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Introduction: MRI gradient-fields may induce extrinsic voltage between electrodes
and conductive neurostimulator enclosure of implanted deep brain stimulation (DBS)
systems, and may cause unintended stimulation and/or malfunction. Electromagnetic
(EM) simulations using detailed anatomical human models, therapy implant trajectories,
and gradient coil models can be used to calculate clinically relevant induced voltage
levels. Incorporating additional anatomical human models into the EM simulation library
can help to achieve more clinically relevant and accurate induced voltage levels,
however, adding new anatomical human models and developing implant trajectories
is time-consuming, expensive and not always feasible.

Methods: MRI gradient-field induced voltage levels are simulated in six adult human
anatomical models, along clinically relevant DBS implant trajectories to generate the
dataset. Predictive artificial neural network (ANN) regression models are trained on
the simulated dataset. Leave-one-out cross validation is performed to assess the
performance of ANN regressors and quantify model prediction errors.

Results: More than 180,000 unique gradient-induced voltage levels are simulated.
ANN algorithm with two fully connected layers is selected due to its superior
generalizability compared to support vector machine and tree-based algorithms in this
particular application. The ANN regression model is capable of producing thousands
of gradient-induced voltage predictions in less than a second with mean-squared-error
less than 200 mV.

Conclusion: We have integrated machine learning (ML) with computational modeling
and simulations and developed an accurate predictive model to determine MRI gradient-
field induced voltage levels on implanted DBS systems.

Keywords: MRI gradient-field modeling, gradient-induced voltage, DBS MR conditional testing, DBS implant
trajectories, integrating machine learning and computational modeling
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INTRODUCTION

More than 60% of patients implanted with a deep brain
stimulator (DBS) need an MRI within 10 years after implantation
(Falowski et al., 2016). Structural and functional MRI is
commonly used to evaluate patients with neurodegenerative
diseases, including Parkinson’s disease, essential tremor, and
dystonia. Diffusion tensor imaging and functional MRI of
patients implanted with DBS systems may enable better
understanding of neurogenerative disorder mechanisms
(McIntyre et al., 2004; Kohl et al., 2014; Schläpfer and
Kayser, 2014; Lipsman and Lozano, 2015; Herrington et al.,
2016) and neuromodulation therapies to improve outcomes
in existing indications and expand therapies with new
indications. DBS systems should be designed to mitigate
for unintended interactions between implanted systems and
strong electromagnetic (EM) fields produced by MRI scanners,
which may otherwise pose significant hazards to patients
(Nyenhuis, 2003). Foreseeable potential hazards to patients from
MRI EM fields include tissue damage due to heating, vibration,
force and torque, unintended tissue stimulation and malfunction
of the implanted system. The second edition of the International
Standards Organization (ISO) Technical Specification (TS)
“Assessment of the safety of magnetic resonance imaging for
patients with an active implantable medical device,” governs test
methods to evaluate potential hazards (ISO/TS-10974, 2018) due
to MRI fields.

Deep brain stimulation systems should also be designed for
time-varying MRI gradient-fields, which can induce electric
fields (E-fields) and current flow in the human body that
may cause unintended tissue stimulation (Ham et al., 1997;
Schaefer et al., 2000; Glover, 2009). MRI gradient-field induced
E-fields may generate extrinsic voltage potential along implanted
elongated conductive structures such as DBS leads/extensions,
between electrodes and conductive neurostimulator (device)
enclosure. Potential hazards due to MRI gradient-induced
extrinsic voltage along DBS systems include unintended tissue
stimulation and device malfunction. Test methods to assess
these hazards are defined in parts of Clause 13 and 16 of
ISO/TS 10974 (ISO/TS-10974, 2018), and to thoroughly assess
these hazards, clinically relevant gradient-field induced voltage
levels on DBS systems need to be calculated, and used as test
exposure levels.

Electromagnetic simulation methods described in Annex
A.3.4 for ISO/TS 10974 (ISO/TS-10974, 2018) are commonly
used to derive MRI gradient-field induced voltage levels on active
implanted medical devices (AIMDs) with leads. First, realistic
MRI gradient coil models are generated. Next, using these coil
models, E-fields in the tissues of anatomically accurate human
body models [e.g., virtual population (Gosselin et al., 2014)] are
simulated (Zhao et al., 2002; Bencsik et al., 2007). Then, the
tangential component of the E-fields from human simulations
are extracted along clinically relevant DBS implant trajectories
resulting in one-dimensional E-field exposure distributions.
Finally, the tangential E-field exposures are integrated to calculate
gradient-field induced voltage levels between electrodes and
neurostimulator of the implanted DBS system.

Incorporating additional human body models and therapy
implant routing pathways into the EM simulation library can
help to achieve more clinically relevant and accurate test
exposure levels, however, adding new anatomical human models
into the EM simulation library is time-consuming, expensive
and not always feasible. In this work, we integrated machine
learning (ML) with computational EM modeling and developed
a predictive algorithm using artificial neural networks (ANN) to
predict in vivo MRI gradient-field induced extrinsic voltage levels
on implanted DBS systems.

