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Children with unilateral cerebral palsy (CP) walk independently although with an
asymmetrical, more poorly coordinated pattern compared to their peers. While gait
biomechanics in unilateral CP and their alteration from those without CP have been
well documented, cortical mechanisms underlying gait remain inadequately understood.
To the best of our knowledge, this is the first study utilizing electroencephalography
(EEG) during treadmill gait in older children with and without CP. Lower limb surface
electromyographic (EMG) data were collected and muscle synergy analyses performed
to quantify motor output. Our primary goal was to evaluate the relationships between
cortical and muscle activation within and across groups and hemispheres to provide
novel insights into neural control of gait and how it may be disrupted by an early
unilateral brain injury. Participants included 9 children with unilateral CP, mean age
16.0 ± 2.7 years, and 12 with typical development (TD), mean age 14.8 ± 3.0 years.
EEG data were collected during a standing baseline and treadmill walking at self-
selected speed. EMG of 16 lower limb muscles were also collected bilaterally and
synchronized with EEG. No significant group differences were found in synergy number
or structure across groups. Six cortical clusters were identified as having gait-related
activation and all contained participants from both CP and TD groups; however, the
percent of individuals per group appearing in different clusters varied. Notably, the cluster
least represented in CP was the non-dominant motor region. Both groups showed mu-
band ERD in the motor clusters during gait although sustained beta-band ERD was
not evident in TD. The CP group showed greater cortical activation than TD during
walking as measured by mu- and beta-ERD in the dominant and non-dominant motor
and parietal regions and elevated low gamma-activity in the frontal and parietal areas,
a unique finding in CP. CP showed greater bilateral motor EEG-EMG coherence in the
gamma-band with the hallucis longus compared to TD. In summary, individuals with
CP display increased cortical activation during gait possibly relating to differences in
distal motor control of the more affected side. Strategies that iteratively reduce cortical
activation while improving selective motor control are needed in CP.

Keywords: electroencephalography, hemiplegia, muscle synergies, coherence, walking, pediatric,
electromyography
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INTRODUCTION

Cerebral palsy (CP) describes a group of functional motor
disabilities that are the consequences of brain injuries early
in development. Movement difficulties may be predominantly
unilateral (one side of the body) or bilateral (both sides), and
the range of disability can vary from mild coordination problems
to being totally dependent for mobility and care, as categorized
by the Gross Motor Functional Classification System (GMFCS)
(Palisano et al., 1997). Nearly all children with unilateral CP
learn to walk independently. However, their motor patterns and
coordination differ from their peers without CP with distal limb
involvement most prominent (Winters et al., 1987). While gait
analysis has been used extensively to describe temporal, spatial
and kinematic characteristics of walking in unilateral CP, the
cortical mechanisms that influence gait function in CP are not
well understood and are likely to vary across and within CP
subtypes, and perhaps are best characterized at the individual
level (Weinstein et al., 2018).

The advancement of mobile neuroimaging technologies
[e.g., functional near infrared spectroscopy (fNIRS) and
electroencephalography (EEG)] and associated signal processing
techniques have provided novel insights on the role of cortical
activity in walking. fNIRS measures the concentration of
oxygenated and de-oxygenated hemoglobin in cortical tissue,
corresponding to changes in neural activity. Gait-related
increases in hemodynamic activity have been reported in
multiple brain regions using fNIRS, including prefrontal,
premotor, primary motor and supplementary motor areas
(Miyai et al., 2001; Suzuki et al., 2004). Walking tasks of greater
complexity (Koenraadt et al., 2014) or requiring increased
precision (Kurz et al., 2012) have been shown to further elevate
hemodynamic activity.

