0.01.
There was a marginal three-way interaction between bias,
consistency, and the title recognition task which measured text
exposure, t(663.1) = 1.70, p = 0.09, an effect which moved to
p = 0.47 when the participant with the highest title recognition
task score was removed from the dataset. Interpreting these

effects, we found that participants showed a larger difference
between choosing inconsistently vs. consistently on instrument-
biased trials than on modifier-biased trials. Participants showed
curved trajectories when choosing against bias on instrument-
biased trials, but somewhat straight trajectories when choosing
with bias. Figure 3 provides an illustration of averaged mouse
trajectories by diagnostic group on trials with instrument-
biased verbs, with choosing consistently with bias shown
on the left and choosing against bias shown on the right.
Participants showed the opposite pattern for modifier-biased
trials, though the gap was smaller. Although Figure 3 appears
to show differences in mouse trajectory for the two diagnostic
groups, participants’ mouse movements were not significantly
related to participants’ language proficiency or text exposure,
but movements on control trials positively predicted their
movements on experimental trials.

STUDY 1 DISCUSSION

We found that children with and without DLD ages 7–
9 were primarily influenced by global bias in their choice
of pictures. However, children showed sensitivity to local
verb bias information in their mouse movements. There
was a greater deviation toward the unchosen picture when
choosing against bias on instrument-biased trials than on
modifier-biased trials.

FIGURE 3 | Average mouse trajectories for choosing instrument (left) vs. choosing modifier (right) interpretation on instrument-biased trials, with the group with
developmental language disorder (DLD) shown in gray, and the group with typical development (TD) shown in black. The dashed lines represent the ideal straight line
between trajectory start and endpoints from which maximum deviation for each trajectory is measured.
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It was not surprising that children chose instrument
interpretations most often, given the global instrument bias.
The global bias also likely contributed the different patterns
of mouse trajectories between instrument- and modifier-
biased verbs. In our previous study with college students
using the same stimuli (Hall et al., 2019), participants also
showed a preference for the instrument interpretation and
similar mouse trajectory patterns, with stronger evidence of
verb bias sensitivity for instrument-biased verbs. Audio and
visual stimuli in our task may have influenced children’s
choice differently from Snedeker and Trueswell’s (2004) study.
That study showed that children were likely still learning to
integrate visual and linguistic cues, with behavioral differences
between adults and children when an additional visual cue
was added. In fact, the eye tracking data from that study
revealed that children’s eye movements were beginning to
pattern more like adults,’ even though children’s choice of
interpretation did not yet reflect this. The findings from Peter
et al. (2015) also provide evidence for a longer developmental
trajectory for verb bias/cue integration, with differences in
verb bias effects among 3- and 6-year-olds and adults in a
syntactic priming paradigm. It was surprising that for both
choice of interpretation and mouse movements, we found
no correlation with measures of language or text exposure.
This suggests that perhaps other aspects of cognition, such as
working memory or cognitive control (see for example, Just
and Carpenter, 1992; Novick et al., 2005; Lewis et al., 2006;
Martin, 2016), are driving the maturation of cue integration in
sentence processing.

Being able to efficiently predict upcoming information in
a linguistic signal may have a profound impact on overall
comprehension. If children with DLD are slower and less
efficient in making their predictions than typical peers, they
risk missing crucial information for making timely connections
during conversations. We have no evidence of group differences
among children from this data set, but Hall et al. (2019)
indicates that differences do exist in adulthood using the
same task. This suggests that studies of adolescent language
development may be important for fully understanding the
functional differences observed in adult outcomes (Conti-
Ramsden and Durkin, 2007; Carroll and Dockrell, 2010; Hesketh
and Conti-Ramsden, 2013). The current study suggests that
syntactic prediction during processing may not yet be adult-
like at these ages given that typical children as well as children
with DLD showed little evidence of verb bias in their choice
of interpretation.

The main contribution of this study is to take a first step
examining individual differences in verb bias sensitivity in
children with and without DLD. In general, results suggest that
children ages 7–9 with and without DLD do not consistently
use verb bias information to resolve ambiguity, though they are
sensitive to verb bias. Importantly for this paper, there is also
sufficient variability in performance for consideration of how
individual differences in statistical learning might contribute,
despite (or perhaps because of) our finding that measures of
language proficiency, and text exposure did not meaningfully
predict verb bias sensitivity.

STUDY 2 INTRODUCTION

In this study we adopt a “multiverse” approach (Steegen et al.,
2016) to examine whether a particular statistical learning task
predicts performance on the verb bias task described in Study 1.
Data is drawn from the verb bias study reported in Hall et al.
(2019) and the artificial grammar learning studies reported in
Hall et al. (2018a,b), and Hall et al. (2017). We walk through some
of the rationale for the different measurement choices first, and
then present the findings.