BACKGROUND

E-fields are induced inside the human body due to time-
varying MRI gradient magnetic fields. In the presence of AIMDs
with long conductive components such as DBS leads and
extensions, MRI gradient-field induced E-fields can generate
extrinsic electric potential between spatially separated electrodes
of an AIMD. Gradient-field induced extrinsic electric potential
can be calculated by integrating the tangential component of the
E-field along trajectory of the implanted system:

Vgradient =
L
∫
0
EE · dEl

where EE is the E-field, L is the length of the AIMD trajectory and
Vgradient is the MRI gradient-field induced extrinsic potential.

In this work, MRI gradient-field induced extrinsic electric
potential between DBS therapy electrodes and the implanted
conductive neurostimulator are evaluated. Terms induced
voltage and voltage levels are used interchangeably to refer
to MRI gradient-field induced extrinsic potential between DBS
electrodes and neurostimulator.

METHODS

EM Simulation Methodology and Dataset
Generation
The Tier 3 EM simulation method described in Annex A.3.4
of ISO/TS 10974 edition 2 (ISO/TS-10974, 2018) is used
to calculate in vivo gradient-field induced voltage levels on
implanted DBS systems (Supplementary Figure S1). The
computational modeling and simulation workflow is verified
and validated following the principles of the ASME V&V
40 Assessing Credibility of Computational Modeling through
Verification and Validation: Application to Medical Devices
(V&V 40, 2018). Five gradient coil model sets consisting of
X-, Y-, and Z-axis coils representing clinical MRI scanners
are developed (Supplementary Table S1). Six adult Virtual
Population 3.0 models (Gosselin et al., 2014) are used in
simulations (Supplementary Table S2). The magneto quasi-
static solver of Sim4Life software v3.4 (Zurich MedTech, Zurich,
Switzerland) is used to simulate E-field distributions generated
in the conductive tissues of the human body, at scan locations
spanning human models from head to lower extremities at 10 cm
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FIGURE 1 | Clinically relevant DBS lead/extension routing trajectories in Virtual
Population models are shown.

increments, resulting in 1080 total volumetric E-field simulations.
3007 unique clinically relevant DBS implant lead/extension
routing trajectories are implemented in six human body models
using an in-house developed fully automated software (Figure 1).
Tangential E-field distributions along DBS implant trajectories
are then extracted and integrated to calculate MRI gradient-
field induced voltage values at maximum gradient slew rate of
200 T/m/s. For each unique implant trajectory, gradient coil
model set and scan z-axis landmark location configuration,
final gradient-induced voltage levels are calculated by combining
voltage levels due to X, Y, and Z-axis coils in a sum-of-magnitude
fashion to conservatively account for all three axis simultaneously
slewing at 200 T/m/s. The final gradient-induced voltage dataset
is comprised of 180,420 unique induced voltage predictions.

Feature Selection
Each unique gradient coil, scan landmark location, body model
and implant routing configuration produce a different gradient-
field induced voltage value. Ten features are derived based on
subject, DBS implant and MRI scan related attributes (Table 1).
Three binary categorical variables represent DBS implant related
features such as brain hemisphere where the lead tip is placed
(left or right), side of the neck the DBS extension is tunneled
(left or right) and anatomical location where the neurostimulator
is implanted (pectoral or abdominal). DBS lead and extension
length (in meters) are the other implant-related features. Subject-
related features are height (in meters) and mass (in 100 kg). MRI
scan related features are scan z-axis isocenter location relative
to top of the head, MRI gradient coil diameter and coil length
(all in meters).

It is important to note that implant-related features do not
guarantee a unique implant routing trajectory. For instance,
there are multiple replicate implant trajectories implemented
in the Duke anatomical model that are placed in the left
brain hemisphere, tunneled through the left side of the neck
with the neurostimulator implanted in the pectoral region,
with a 40 cm long DBS lead and a 60 cm long extension
(Supplementary Figure S2A). The feature set is selected based
on easily identifiable subject and DBS implant-related properties;
more advanced features that may enable unique identification of
replicate implant trajectories are not considered. Therefore, the
selected feature set cannot differentiate between replicate DBS
implant trajectories that share same implant-related features.

Gradient-induced voltage levels of replicate DBS implant
configurations are averaged to speed up the model training
and hyper-parameter tuning process. Averaging of replicate

TABLE 1 | Ten features are used in predictive models.