Electroencephalography has a higher temporal resolution than
hemodynamic methods such as fNIRS and therefore is commonly
used to quantify movement planning and execution. Despite
its low spatial resolution, high density EEG provides scalp
coverage that, when combined with sophisticated processing,
can resolve movement-related activations to focal scalp and/or
source regions. Notably, recent EEG studies have shown that
modulation of cortical activity in multiple frequency bands and
originating from distinct brain regions is coupled with gait cycle
phases during walking in healthy adults (Gwin et al., 2011;
Severens et al., 2012; Seeber et al., 2014; Bradford et al., 2015;
Bulea et al., 2015). This cortical activity is typically evaluated
using relative changes in the power spectra over time, termed
event-related spectral perturbations (ERSPs) (Makeig, 1993).
When computed for analysis of activity within a stride, ERSPs
represent differences in spectral power between a given time
point in the gait cycle relative to the mean. Cortical involvement
in gait can also be characterized by increases or decreases
in spectral power relative to a quiet baseline (e.g., standing),
termed event-related synchronization (ERS) or event-related
desynchronization (ERD), respectively. Mu- (8–13 Hz) and beta-
(14–30 Hz) band ERD in the motor areas of the brain are well
established correlates of movement preparation and execution
while beta-ERS has been associated with movement suppression

or inhibition (Pfurtscheller and Da Silva, 1999; Solis-Escalante
et al., 2012). During walking in adults, mu- and beta-ERD have
been reported in the sensorimotor and posterior parietal regions
relative to quiet standing (Severens et al., 2012; Seeber et al.,
2014; Bulea et al., 2015). Mu- and beta-ERD magnitude also
appear to be proportional to task difficulty as studies have found
enhanced ERD in more challenging walking conditions such as
those requiring active speed control (Bulea et al., 2015; Nordin
et al., 2019), walking with robotic assistance (Wagner et al., 2012)
and during adaptation of step length in response to perturbations
(Wagner et al., 2016). Cortical modulations in other frequency
bands, in particular low gamma (25–50 Hz), have also been
identified during gait in prefrontal, sensorimotor and parietal
areas with preliminary evidence suggesting that these rhythms
may also be task-related given their modulation across different
walking tasks (Wagner et al., 2012, 2014; Bulea et al., 2015;
Seeber et al., 2015).

Because of the relatively low signal-to-noise ratio, EEG
signals recorded from scalp electrodes during walking contain
broadband contamination from movement-related artifacts
(Castermans et al., 2014; Kline et al., 2015). However, studies
have also shown that decomposition of EEG channels using
principal component analysis applied over sliding windows
(Mullen et al., 2013; Bulea et al., 2014) and independent
component analysis (ICA) (Snyder et al., 2015) can parse
movement artifacts from cortical activity based on their power
spectra, scalp maps, dipolarity, time-frequency decompositions
and lack of correlation with neighboring channels (i.e., volume
conduction). The same techniques can also be used to separate
electrocortical activity from physiological sources of artifact such
as scalp and neck EMG, EOG, and EKG and non-physiological
noise such as parasitic voltage drops from sudden skin-electrode
impedance changes and electrical line noise (Makeig et al., 1996;
Delorme et al., 2012). Thus, careful application of advanced
signal processing techniques is necessary to ensure that the ERSPs
and ERD/ERS computed from EEG collected during walking
represent signal changes originating from the cortex.