STUDY 2 METHODS

Participants
Adults
To ensure enough participants to adequately power a test of
relationship, we added 31 additional TD adult participants to the
dataset of the 33 adult participants from TD and DLD groups
in the verb bias study reported in Hall et al. (2019) and the
artificial grammar learning study reported in Hall et al. (2017).
The additional 31 adult participants were recruited from the
University of Iowa Elementary Psychology Research Exposure
participant pool and were screened by self-report for being
monolingual and having no history of language or cognitive
impairment. All of the participants in this TD group met
qualifying criteria on the tasks (at least 60% accuracy on the
one-back task in the artificial grammar learning task, and at
least 50% accuracy on comprehension trials in the verb bias
task), and as such, data from all participants were included.
Demographic information for all 64 adult participants are
presented in Table 5, again with the participants from the original
studies presented in the first two rows. For more information
on how adult participants with DLD were identified, please
see Hall et al. (2019).

Children
Child participants are the same as those from Study 1, with the
six children excluded in Study 1 also excluded here. Demographic
information are presented in Table 1.

Analysis
We used performance on the artificial grammar learning task as
a continuous variable in a mixed effects linear model predicting
performance on the verb bias task. There are many arbitrary ways
to measure variables by which to look for a relationship between
the tasks, which led us to adopt this “multiverse” approach
(Steegen et al., 2016). Table 6 lists measures for each participant
group, task, verb set, and dataset, with abbreviations used in
the section “Results.” We included a random subject intercept
in all models because the Akaike Information Criterion (AIC)
indicated this was the best fit for the previous models we ran
analyzing the verb bias data in both children and adults. We
do not consider alternative random effects structures for the
models for the sake of space, but we recognize that these also
could impact findings. Code to run analyses in R version 3.5.1
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TABLE 5 | Participant demographic and testing means and standard deviations by diagnostic category (DLD, developmental language disorder; and TD, typically
developing), after excluding participants as described in the screening measures in Hall et al. (2019) and Hall et al. (2017) for adult datasets in Study 2.

Author
KBIT-2 recognition

Age Education standard Spelling Token PPVT-4 task
(years) (years) score (out of 15) (out of 44) raw score (−65 to 65)

n n male M SD M SD M SD M SD M SD M SD M SD

DLD 17 8 20.7 1.1 13.9 1.1 99.1 10.5 4.2 2.6 35.2 5.5 199.4 11.2 16.4 12.7

Matched TD 16 8 21.0 1.9 14.1 1.9 108.9 12.3 11.7 2.5 40.1 3.1 206.8 6.8 18.9 7.0

Additional TD 31 14 20.8 1.5 Not collected Not collected Not collected Not collected 202.5 10.3 24.8 15.1

Scores on Kaufman Brief Intelligence Test, 2nd Edition, non-verbal subtest (KBIT-2) are standard scores with a normative mean of 100 and a standard deviation of 15.
Scores on the spelling and token tasks are raw counts of items correct out of 15 and 44, respectively. Scores on the Peabody Pictures Vocabulary Test 4th Edition
(PPVT-4) are raw scores. Scores on author recognition task (ART) are out of a range of −65 to 65, with 65 being the highest possible score.

(R Core Team, 2018) and sample data are available on github at
https://github.com/jessica-hall/multiverse/.

Participants to Include
For all models, we tested both adults and children (Adult 1
and Child 1 in Table 6) and we also tested a subgroup dataset
of TD participants only (Adult 2 and Child 2). We did this
because we found group differences in verb bias sensitivity in
adults (Hall et al., 2019), and thus the participants with DLD
may have relied on other information to perform the verb
bias task and therefore would not show a relationship between
performance on both tasks.

Dependent Variable: Verb Bias Measure
We had two types of measures for this task, and thus we
consider two types of dependent variables in our models: choice
of interpretation and mouse trajectories. The measure for choice
of interpretation is consistency with verb bias, dummy coded

TABLE 6 | Choices of measures, definitions, and abbreviations for
multiverse analysis.