Feature#/
type

Feature
name

Description Units or
options

1/Subject Height Height of the subject In meters

2/Subject Mass Mass of the subject In 100 kg units

3/Implant Brain Brain hemisphere
where the DBS lead tip
is placed

Left or right
(Binary)

4/Implant Neck Side of the neck the
DBS extension is
tunneled, and side of
the body the DBS
neurostimulator is
implanted

Left or right
(Binary)

5/Implant INS DBS neurostimulator
implant location

Pectoral or
abdominal
(Binary)

6/Implant Lead length DBS lead length In meters

7/Implant Extension
length

DBS extension length In meters

8/MRI scan LM
(landmark)

MRI scan z-axis
isocenter location
relative to top of the
head

In meters

9/MRI scan Coil
diameter

MRI gradient coil
diameter

In meters

10/MRI scan Coil length MRI gradient coil length In meters

First two features are subject related, five features are DBS implant related, and
remaining three features are MRI gradient coil and scan related.

configurations reduced the “Extended-Dataset” size from 180,420
to 10,620 rows in the “Condensed-Dataset.”

Machine Learning Algorithm Selection
and Model Parameter Optimization
Performance of five ML regression algorithms are evaluated
on the Condensed-Dataset: support vector regression with
linear kernel (SVMLIN), support vector regression with radial
basis function kernel (SVMRBF), random forest regressor (RF),
gradient boosting regressor (GB), and ANN with two fully
connected hidden layers (NN). For all five algorithms, model
parameter optimization is performed using “GridSearchCV”
from scikit-learn package (Pedregosa et al., 2011). To evaluate
generalizability of ML algorithms, training is performed on
five body-models excluding “Fats” and model performance
are evaluated on the “Fats” induced voltage values. Mass of
“Fats” is ∼40 kg higher than the next heaviest body-model,
therefore this approach is expected to provide insights on model
generalizability by assessing the performance on a “previously
unseen” case. R-squared (R2), mean-squared-error (MSE) and
median-absolute-error (MAE) metrics are calculated to evaluate
the performance of these ML algorithms.

Neural Network Predictive Model
Performance Evaluation
Neural network model training is performed using the
Condensed-Dataset and performance metrics are evaluated
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on the Extended-Dataset. Leave-one-out cross validation is
performed by training the NN model on five body-models
and evaluating the performance on the body-model that is not
included in training to assess model generalizability. Model
training history with training and validation losses are evaluated
to avoid overfitting. Final NN model with optimized parameters
is then trained using the entire Extended-Dataset including all
six body-models. Since a separate validation dataset was not
available to evaluate the final NN model trained on the entire
dataset, most conservative NN model prediction uncertainty
levels from the leave-one-out cross validation analysis are used
to estimate gradient-induced voltage prediction uncertainty
(Abu-Mostafa et al., 2012).

Software Used
A list of software scripting and analysis tools used in this work are
provided in the Supplementary Material.

RESULTS

Data Exploration
Three axis sum-of-magnitude gradient induced voltage levels at
each principal axis slewing at 200 T/m/s are calculated. Example
boxplots shown in Supplementary Figures S3, S4 demonstrate
dependence of voltage levels to different features. In general,
the abdominal INS implant location has higher induced voltage
levels because of the longer straight path of the DBS extension
inside the body. Even though there is not a significant difference
between DBS leads implanted left or right brain hemisphere,
contralateral routing pathways tend to induce slightly higher
voltage levels compared to ipsilateral pathways. Induced voltage
levels have strong dependence on scan location, with head and
lower torso/pelvis scans inducing highest values, whereas chest
scans are predicted to have lower induced voltage levels. Mass of
the body model is also positively correlated with induced voltage
levels. Highest gradient-induced voltage is 5.38 V, and occurred
in the “Fats” model for an abdominal implant trajectory. Highest
gradient-induced voltage values for other human models ranged
between 3.17 and 3.88 V.

As described in the Feature Selection section, selected features
cannot uniquely identify DBS implant routing trajectories that
are in the Extended-Dataset. For example, replicate routing
pathways shown in Supplementary Figure S2A share same
feature-set, and generate different induced voltage levels (blue
bars in Supplementary Figure S2B). A Condensed-Dataset
is generated by averaging induced voltage levels of replicate
implant routing pathways (Supplementary Figure S2B: average
induced voltage value for the Condensed Dataset: 0.855 V),
and this process reduced the size of the dataset from
180,420 to 10,620 rows.

Algorithm Selection
To evaluate generalizability of ML algorithms, training is
performed on five anatomical-models excluding “Fats” and
performance are evaluated on the “Fats” induced voltage values.
Performance of tuned SVMLIN, SVMRBF, RF, GB, and NN
predictive models are shown in Supplementary Figure S5,

with red representing the identity line. SVMLIN and SVMRBF
models performed poorly. Even though R2 of RF and GB models
are higher than 0.8, both models are biased and consistently
underestimate “Fats” induced voltage levels. The NN model has
the lowest MSE, highest R2, does not have a consistent bias, and
therefore NN algorithm is selected for this study.

Neural Network Model Evaluation
Neural network models with two to five fully connected hidden
layers are evaluated and no significant performance boost is
observed beyond two. Optimal model parameters are found to
be a fully connected two layer NN with 25 and 120 units in first
and second hidden layers, with no dropout, a batch size of 32 and
300 epochs; using GridSearchCV hyperparameter optimization
method. Leaky rectified linear unit (ReLU) activation functions
are used in all layers. As described before, all model training
has been performed using the Condensed-Dataset. The two-layer
ANN predictive models are capable of producing thousands of
gradient-induced voltage predictions in less than a second.