While data are beginning to accumulate in healthy adults,
studies that utilize mobile neuroimaging techniques to evaluate
gait in typically developing children or in individuals with brain
injuries are very limited, especially in children with CP. One
small pilot study found that children with bilateral CP exhibited
increased sensorimotor and parietal activity during walking
compared to children without CP, as measured with fNIRS
(Kurz et al., 2014). Perhaps relevant to gait performance, another
study showed that children with bilateral CP demonstrated
stronger beta-band ERD in the premotor cortex and mu-band (or
alpha-band) ERD, measured via magnetoencephalography, in the
anterior cingulate cortex during the motor execution phase of a
knee extension task (Kurz et al., 2017). To our knowledge, this is
the first EEG study of walking in CP as well as in a healthy pediatric
cohort. In upper limb tasks, EEG-based studies have found that,
compared to children with typical development, individuals with
child-onset brain injury (before age 13) have reduced ERD in
the affected hemisphere during wrist extension (Kukke et al.,
2015), hand grasping (Weinstein et al., 2018), and reach to grasp
(Inuggi et al., 2018).
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Muscle activation patterns as assessed by electromyography
(EMG) have long been regarded as a major source of indirect
evidence of central nervous system (CNS) control. Human
gait involves extensive integration of CNS commands (e.g.,
supraspinal and spinal circuitry) and peripheral feedback,
resulting in the coordinated recruitment of multiple muscles.
Recent studies in the field of motor control have posed numerous
theories regarding the characterization and quantification of
modular control strategies describing this recruitment (Latash
et al., 2007; d’Avella et al., 2015). One widely recognized
interpretation of modularity suggests that groups of muscles are
recruited via synergies representing motor outputs organized by
the CNS (Tresch et al., 2002; Ivanenko et al., 2004; d’Avella and
Bizzi, 2005). Sets of muscle synergies constitute task-specific and
low-dimensional decompositions of complex movements. In this
way, functional behaviors that require high-level coordination
and balance, such as gait, are spatiotemporally simplified, thus
minimizing the issues of redundancy in muscle recruitment and
kinematic degrees-of-freedom. For example, previous studies
have shown that six or fewer synergies, identified through
non-negative matrix factorization (NNMF) of lower-limb EMG
signals, account for over 90% variance of the EMG activity
associated with asymptomatic walking patterns (Ivanenko et al.,
2004; Chvatal and Ting, 2012; Kim et al., 2016). Furthermore,
these synergies appear to activate concurrently with one or
more phases of locomotion such as forward propulsion and leg
deceleration during swing.

In individuals with brain injuries, the number of synergies
identified during walking (based on the aforementioned 90%
variance criteria) is reduced (Clark et al., 2009; Kim et al.,
2018); and a lower synergy number has been shown to correlate
with greater clinical severity in individuals post-stroke (Bowden
et al., 2010) and with CP (Hashiguchi et al., 2018). Additionally,
synergy structures exhibited by children with CP across a bout
of walking show higher variability than by those with typical
development (Kim et al., 2018) while maintaining repeatable
weighting and activation matrices at the individual level (Steele
et al., 2019) during overground walking.

In this study, we evaluated and compared cortical and muscle
activation patterns in age-matched children with unilateral CP
and typical development (TD) during treadmill walking. EEG
source localization was used to examine and compare group
and hemispheric differences in cortical activation in multiple
brain regions. Cluster analysis of identified muscle synergies,
as described previously (Kim et al., 2016, 2018), was utilized
for the comparison of muscle activation patterns across groups.
Finally, corticomuscular coherence was performed to relate
cortical and EMG data. We did not expect to find a different
number of cortical sources involved in gait between groups but
hypothesized that there would be differences in the magnitude,
extent and location of cortical activation, particularly in the
sensorimotor areas of the predominantly affected hemisphere of
those with unilateral CP. We also expected group differences in
the power spectra modulation within the gait cycle. Consistent
with previous gait studies, we hypothesized that the CP group
would exhibit fewer synergies per stride on average as well as a
broader range of synergy structures compared to the TD group.

Finally, we hypothesized that children with TD and CP would
display mu- and beta-band desynchronization during the gait
cycle overlapping with significant synergy activations and that
these relationships may differ in CP. The overall goal of this
project was to link cortical and peripheral mechanisms and/or
output to identify potential novel targets for neurorehabilitation
aimed at improving mobility in those with unilateral CP.

MATERIALS AND METHODS

Participants
In this study, participants included 9 children with unilateral CP
(7 females, 2 males; age: 16.0 ± 2.7 years) and 12 with TD (8
females, 4 males; age: 14.8 ± 3.0 years) (Table 1). In recruiting
for this experiment, participants with TD were selected as age-
matched controls. There were no significant differences in mean
age (p = 0.345, independent t-test), height (p = 0.922) or weight
(p = 0.556) between groups. Of the nine children with CP, six were
GMFCS Level I and three were Level II (Table 1). This protocol
was approved by the Institutional Review Board (#13-CC-0110).
All participants and legal guardians provided informed assent
and consent before participating, respectively.