1. Participant datasets
Adult 1: Adult participants with DLD and TD
Adult 2: Adult TD participants only
Child 1: Child participants with DLD and TD
Child 2: Child TD participants only
2. Verb bias measures
VB1: Mean consistency of choice of interpretation on 0–1 scale;
0 = inconsistent, 1 = consistent; logistic regression model
VB2: Maximum deviation (MD), interaction with consistency as a categorical
variable; all trials; linear regression
VB3: MD, interaction with consistency; instrument-biased trials only; linear
regression
VB4: MD instrument-biased trials with choice of interpretation = modifier; linear
regression
3. Verb sets
S1: Full set of verbs
S2: Full set of verbs and strength variable
S3: Strongly biased verbs only
S4: Weakly biased verbs only
4. Artificial grammar learning measures, difference in mean
standardized rating of each item type
AGL1: Novel minus ungrammatical, entire test
AGL2: Novel minus ungrammatical, first half of test

as “1” for consistent and “0” for inconsistent, in a logistic
regression analysis (VB1 in Table 6). Thus, the hypothesis
tested in these models is whether good learning in the artificial
grammar learning task predicts responses consistent with verb
bias in the verb bias task. The rationale here is that because
the statistical learning task requires explicit evaluation of items,
perhaps it will show more relation to the more explicit decision
of which interpretation participants choose. For the mouse
trajectories, we consider consistency of choice of interpretation
as an independent variable that interacts with the statistical
learning measure, with the maximum deviation of the mouse
trajectory value as the dependent variable (VB2). An interaction
between these variables would indicate a relationship between
distributional learning in an artificial setting and distributional
learning in the real world. The hypothesis tested in these
models is whether good learning in the artificial grammar
learning task predicts more attraction to the unselected response
when choosing an interpretation inconsistent with verb bias.
The rationale for using this dependent variable is that the
mouse trajectory measure can capture a wider spectrum of
differences in sentence processing than simply which picture
participants chose and therefore will be a more sensitive measure
of individual differences.

Next, there are several possibilities to consider for which
trials to include. One is the full dataset. A second is a dataset
restricted to instrument-biased verbs only because in both child
and adult studies, participants showed more sensitivity to the bias
of instrument-biased verbs (VB3). A third alternative is to restrict
the dataset further to only instrument-biased trials in which
participants chose a modifier interpretation, because choosing
modifier on instrument-biased trials is the instance in which we
expect to see the greatest evidence of verb bias sensitivity (greater
maximum deviation values; VB4). In the most restricted models,
then, there is no covariate measure of consistency of choice of
interpretation because we are only considering one choice.

Finally, because we found a relationship with the expected
strength of verb bias according to the norming data provided by
Snedeker and Trueswell (2004), we test each of these alternatives
using the full set of verbs (S1 in Table 6), using the full set of
verbs with a strength interaction term (S2), and using a restricted
set of only the strongly biased verbs for the adults (S3) or only
the weakly biased verbs for the children (S4). Table 2 provides
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strength of verb bias ratings for each verb. We switch from
strongly biased verbs (S3) for adults to weakly biased verbs (S4)
for children because examination of data from Study 1 indicated
that children showed stronger verb bias effects for weakly biased
verbs, in contrast to the pattern that adults showed in Hall et al.
(2019). The rationale for including this measure is that it allows us
to capture some of the variability that may be associated with the
linguistic element of the stimuli rather than the visual elements
and therefore represent a clearer picture of the role of verb bias in
sentence processing.

Independent Variable: Statistical Learning Measure
Because performance on the statistical learning task has been
described with these same participant datasets, we provide only
a brief description of what is to be learned in the task and review
prior results briefly.

In this task, participants listened to an artificial language
that contained “gaps” of information. In the language, words of
the same “category” had similar, but not perfectly overlapping,
distributions. This task provides a good approximation of the
type of learning required for verb bias. In the case of verb
bias, one deduces subcategorizations from hearing sets of verbs
appear in similar but not perfectly overlapping distributions.
Similarly, in this artificial grammar learning task, one must
attend to the item and the way in which it distributes into
syntactical contexts and how those are interpreted in order
to deduce categories and succeed at learning the grammar.
At test, novel grammatical items contained combinations that
were not heard during exposure but that were grammatically
possible according to the shared distributional features, as well
as ungrammatical items that contained unheard grammatically
impossible distributional features. The key test of learning in the
task is the difference in participants’ ratings of novel grammatical
and ungrammatical test items. Participants rated items on a visual
analog scale that we translated to values from 0 to 100, with
0 being ungrammatical and 100 being grammatical. We used
z values to create a standardized measure for each participant
because there was individual variation in how the scale was used.
The simplest measure of distributional learning in the artificial
grammar learning task is to take the difference in average ratings
for novel grammatical and ungrammatical test items (AGL1 in
Table 6). A large positive difference in ratings between novel and
ungrammatical items would indicate learning of the grammar. As
reported in Hall et al. (2018b), we found that on average, child
and adult participants with and without DLD rated novel items
higher than ungrammatical items, with no differences between
diagnostic or age groups.