Leave-one-out training history plots are shown in
Supplementary Figure S6, with red and blue lines representing
training and validation loss, respectively. Training loss and
validation loss curves follow each other closely in all anatomical
models except “Fats,” indicating that training dataset with
remaining five anatomical models is not able to fully represent
the validation dataset of “Fats” induced voltage levels.

Leave-one-out cross validation results on the Extended-
Dataset are shown in Figure 2. Extended-Dataset includes all
data points with replicate routing pathways and associated
variability (Supplementary Figure S2), therefore the Extended-
Dataset therefore truly gauges the performance of the predictive
models while accurately incorporating the added variability due
to replicate routing pathways.

Neural network models on Extended-Dataset exhibited a
similar pattern, with induced voltage predictions on “Fats”
body model having worse performance metrics (R2 = 0.86,
MSE = 124 mV) compared to other five body models (R2 > 0.92,
MSE < 40 mV). Final NN model prediction uncertainty is
derived from the leave-one-out analysis, and most conservative
MSE and MAE values of 124 and 191 mV, respectively, are used.

DISCUSSION

Computational modeling and simulations can be used to generate
large synthetic datasets. Incorporating ML with computational
modeling and simulations has a potential to provide better
understanding of biological and physical phenomena, solve ill-
posed inverse problems, optimize complex design problems in
a variety of fields (Burrascano et al., 1999; Kim et al., 2007;
Tolk, 2015; Hughes et al., 2017; Cohen et al., 2018; Ianni et al.,
2018; Pérez et al., 2018; Deist et al., 2019; Kiarashinejad et al.,
2019; Meliadò et al., 2019; Tahersima et al., 2019; Vinding et al.,
2019). In this work, we have generated a dataset by modeling
and simulating MRI gradient-field induced voltage levels on
implanted DBS systems, using realistic MRI gradient coil models,
six adult anatomical human models (Gosselin et al., 2014) and
clinically relevant DBS implant trajectories. We then selected
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FIGURE 2 | Neural network (NN) leave-one-out cross validation performance on the Extended-Dataset are shown. NN model training is performed on the
Condensed-Dataset with the annotated body-model being left out. Sub-figures (A–F) summarize cross validation performance using anatomical models Duke, Ella,
morphed Ella with BMI of 26, morphed Ella with BMI of 30, Fats and Glenn, respectively, as annotated within. Then, trained NN model performance is evaluated on
the annotated body-model from the Extended-Dataset. R-squared (R2), mean-squared-error (MSE) and median-absolute-error (MAE) metrics are also annotated
inside the sub-figures. X- and Y-axis show true and predicted gradient-induced voltage levels in units of V.

a limited feature set based on the properties of the implanted
DBS system, patient, MRI system and scan location, and trained
predictive models on the synthetic dataset to predict gradient-
field induced voltage levels.

The most dissimilar anatomical model in terms of mass, “Fats,”
is used to evaluate the model generalizability performance of five
ML algorithms. NN models are found to perform better than

other algorithms tested in terms of model generalizability, and
are used in this study.

Leave-one-out cross validation results demonstrate that
predictive performance deteriorates if the physical characteristics
of the anatomical model are not accurately represented in
the training set (see Figure 2E, “Fats” cross-validation plot).
“Fats” anatomical model has the highest BMI and is ∼40 kg
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heavier than the next heaviest in the current dataset. A typical
DBS implant in the “Fats” model might have a substantially
different trajectory compared to other models included in
the dataset, therefore exposing the implant to significantly
different tangential E-field distributions. Even though predictive
performance on the “Fats” induced voltage predictions is worse
compared to other anatomical models, MSE, and MAE are less
than 200 mV, and is acceptable for this application. If more
anatomical models with a larger variety of physical properties are
included, predictive performance of the trained ML models are
expected to improve. Final NN model was trained using the entire
“Extended-Dataset,” and since a separate validation set was not
available, prediction uncertainty was derived from the leave-one-
out cross-validation analysis (Abu-Mostafa et al., 2012), and is a
limitation of this study.