Procedure and Data Collection
The data analyzed in this study were part of a larger protocol
investigating cortical and muscle activation differences across
different treadmill walking conditions in children with CP and
TD. Prior to data collection, each participant’s preferred treadmill
walking speed was determined based on average pelvic velocity
during overground walking, adjusted according to their level of
comfort while walking on the treadmill. Participants walked for
5 min at this self-selected speed during data collection. Prior to
the walking trials, participants were instructed to stand still for
2 min to obtain a non-walking (resting) baseline.

A 64-channel, wireless, active electrode EEG system (Brain
Products, Morrisville, NC, United States) was positioned on
each participant’s head using the 5% 10–20 international system
(Easy Cap, Germany) for electrode placement and FCz as
reference. Electrode impedance was maintained below 20 k�
throughout the experiment. EEG data were collected at 1000 Hz.
EMG was recorded wirelessly (Trigno Wireless, Delsys, Boston,
MA, United States) at 1000 Hz from bipolar surface electrodes
positioned bilaterally on the tibialis anterior (TA), medial
gastrocnemius (MG), soleus (SOL), peroneus longus (PL), rectus
femoris (RF), vastus lateralis (VL), medial hamstrings (MH) and
hallucis longus (HL). Kinematic data were collected using ten
motion capture cameras (Vicon, Denver, CO, United States) at
100 Hz. Reflective markers were placed over anatomic locations
on the pelvis and lower extremities and kinematic data collection
was synchronized with both EMG and EEG recordings via
manual trigger. After the experiment, motion capture data were
processed offline using Visual 3D (C-Motion, Germantown, MD,
United States). All other data analyses were performed using
custom scripts in Matlab (Mathworks, Natick, MA, United States)
in conjunction with functions from the EEGLAB v13 software
(Delorme and Makeig, 2004).
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TABLE 1 | Participant Demographics.

Age (yrs) Height (cm) Weight (kg) Handedness Gender GMFCS

CP1 14 162 43.7 Right Female I

CP2 21 166 54.0 Left Female II

CP3 12 149 41.2 Right Female I

CP4 16 180 89.2 Left Male I

CP5 17 161 75.7 Right Female I

CP6 17 178 63.3 Right Male I

CP7 13 156 51.1 Left Female II

CP8 17 156 57.2 Left Female I

CP9 17 174 82.9 Left Female II

TD1 14 171 56.5 Right Male –

TD2 14 167 81.6 Right Female –

TD3 16 165 56.4 Right Female –

TD4 18 166 62.8 Right Female –

TD5 16 171 92.4 Right Female –

TD6 14 154 50.5 Right Male –

TD7 17 160 73.9 Right Female –

TD8 18 177 100.4 Right Male –

TD9 16 164 65.9 Right Female –

TD10 13 168 63.9 Right Female –

TD11 7 123 20.8 Right Female –

TD12 15 183 81.1 Right Male –

Gross motor functional classification system (GMFCS).

Motion Capture Analysis
Kinematic data from foot markers and force plate data were
used to segment walking trials into gait cycles comprised of a
dominant heel-strike (DHS) followed by a non-dominant toe-off
(nDTO), a non-dominant heel-strike (nDHS), a dominant toe-off
(DTO) and ending just before the next DHS. The synchronized
EEG and EMG data were similarly segmented into gait cycles.
After gait cycle segmentation, gait speed, cadence, stance time
and step length (distance between feet at DHS and nDHS) were
extracted from the kinematics and compared across groups using
independent t-tests (alpha = 0.05, two-tailed).