However, because we found an effect of testing order (items
tested earlier received higher ratings than items at the end of
the test), we also considered a separate measure of the difference
in ratings for novel, and ungrammatical items from the first
half of the test only (AGL2 in Table 6). Adding order to
our model in our previous study distinguished both diagnostic
groups and age groups. As we discuss in Hall et al. (2018b), the
order effect may indicate sensitivity to a changing distribution
as ungrammatical items are heard during the test phase. It is
possible that in averaging ratings for novel items throughout

the test, we would have means for each participant near zero
because of positive ratings early on and negative ratings later.
We would not be able to distinguish learners who showed
strong order effects and learners who always rated grammatical
novel items near the midpoint of the scale (zero). This is an
important distinction to make because we would consider the
former to be good at distributional learning and the latter
not as good. Therefore, we include two measures of statistical
learning, one from the entire test and the other with items
from first half only. General performance was such that 15 of
16 children with DLD, 20 of 24 TD children, 17 of 17 adults
with DLD, and 14 of 17 TD adults had a positive difference in
mean ratings in items over the entire test, indicating learning.
The amount of difference ranged from −0.19 to 1.5 for the
children and −0.37 to 1.61 for the adults. These numbers changed
minimally within each group when considering the first half
of the test only.

Summary of Multiverse Methodology
To summarize, we consider a total of 48 models for each age
group, adults and children: for the choice of interpretation as
depedendent variable model, we have 2 participant subsets × 3
strength of verb bias measures × 2 artificial grammar learning
measures. For the mouse trajectory as dependent variable
model, we have 2 participant subsets × 3 strength of verb
bias measures × 3 measures of mouse trajectory × 2 artificial
grammar learning measures.

STUDY 2 RESULTS

Children
We list beta estimates, standard errors, and p values for
all of the critical effects (as explained above) as well as
the number of participants and number of observations for
each model in Table 7. None of the 48 models with child
participants returned any significant result for the critical
effects. Two models were marginally significant, p < 0.10. One
possibility is that there is, in fact, no relationship between
this AGL task and the verb bias measures. Another is that
selection of the proper comparisons is critical for observing
the anticipated result. The two marginally significant models
were models that had mouse trajectories (as measured by
maximum deviation) as the dependent variable and had
instrument-biased verbs only (VB3), and included a variable
for strength of verb bias (S2). The statistical learning measure
was for the first half of the test only (AGL2). The results
were similar for each of the two datasets run, one with all
participants (Child 1, p = 0.09), and the other with only
TD participants (Child 2, p = 0.07) and are reported in
Supplementary Materials. For these models, children with
higher statistical learning performance showed more curved
trajectories when their choice was inconsistent than when
their choice was consistent. This effect was true for weakly
biased verbs. Strongly biased verbs actually showed the opposite
pattern, with much greater curvature overall for consistent
trials compared with inconsistent trials. Figure 4 presents
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TABLE 7 | Beta estimates (β), standard errors (SE), and p values for the critical variable of each model, and number of participants (n) and observations (n obsv) for each
model run for child datasets.

Verb bias task
measures and
verb sets

Participant datasets and artificial grammar learning task measures

Child 1 Child 2

AGL 1 AGL 2 AGL 1 AGL 2

β SE p β SE p n n obsv β SE p β SE p n n obsv

VB1

S1 −0.17 0.24 0.48 −0.04 0.16 0.82 49 678 −0.13 0.28 0.63 0.09 0.18 0.63 33 470

S2 0.01 0.02 0.53 −0.01 0.01 0.36 49 678 0.02 0.02 0.42 −0.009 0.01 0.51 33 470

S4 −0.28 0.34 0.40 0.11 0.22 0.62 49 342 −0.09 0.40 0.83 0.35 0.25 0.17 33 237

VB2

S1 0.06 0.11 0.56 0.07 0.07 0.33 49 678 −0.03 0.12 0.83 −0.02 0.08 0.79 33 470

S2 0.002 0.007 0.78 0.006 0.01 0.25 49 678 0.005 0.01 0.56 0.007 0.005 0.16 33 470

S4 0.13 0.15 0.40 0.05 0.1 0.64 49 342 −0.11 0.16 0.49 −0.14 0.1 0.18 33 237

VB3

S1 0.08 0.20 0.68 −0.01 0.14 0.97 49 337 0.08 0.23 0.72 −0.13 0.15 0.39 33 234

S2 0.009 0.03 0.72 0.03 0.02 0.09 49 337 0.02 0.03 0.57 0.04 0.02 0.07 33 234

S4 0.01 0.36 0.97 −0.29 0.29 0.33 48 126 −0.04 0.32 0.89 −0.44 0.27 0.10 33 89

VB4

S1 0.19 0.23 0.42 0.02 0.16 0.92 32 50 0.25 0.28 0.37 −0.15 0.17 0.39 21 34

S2 0.003 0.03 0.92 0.02 0.02 0.21 32 50 0.009 0.03 0.79 0.03 0.02 0.21 21 34

S4 0.20 0.44 0.66 −0.25 0.36 0.50 10 14 0.19 0.55 0.74 −0.41 0.44 0.37 8 11

Definitions of abbreviations can be found in Table 6. Bold indicated significance (p = 0.05) or near significance (p < 0.1).