Two-layer ANN predictive model developed in this study can
perform thousands of gradient-induced voltage predictions in
less than a second. In comparison, Tier 3 EM MRI gradient
induced E-field simulations take between 3 and 5 min on
a workstation with Intel Xeon E3-1535M CPU (2.9 GHz).
Simulating E-field distributions inside a human body model
using a set of gradient coils (X-, Y-, and Z-axis) therefore takes
at least 9 min. After gradient-induced E-field simulations are
completed, extracting tangential component of the E-field along
hundreds of DBS implant trajectories and computing the induced
voltage take less than a second. In the most conservative scenario,
ANN predictive model offers a speed-up of 500-fold (1 s vs.
9 min). On the other hand, Tier 3 EM simulation approach
requires availability of anatomical body models and clinically
relevant DBS routing pathways. Obtaining, creating, or morphing
an anatomical body model can be time-consuming, expensive
and may not always be feasible. Implementing a clinically relevant
DBS implant trajectory in anatomical body model using an
in-house software take between 10 to 100 s depending on
the implanted system length, complexity of the DBS trajectory
and quality of the anatomical body model tissue segmentation;
or several hours if done manually by an experienced design
technician. In cases where additional anatomical body models
and/or DBS routing pathways are not available, Tier 3 EM
simulation approach would require days/weeks to complete,
whereas the predictive ANN model doesn’t require availability of
additional anatomical body models or DBS routing pathways.

A limitation of this study is that, only conventional symmetric
whole-body MRI gradient coil models are evaluated at a
maximum slew rate of 200 T/m/s. Gradient coils with higher
peak amplitude (Gmax) and peak slew rate are desired to improve
image quality and speed for echo planar imaging, diffusion-
weighted imaging and several other advanced imaging protocols
(Le Bihan et al., 1986; Young et al., 1987; Turner et al., 1990;
Wong et al., 1991; Basser and Pierpaoli, 1996), and significant
research efforts are being carried out to develop such coils. Local
head/neck gradient coils have been evaluated and developed to
improve gradient performance compared to whole-body gradient
coils (Alsop and Connick, 1996; Crozier et al., 1999; Chronik
et al., 2000; Tang et al., 2016). High-performance research systems
for imaging human brain connectivity and microstructure have
been developed with Gmax of 300 mT/m (McNab et al., 2013) or

slew rate of 1200 T/m/s (Weiger et al., 2018). Local head gradient
coils have the potential to reduce E-fields in the body/torso and
to elicit peripheral nerve stimulation (PNS) threshold for in vivo
human imaging (Chronik and Rutt, 2001; Zhang et al., 2003; Tan
et al., 2019). Advancements in functionalized anatomical models
with nerve trajectories (Lloyd et al., 2018; Neufeld et al., 2018)
coupled with EM and neurodynamic simulations (Davids et al.,
2017, 2019) have the potential for designing high-performance
MRI gradient coils. If higher performance gradient coils and/or
local head gradient coils become available in the clinic, such
designs need to be incorporated into the MRI gradient-field
induced voltage analysis workflow for accurately evaluating the
safety of implanted DBS systems.

CONCLUSION

We have integrated ML with computational modeling and
simulations and trained a neural network to predict MRI
gradient-field induced voltage levels on implanted DBS systems.
The predictive model is capable of producing thousands of
gradient-induced voltage predictions in less than a second
(speed-up of > 500-fold compared to EM simulation method)
with mean-squared-error less than 200 mV. The predictive
model developed in this study can be used to determine
clinically relevant MRI gradient-induced voltage exposure levels
on implanted DBS systems.

DATA AVAILABILITY STATEMENT

The datasets for this article are not publicly available
because datasets are Medtronic confidential. Requests
to access the datasets should be directed to ME,
arcan.a.erturk@medtronic.com.

AUTHOR CONTRIBUTIONS

ME conceived the study, performed the computational modeling
and simulations, trained the machine learning models, and
wrote the manuscript. EP helped with machine learning model
development and analysis. MC and JE helped with gradient-
induced voltage modeling and simulations. EP, MC, JC, and
RB helped with the study design. All authors reviewed and
edited the manuscript.

FUNDING

This work was funded by the Medtronic.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2020.00034/full#supplementary-material

Frontiers in Human Neuroscience | www.frontiersin.org 6 February 2020 | Volume 14 | Article 34

mailto:arcan.a.erturk@medtronic.com
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00034/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00034/full#supplementary-material
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00034 February 19, 2020 Time: 15:7 # 7

Erturk et al. DBS MRI Gradient-Induced Voltage

REFERENCES
Abu-Mostafa, Y. S., Magdon-Ismail, M., and Lin, H.-T. (2012). Learning From

Data. AMLbook. ISBN: 10:1-60049-006-9
Alsop, D. C., and Connick, T. J. (1996). Optimization of torque-balanced

asymmetric head gradient coils. Magn. Reson. Med. 43, 1259–1264. doi: 10.1002/
mrm.1910350614

Basser, P. J., and Pierpaoli, C. (1996). Microstructural and physiological features of
tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. Ser. B
111, 209–219. doi: 10.1006/jmrb.1996.0086

Bencsik, M., Bowtell, R., and Bowley, R. (2007). Electric fields induced
in the human body by time-varying magnetic field gradients in MRI:
numerical calculations and correlation analysis. Phys. Med. Biol. 52,
2337–2353.

Burrascano, P., Fiori, S., and Mongiardo, M. (1999). Review of artificial neural
networks applications in microwave computer-aided design. Int. J. RF Microw.
Comput. Eng. 9, 175–186. doi: 10.1002/(SICI)1099-047X

Chronik, B. A., Alejski, A., and Rutt, B. K. (2000). Design and fabrication of
a three-axis edge ROU head and neck gradient coil. Magn. Reson. Med. 44,
955–963.

Chronik, B. A., and Rutt, B. K. (2001). A comparison between human
magnetostimulation thresholds in whole-body and head/neck gradient coils.
Magn. Reson. Med. 46, 386–394. doi: 10.1002/mrm.1202

Cohen, O., Zhu, B., and Rosen, M. S. (2018). MR fingerprinting Deep
RecOnstruction NEtwork (DRONE). Magn. Reson. Med. 80, 885–894. doi: 10.
1002/mrm.27198

Crozier, S., Luescher, K., Hinds, G., Roffmann, W. U., and Doddrell, D. M.
(1999). Designs for an asymmetric gradient set and a compact superconducting
magnet for neural magnetic resonance imaging. Rev. Sci. Instrum. 70,
4062–4066.

Davids, M., Guérin, B., Malzacher, M., Schad, L. R., and Wald, L. L. (2017).
Predicting Magnetostimulation Thresholds in the Peripheral Nervous System
using Realistic Body Models. Sci. Rep. 7, 5316. doi: 10.1038/s41598-017-05493-
5499

Davids, M., Guérin, B., vom Endt, A., Schad, L. R., and Wald, L. L. (2019).
Prediction of peripheral nerve stimulation thresholds of MRI gradient coils
using coupled electromagnetic and neurodynamic simulations. Magn. Reson.
Med. 81, 686–701. doi: 10.1002/mrm.27382

Deist, T. M., Patti, A., Wnag, Z., Krane, D., Sorenson, T., Craft, D., et al. (2019).
Simulation-assisted machine learning. Bioinformatics 35, 4072–4080. doi: 10.
1093/bioinformatics/btz199

Falowski, S., Safriel, Y., Ryan, M. P., and Hargens, L. (2016). The Rate of Magnetic
Resonance Imaging in Patients with Deep Brain Stimulation. Stereotact. Funct.
Neurosurg. 94, 147–153. doi: 10.1159/000444760

Glover, P. M. (2009). Interaction of MRI field gradients with the human body. Phys.
Med. Biol. 54, R99–R115. doi: 10.1088/0031-9155/54/21/R01

Gosselin, M. C., Neufeld, E., Moser, H., Huber, E., Farcito, S., Gerber, L., et al.
(2014). Development of a new generation of high-resolution anatomical models
for medical device evaluation: the Virtual Population 3.0. Phys. Med. Biol. 59,
5287–5303. doi: 10.1088/0031-9155/59/18/5287

Ham, C. L. G., Engels, J. M. L., Van de Wiel, G. T., and Machielsen, A. (1997).
Peripheral nerve stimulation during MRI: Effects of high gradient amplitudes
and switching rates. J. Magn. Reson. Imaging 7, 933–937. doi: 10.1002/jmri.
1880070524

Herrington, T. M., Cheng, J. J., and Eskandar, E. N. (2016). Mechanisms of
deep brain stimulation. J. Neurophysiol. 115, 19–38. doi: 10.1152/jn.00281.
2015

Hughes, T., Veronis, G., Wootton, K. P., Joel England, R., and Fan, S. (2017).
Method for computationally efficient design of dielectric laser accelerator
structures. Opt. Exp. 25, 15414–15427. doi: 10.1364/oe.25.015414

Ianni, J. D., Cao, Z., and Grissom, W. A. (2018). Machine learning RF shimming:
Prediction by iteratively projected ridge regression. Magn. Reson. Med. 80,
1871–1881. doi: 10.1002/mrm.27192

ISO/TS-10974. (2018). Assessment Of The Safety Of Magnetic Resonance
Imaging For Patients With An Active Implantable Medical Device.
Geneva: ISO.

Kiarashinejad, Y., Abdollahramezani, S., Zandehshahvar, M., Hemmatyar, O., and
Adibi, A. (2019). Deep Learning Reveals Underlying Physics of Light-Matter

Interactions in Nanophotonic Devices. Adv. Theory Simulat. 2:1900088. doi:
10.1002/adts.201900088

Kim, Y., Keely, S., Ghosh, J., and Ling, H. (2007). Application of artificial neural
networks to broadband antenna design based on a parametric frequency
model. IEEE Trans. Antennas Propag. 55, 669–674. doi: 10.1109/TAP.2007.
891564

Kohl, S., Schönherr, D. M., Luigjes, J., Denys, D., Mueller, U. J., Lenartz, D., et al.
(2014). Deep brain stimulation for treatment-refractory obsessive compulsive
disorder: A systematic review. BMC Psychiatry 14:214. doi: 10.1186/s12888-
014-0214-y

Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet,
M., et al. (1986). MR imaging of intravoxel incoherent motions: Application
to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407.
doi: 10.1148/radiology.161.2.3763909

Lipsman, N., and Lozano, A. (2015). Deep Brain Stimulation for Psychiatric
Disorders. in Deep Brain Stimulation for Neurological Disorders: Theoretical
Background and Clinical Application. New York: Springer.