FIGURE 4 | The amount that children showed sensitivity to verb bias, in that choosing inconsistently with bias (dashed lines) resulted in more curved trajectories
(increased maximum deviation) relative to choosing consistently with bias (bold lines), particularly for weakly biased verbs, was predicted by performance on the
statistical learning task, as measured by the difference in standardized ratings between novel and ungrammatical items on the artificial grammar learning task.
(A) Statistical learning performance plotted continuously on the x-axis with strength of bias as a categorical variable (strong verbs are those rated above 29 in
Table 2). (B) Strength of bias plotted on the x-axis with statistical learning performance as a categorical variable (high learners are above the median difference and
low learners are below). Shading represents the standard error of the model.

these interactions in two plots to fully illustrate these effects.
Figure 4A shows the continuous effect of statistical learning
performance and Figure 4B demonstrates the continuous
effect of verb bias strength. As can be seen most clearly in
Panel B children with high statistical learning performance
(in black) showed a stronger verb bias effect for weakly
biased verbs (a larger gap between the dashed and bold lines)
than strongly biased verbs, and children with low statistical

learning performance (in gray) did not demonstrate a verb bias
effect for strongly biased verbs. Note that in Figure 4A, for
both very low and very high statistical learning performance,
children never chose inconsistently with bias for weakly biased
verbs, most easily seen by the narrower (but taller) shaded
area around the dashed gray line. This restriction of range
for certain item types may explain the marginal significance
for these models.
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TABLE 8 | Beta estimates (β), standard errors (SE), and p values for the critical variable of each model, and number of participants (n) and observations (n obsv) for each
model run for adult datasets.

Verb bias task Participant datasets and artificial grammar learning task measures
measures and
verb sets Adult 1 Adult 2

AGL1 AGL2 AGL1 AGL2

β SE p β SE p n n obsv β SE p β SE p n n obsv

VB1

S1 0.04 0.07 0.59 −0.001 0.07 0.98 64 930 0.03 0.08 0.71 0.01 0.08 0.89 47 688

S2 0.007 0.006 0.19 0.001 0.006 0.82 64 930 0.03 0.007 0.058 0.008 0.006 0.18 47 688

S3 0.19 0.10 0.054 0.09 0.10 0.35 64 469 0.20 0.11 0.07 0.13 0.11 0.23 47 348

VB2

S1 −0.002 0.03 0.94 0.008 0.03 0.76 64 930 0.03 0.03 0.35 0.03 0.03 0.28 47 688

S2 0.001 0.002 0.50 0.001 0.002 0.74 64 930 0.001 0.002 0.69 0.001 0.002 0.59 47 688

S3 0.02 0.04 0.60 0.02 0.04 0.61 64 469 0.06 0.04 0.20 0.05 0.04 0.28 47 348

VB3

S1 0.004 0.05 0.92 −0.01 0.05 0.81 64 472 0.01 0.05 0.85 −0.04 0.05 0.47 47 349

S2 −0.003 0.006 0.59 −0.002 0.006 0.7 64 472 0.0003 0.007 0.97 0.002 0.007 0.82 47 349

S3 −0.007 0.06 0.90 −0.02 0.06 0.72 64 291 0.004 0.07 0.96 −0.05 0.07 0.44 47 216

VB4

S1 −0.02 0.06 0.73 −0.001 0.06 0.98 41 75 −0.02 0.07 0.75 0.03 0.07 0.70 29 49

S2 −0.001 0.008 0.86 −0.001 0.007 0.92 41 75 −0.003 0.009 0.75 −0.001 0.008 0.93 29 49

S3 −0.04 0.06 0.53 −0.01 0.07 0.85 36 53 −0.04 0.07 0.61 0.02 0.08 0.79 25 36

Definitions of abbreviations can be found in Table 6. Bold indicated significance (p = 0.05) or near significance (p < 0.1).

TABLE 9 | Results for mixed effects logistic regression of factors predicting the
probability of a choice consistent with bias in the verb bias task by adult
participants, with a dataset that included only strongly biased verbs.

Factor Variance SD B SE p

Random factors

Subject 0.00 0.00

Fixed factors

(Intercept) 0.65 0.10 <0.0001

Artificial grammar learning performance
(novel – ungrammatical, entire test)

0.19 0.10 0.054

Bold indicated significance (p = 0.05) or near significance (p < 0.1).