Lloyd, B. A., Cassara, A., Farcito, S., Neufeld, E., Chung, B. S., Park, J. S., et al.
(2018). “Reference Computational Human Phantoms for Evaluation of Safety
Thresholds for Peripheral Nerve Stimulation,” in Proc. Joint Annual Meeting
ISMRM-ESMRMB, (Paris).

McIntyre, C. C., Savasta, M., Kerkerian-Le Goff, L., and Vitek, J. L. (2004).
Uncovering the mechanism(s) of action of deep brain stimulation: Activation,
inhibition, or both. Clin. Neurophysiol. 115, 1239–1248. doi: 10.1016/j.clinph.
2003.12.024

McNab, J. A., Edlow, B. L., Witzel, T., Huang, S. Y., Bhat, H., Heberlein, K., et al.
(2013). The Human Connectome Project and beyond: Initial applications of
300mT/m gradients. Neuroimage 80, 234–245.

Meliadò, E. F., Raaijmakers, A. J. E., Sbrizzi, A., Steensma, B. R., Maspero, M.,
Savenije, M. H. F., et al. (2019). A deep learning method for image-based
subject-specific local SAR assessment. Magn. Reson. Med. 83, 695–711. doi:
10.1002/mrm.27948

Neufeld, E., Lloyd, B., Schneider, B., Kainz, W., and Kuster, N. (2018).
Functionalized anatomical models for computational life sciences. Front.
Physiol. 9:1594. doi: 10.3389/fphys.2018.01594

Nyenhuis, J. A. (2003). Interactions of Medical Implants With The Magnetic Fields
in MRI in Proceedings of the 25th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. Piscataway, NJ: IEEE Cat.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., and Thirion, B. (2011).
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Pérez, A., Martínez-Rosell, G., and De Fabritiis, G. (2018). Simulations meet
machine learning in structural biology. Curr. Opinion Struct. Biol. 49, 139–144.
doi: 10.1016/j.sbi.2018.02.004

Schaefer, D. J., Bourland, J. D., and Nyenhuis, J. A. (2000). Review of patient safety
in time-varying gradient fields. J. Magn. Reson. Imaging 12, 20–29.

Schläpfer, T. E., and Kayser, S. (2014). Deep brain stimulation for treatment-
resistant depression. Klin. Neurophysiol. 45, 113–117. doi: 10.1055/s-0034-
1375605

Tahersima, M. H., Kojima, K., Koike-Akino, T., Jha, D., Wang, B., Lin, C., et al.
(2019). Deep Neural Network Inverse Design of Integrated Photonic Power
Splitters. Sci. Rep. 9:1368. doi: 10.1038/s41598-018-37952-37952

Tan, E. T., Hua, Y., Fiveland, E. W., Vermilyea, M. E., Piel, J. E., Park, K. J., et al.
(2019). Peripheral nerve stimulation limits of a high amplitude and slew rate
magnetic field gradient coil for neuroimaging. Magn. Reson. Med. 83, 352–366.
doi: 10.1002/mrm.27909

Tang, F., Liu, F., Freschi, F., Li, Y., Repetto, M., Giaccone, L., et al. (2016).
An improved asymmetric gradient coil design for high-resolution MRI head
imaging. Phys. Med. Biol. 61, 8875–8889.

Tolk, A. (2015). The Next Generation of Modeling & Simulation: Integrating Big
Data and Deep Learning. in Proceedings of the Conference on Summer Computer
Simulation. Vista, CA: Society for Computer Simulation International,
1–8.

Turner, R., Le Bihan, D., Maier, J., Vavrek, R., Hedges, L. K., and Pekar, J. (1990).
Echo-planar imaging of intravoxel incoherent motion. Radiology 177, 407–414.
doi: 10.1148/radiology.177.2.2217777

V&V 40. (2018). Assessing Credibility of Computational Modeling
through Verification and Validation: Application to Medical Devices.
https://www.asme.org/codes-standards/find-codes-standards/v-v-40-

Frontiers in Human Neuroscience | www.frontiersin.org 7 February 2020 | Volume 14 | Article 34