Adults
Table 8 displays beta estimates, standard errors, and p values for
all of the critical effects as well as the number of participants and
number of observations for each model. Of the 48 models with
adult participants, only one returned significant results for the
critical effects, p = 0.054. This was the model with the difference in
ratings for novel and ungrammatical items for the whole testing
period (AGL1) on the artificial grammar learning task predicting
the likelihood of a response consistent with verb bias (VB1), with
only strongly biased verbs included (S3) and the dataset with all
participants (Adult1 dataset). We report results for this model in
Table 9 and Figure 5 provides an illustration.

A similar model for the dataset with only TD participants
(Adult 2) was marginally significant, p = 0.07. Finally,
one additional model with only TD participants which also
included these variables and an interaction with strength
rather than a subset of strongly biased verbs (S2) was

borderline at p = 0.058. Results for these models are reported
in Supplementary Materials. All models show a trend for
participants with higher statistical learning scores more likely to
choose interpretations consistent with verb bias on the verb bias
task than participants with lower statistical learning scores.

STUDY 2 DISCUSSION

Our previous studies (Hall et al., 2017, 2018a,b) demonstrated
that children and adults with DLD are capable of learning from
distributional dependencies in an artificial grammar learning task
similarly to their TD peers. However, there was considerable
spread in performance by all groups. We predicted that how well
individuals learned distributional dependencies in the artificial
language task would have bearings on how well they use
distributional information to resolve ambiguous sentences in real
language. We found some evidence that individual differences
in statistical learning predicted performance on the verb bias
task in adult participants but not in children, but the findings
are not robust. This was not especially surprising given that
adults with DLD showed differences from TD peers on the
verb bias task (see Hall et al., 2019), but Study 1 did not
demonstrate that individual differences in language proficiency
or text exposure predicted performance by child participants.
The relationship was found only for predicting consistency of
choice of interpretation and not for mouse trajectories in the
adult participants. Indeed, children did not appear to be using
verb bias when choosing an interpretation, and thus this may
be why we did not see this relationship for them. That the
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relationship in adults seemed to be driven by the TD participants
provides further evidence that adults with DLD are not using
distributional information in the same way as TD peers when
disambiguating sentences in the verb bias task. It is possible that
some of the adults with DLD, like the child participants, were
not using verb bias to disambiguate the sentences in the sentence
processing task.

At the suggestion of a reviewer, we examined the internal
consistency coefficient (ICC) for our primary independent and
dependent measures in the significant model. As might be
expected from previous results that showed large standard
deviations for ratings in the statistical learning task with typical
children (Hall et al., 2018a), we obtained very low measures
of internal consistency for the artificial grammar learning
task measures. Because the measure for of statistical learning
depended on ratings for novel items, it was likely impacted by the
great amount of noise, even in the adult data. We also obtained
low measures of reliability for the verb bias task measures. The
poor values on these measures of reliability conducted post hoc
suggest that the tasks are not well suited for measuring individual

differences, at least for the number of items on the tasks in the
present study. Low reliability may explain why most of the models
in our multiverse analysis were not significant.

Individual Differences
Given the number of comparisons run, it is reasonable to
question whether the results obtained were simply spurious
effects. Indeed, we would feel more confident if there was a
more consistent result regardless of how the measures were
selected. The value of the multiverse analysis is to demonstrate
the robustness of the findings; because the majority of models
were not significant, the significant findings from this study
are not robust. Nonetheless, we believe it to be valuable to
reflect on whether there is a rational explanation for why three
comparisons reached or were near significance for the adults and
the remainder were not.

First, the two verb bias task measures differed on the degree of
explicitness. The choice of interpretation was likely a better match
for the explicit grammaticality test in the artificial grammar
learning task than the implicit mouse trajectory measure. A more

FIGURE 5 | For adult participants, sensitivity to verb bias, as measured by the likelihood of choosing an interpretation consistent with bias on trials with strongly
biased verbs, was predicted by statistical learning ability, as measured by the difference in standardized ratings between novel and ungrammatical test items on the
artificial grammar learning task. Shading represents the standard error of the model.
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implicit measure of learning in the artificial grammar learning
task (such as that in Lammertink et al., 2019, and López-Barroso
et al., 2016) may have better predicted mouse trajectories on
the verb bias task. Other studies with implicit measures have
found positive relationships with children; for example, Kidd
(2012) showed that 4- and 5-year-olds’ performance on serial
reaction time task corresponded with their ability to remember
a primed sentence structure. It is beyond the scope of this
paper to delineate whether implicit and explicit processes are
discrete processes, but we suggest this as an area worthy of
further investigation.