https://doi.org/10.1002/mrm.1910350614
https://doi.org/10.1002/mrm.1910350614
https://doi.org/10.1006/jmrb.1996.0086
https://doi.org/10.1002/(SICI)1099-047X
https://doi.org/10.1002/mrm.1202
https://doi.org/10.1002/mrm.27198
https://doi.org/10.1002/mrm.27198
https://doi.org/10.1038/s41598-017-05493-5499
https://doi.org/10.1038/s41598-017-05493-5499
https://doi.org/10.1002/mrm.27382
https://doi.org/10.1093/bioinformatics/btz199
https://doi.org/10.1093/bioinformatics/btz199
https://doi.org/10.1159/000444760
https://doi.org/10.1088/0031-9155/54/21/R01
https://doi.org/10.1088/0031-9155/59/18/5287
https://doi.org/10.1002/jmri.1880070524
https://doi.org/10.1002/jmri.1880070524
https://doi.org/10.1152/jn.00281.2015
https://doi.org/10.1152/jn.00281.2015
https://doi.org/10.1364/oe.25.015414
https://doi.org/10.1002/mrm.27192
https://doi.org/10.1002/adts.201900088
https://doi.org/10.1002/adts.201900088
https://doi.org/10.1109/TAP.2007.891564
https://doi.org/10.1109/TAP.2007.891564
https://doi.org/10.1186/s12888-014-0214-y
https://doi.org/10.1186/s12888-014-0214-y
https://doi.org/10.1148/radiology.161.2.3763909
https://doi.org/10.1016/j.clinph.2003.12.024
https://doi.org/10.1016/j.clinph.2003.12.024
https://doi.org/10.1002/mrm.27948
https://doi.org/10.1002/mrm.27948
https://doi.org/10.3389/fphys.2018.01594
https://doi.org/10.1016/j.sbi.2018.02.004
https://doi.org/10.1055/s-0034-1375605
https://doi.org/10.1055/s-0034-1375605
https://doi.org/10.1038/s41598-018-37952-37952
https://doi.org/10.1002/mrm.27909
https://doi.org/10.1148/radiology.177.2.2217777
https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices?productKey=C0841Q:C0841Q
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00034 February 19, 2020 Time: 15:7 # 8

Erturk et al. DBS MRI Gradient-Induced Voltage

assessing-credibility-computational-modeling-verification-validation-
application-medical-devices?productKey=C0841Q:C0841Q (accessed March
1, 2019).

Vinding, M. S., Skyum, B., Sangill, R., and Lund, T. E. (2019). Ultrafast
(milliseconds), multidimensional RF pulse design with deep learning. Magn.
Reson. Med. 82, 586–599. doi: 10.1002/mrm.27740

Weiger, M., Overweg, J., Rösler, M. B., Froidevaux, R., Hennel, F., Wilm, B. J.,
et al. (2018). A high-performance gradient insert for rapid and short-T2
imaging at full duty cycle. Magn. Reson. Med. 79, 3256–3266. doi: 10.1002/mrm.
26954

Wong, E. C., Jesmanowicz, A., and Hyde, J. S. (1991). High-resolution, short echo
time MR imaging of the fingers and wrist with a local gradient coil. Radiology
181, 393–397. doi: 10.1148/radiology.181.2.1924778

Young, I. R., Khenia, S., Thomas, D. G., Davis, C. H., Gadian, D. G., Cox, I. J., et al.
(1987). Clinical magnetic susceptibility mapping of the brain. J. Comput. Assist.
Tomogr. 11, 182–183. doi: 10.1097/00004728-198701000-198701002

Zhang, B., Yen, Y. F., Chronik, B. A., McKinnon, G. C., Schaefer, D. J.,
Rutt, B. K., et al. (2003). Peripheral nerve stimulation properties of

head and body gradient coils of various sizes. Magn. Reson. Med. 50,
50–58.

Zhao, H., Crozier, S., and Liu, F. (2002). Finite difference time domain (FDTD)
method for modeling the effect of switched gradients on the human body in
MRI. Magn. Reson. Med. 48, 1037–1042.

Conflict of Interest: The authors declare that this study received funding from
Medtronic. The funder had the following involvement with the study: study design,
collection, analysis, interpretation of data, the writing of this article, and the
decision to submit it for publication.

Copyright © 2020 Erturk, Panken, Conroy, Edmonson, Kramer, Chatterton and
Banerjee. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 8 February 2020 | Volume 14 | Article 34

https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices?productKey=C0841Q:C0841Q
https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices?productKey=C0841Q:C0841Q
https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices?productKey=C0841Q:C0841Q
https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices?productKey=C0841Q:C0841Q
https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices?productKey=C0841Q:C0841Q
https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices?productKey=C0841Q:C0841Q
https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices?productKey=C0841Q:C0841Q
https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices?productKey=C0841Q:C0841Q
https://doi.org/10.1002/mrm.27740
https://doi.org/10.1002/mrm.26954
https://doi.org/10.1002/mrm.26954
https://doi.org/10.1148/radiology.181.2.1924778
https://doi.org/10.1097/00004728-198701000-198701002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Predicting in vivo MRI Gradient-Field Induced Voltage Levels on Implanted Deep Brain Stimulation Systems Using Neural Networks
	Introduction
	Background
	Methods
	EM Simulation Methodology and Dataset Generation
	Feature Selection
	Machine Learning Algorithm Selection and Model Parameter Optimization
	Neural Network Predictive Model Performance Evaluation
	Software Used

	Results
	Data Exploration
	Algorithm Selection
	Neural Network Model Evaluation

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