Second, the choice of interpretation may have been more
impervious to factors like motivation, alertness, or attentiveness
that may have added to the variability in mouse trajectories.
The choice of interpretation may not have changed much
because it may not require much effort to understand the
sentences, but the speed and dexterity of mouse movements
could change dramatically over time as participants become
more fatigued or bored with the experiment, or, in the case of
children, more adjusted to using the mouse (some had never
seen one before). We might also attribute mouse trajectories
as reflecting the ability to use distributional information to do
speeded language processing. In the artificial grammar learning
task, participants are not given a time limit to make their
grammaticality decisions. In addition, the cognitive load is fairly
low: participants listen to a three-word “sentence” and hold it
in memory as they compare it to stored mental representations
for items heard five to fifteen minutes earlier. They are not
told to remember any specific items or even asked if the
sentence is the same as ones heard previously, easing the task
to some extent. The verb bias task, on the other hand, requires
that participants listen to a somewhat complex sentence while
looking at visually complex stimuli and then move as quickly
as possible to one of two pictured interpretations. Differences
in mouse movements therefore may have been more affected by
differences in executive function or speed of processing. This
could have had the effect of stabilizing the within-participant
variability, and in fact the adults had greater within-participant
variability on the choice of interpretation measures than the
mouse trajectory measures.

Also of note is that the internal consistency of the measures
is low likely in part because of the low number of items.
We obtained a large number of negative ICC values across
all measures, indicating great within-subject variability for
both statistical learning and sentence processing measures.
For measures with positive values, the number of items
was often quite low (restricting to weakly biased verbs
halves the dataset, and further restricting it to instrument-
biased verbs halves it again; see Tables 7, 8 for number
of observations within each model). With more items, tasks
might have been more reliable, and therefore more suited
to showing a strong relationship. Although the study of the
psychometric properties of statistical learning tasks is in its
infancy, reliability-related issues may contribute to the difficulty
in identifying experimental links between statistical tasks and
measures of online language processing, especially with child
participants (Arnon, 2019). It is possible better reliability

may be obtained through larger numbers of test items, but
adding more items will impact the age of potential child
participants capable of completing tasks. There is also the
problem of increasing participants’ exposure to ungrammatical
combinations with more test items in an artificial grammar
learning task, which could influence results and how results are
interpreted.

Attention to the psychometric properties of statistical learning
and online comprehension tasks would strengthen the inferences
possible in this field. As noted by Arnon (2019), increasing the
type of items tested (Siegelman et al., 2017) and using online
methodologies (Siegelman et al., 2018b) are two ways to improve
the reliability of statistical learning tasks without fatiguing child
participants. We hope to take steps in future research that will
allow us to improve reliability in these types of measures when
used with young children.

Developmental Differences
We found clear diagnostic group differences by adults in the
verb task (Hall et al., 2019) but not in the artificial grammar
learning task (Hall et al., 2017). This may have been due
to greater task demands in the verb bias task related to the
complexity of real language and the variation in individuals’
experience with language. Although the language that people
with DLD hear may not differ substantially from what people
with TD hear (Leonard, 2014; though Karmiloff-Smith, 2009,
has questioned whether impairments or deficits are compounded
upon by how others interact with individuals with developmental
disorders), the accumulated experience of DLD may result in
a linguistic experience that is not as rich or deep as peers.
For example, difficulty learning language could result in weaker
semantic and syntactic representations (see Sheng and McGregor,
2010; Alt et al., 2013; Haebig et al., 2017), which then limit
the expressiveness of the individual’s own speech, as well as
the efficiency and the precision with which the individual
understands others’ speech. This may have a cascading effect,
such that weak representations in childhood limit how later
information is stored – even if the child is exposed to the same
information – or may lead to the child seeking out different
types of interactions as they age, leading to actually different
experiences and interactions in adolescence. In the artificial
grammar learning task, on the other hand, the language is tightly
controlled. There are no competing experiences, the learning is
not under time pressure, the exposure period is small, and all
participants have identical exposures. There is little variation;
in short, it is a toy language, and the controlled nature of the
language likely made it an easier task than the verb bias task for
all participants.

Snedeker and Trueswell (2004) demonstrated that verb bias
cues outweighed referential cues for 5-year-old children, which
differentiated them from the adult participants in their study of
verb bias. Although children made choices based squarely on verb
bias, their eye movements indicated emerging consideration for
referential cues (the number of animals present influenced how
often they looked at objects indicating a modifier interpretation).
It is possible that at ages 7–9, children are now learning to
integrate and weight different cues during sentence processing
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and not relying so squarely on verb bias. However, the process
is not complete, and so we still see differences between them
and adults. That we see the opposite pattern of Snedeker and
Trueswell (2004) should not be surprising because we did not
have referential cues here. And so, although we know that
children are capable of learning from distributional information
similarly to adults (Hall et al., 2018b) and that they are sensitive
to the different distributional properties of verbs in the task
we used, we can infer that children show different patterns of
interpretation than adults in both their mouse movements and
overt choices because they are in the process of learning to use
other cues to interpret sentences.

Regarding development and verb bias, it is possible that our
tasks were not as similar as we hoped, in that although they both
involved distributional information, our statistical learning task
involved tracking adjacent dependencies (which words occurred
next to each other) whereas verb bias, in this case, was a non-
adjacent dependency (a noun appeared between the verb and
the ambiguous with the x phrase). It is possible that working
memory or other cognitive limitations could have impacted
children’s performance on the verb bias task differently from
the statistical learning task (e.g., Thiessen et al., 2013), and
that these differences may have been better captured in a task
that tracked learning of non-adjacent distributional information.
This is an example of how a specific type of statistical learning
may be more relevant for an emerging skill at this point in
development than another.

It is important to continue to study distributional learning
using both real and artificial language stimuli to better
understand the mechanisms involved and how they might
facilitate grammar acquisition and use in typical populations
and in populations with DLD. Furthermore, both cross-sectional
and longitudinal studies should assess performance in the
intervening periods between early childhood and adulthood
to better elucidate the developmental trajectories of both
typical and atypical populations (McMurray et al., 2010, 2018;
Rigler et al., 2015).

GENERAL DISCUSSION

In the present work, we examined the roles of grammatical
proficiency, text exposure, and statistical learning for explaining
individual differences in sentence processing by children and
adults with and without DLD. Our general purpose was to
better understand the relationship between statistical learning
and language learning and processing. In Study 1, we found
that children with DLD and their TD peers showed some
sensitivity to verb bias in an implicit mouse tracking measure
even when their explicit behavior did not reflect this sensitivity.
Instability in the formation of verb biases as part of typical
development may have contributed to the pattern of findings for
children. In our second study, we found that our measure of
statistical learning predicted how adults interpreted ambiguous
sentences using verb bias in only one of 48 possible models.
It is possible that we saw stronger evidence for a relationship
for TD adults than adults with DLD because adults with DLD

use verb bias information differently or do not have the same
access to the information during sentence processing as TD
peers. However, findings for a relationship were not robust
and reliability for all measures was quite low. Together, these
results suggest that language processing is influenced by the
statistics in the language environment and one’s ability to attend
to them and use them, but we need more reliable tasks to
better detect and understand this relationship. The performance
by children in comparison to adults on the verb bias task,
taken in combination with the findings on statistical learning,
suggests that there may be differences between initial learning
of statistical information in linguistic environments and using
that information efficiently during complex language processing
combined with other cues.

While we acknowledge some uncertainty about which aspects
of the verb bias stimuli may have affected how children
interpreted sentences, results from Study 1 provide novel insights.
We now know that, although children with and without
DLD may be sensitive to verb bias information, the global
instrument bias and integration of visual and linguistic cues
also affects how verb bias information is deployed during
processing, and likely has a long developmental timeline. Unique
contributions of Study 2 are that TD adults may rely on the
same mechanisms to learn from distributional information and
to predict distributional information while processing language.
These results provide further evidence that statistical learning
may contribute to variation in how individuals process and
interpret language, at least in adulthood. These studies allow
more nuanced discussion of the mechanisms responsible for
efficient sentence processing and the developmental timescales of
these mechanisms.

Results from these studies provide further evidence that verb
bias continues to develop beyond school age, and that differences
observed in adults with and without DLD suggest that that verb
bias is an area of weakness in DLD, albeit one that may appear
somewhat hidden until later in development when verb biases
and cue integration are more fully formed in the TD population.
Given the impact that verb bias can have on comprehension and
communication, it is an area worthy of further study.

Results from Study 2 illustrate a need for more transparent
methods for reporting results from studies of complex
mechanisms, such as those purported to support multifaceted
skills like language. Because post hoc explanations of data are
tempting and often seem rational given trends in the literature,
we recommend best practice be either using highly transparent
methodology such as multiverse analyses or preregistering
both the tasks chosen and the final measures along with
potential explanations and predicted outcomes to reduce the
temptation to report only the most exciting findings. We
also encourage researchers to examine tasks’ psychometric
properties and report measures of reliability in studies of
statistical learning and language processing. For progress in
research into the cognitive science of language, a commitment
to open science is necessary to ensure that results can be
verified and replicated. Without extensive reporting of how
and why variables were chosen and measured, our work will
always be exploratory.
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