EEG Data Analysis
EEG channel data were high-pass filtered at 1 Hz (5th order
Butterworth). The filtered datasets of walking and quiet standing
conditions were then concatenated to create a single, merged
set for each subject. Channels were removed from the merged
set based on the following criteria: prolonged, flat-line periods
longer than 5 s, significant noise contamination indicated by
a kurtosis greater than 4 standard deviations from the mean
and channels insufficiently correlated with neighboring channel
activity (r < 0.7) (Gwin et al., 2011). Channels removed
from the merged data set were also removed from each
individual condition (walking and standing). An average of 61
acceptable channels were retained per subject (range: 53–64).
One participant in the TD group was excluded from EEG analysis
because of an excessive number of noisy channels (n = 36).
Next, an artifact subspace reconstruction (ASR) algorithm was
utilized to remove movement related artifact and improve the
accuracy of subsequent independent component analysis and

source localization (Mullen et al., 2013). In brief, ASR identifies
time periods which contain high amplitude artifacts in EEG
data by comparison with a calibration EEG dataset recorded
from the same subject. Channels identified to contain artifacts
within each time window are removed and reconstructed from
neighboring channels using a covariance matrix computed from
the calibration data. For our analysis, a variance threshold of 4
standard deviations and a sliding window of 400 ms were used
to identify channels containing corrupted data. The calibration
dataset was derived from the merged (standing rest and walking)
set, excluding time points where the fraction of removed channels
using the above criteria was greater than 0.075. After ASR, EEG
data were re-referenced to a common average. Channels that were
removed were interpolated prior to common average referencing,
but were not included in any subsequent analysis.

An extended independent component analysis algorithm
(RUNICA) was applied to the merged, ASR-cleaned datasets
(Makeig et al., 1996). RUNICA is a blind source separation
technique that transforms EEG channel data containing cortical
and non-cortical sources into static, spatially distinct and
temporally independent components (ICs). Because ASR
can potentially attenuate and/or remove cortical signals of
physiological relevance, only the sphering and weighting
matrices produced by the RUNICA decomposition of the ASR-
cleaned data were kept for further analysis (Bulea et al., 2015).
The IC sphering and weighting matrices were then applied to the
preprocessed, unmerged datasets associated with each subject’s
treadmill walking and standing conditions. These individual
datasets were subject to the same process for noisy channel
removal and common average referencing as the merged dataset,
but were not subject to ASR. The best fitting dipole for each
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IC was computed using the DIPFIT toolbox in EEGLAB with a
template 3-shell boundary element head model (Oostenveld and
Oostendorp, 2002). EEG channel locations for each individual
were warped to match the MNI brain template (Montreal
Neurological Institute, Quebec, Canada) before dipole fitting.
ICs with equivalent dipole fits containing greater than 20%
residual variance (RV) were rejected (Bulea et al., 2015).

For the retained ICs of each subject, walking epochs (3 s in
duration) were extracted starting 1 s before DHS to ensure a
complete stride in each. Non-overlapping baseline epochs (3 s
in duration) were generated from the quiet standing condition.
Walking and standing epochs were rejected if the IC magnitude
exceeded a manually determined noise threshold of 20 µV for
more than one IC at any time point. To maintain consistency
between measures, the same set of epochs were retained for the
EEG and raw EMG data.

Power spectral density (PSD) was computed with a Fast
Fourier Transform (FFT) for each walking epoch (0–500 Hz).
We then computed the time-frequency decomposition [2–
50 Hz, 400 points, time-warped to the median gait event
latencies across groups (Bulea et al., 2015)] with FFT for
the IC walking epochs to obtain gait cycle spectrograms.
ERSPs were computed by subtracting the mean spectral
power (averaged across time points and strides) from the
epoched walking spectrograms (Gwin et al., 2011). Gait-related
ICs were identified as those which had significant power
modulations within the ERSP; significance thresholds were
computed for ERSPs using the bootstat function in EEGLAB
(1000 points of surrogate data shuffled across time points and
strides, alpha = 0.05, two-tailed). Scalp topographies, PSDs
and time-frequency decompositions were visually inspected to
confirm and remove of any remaining artifactual components
from each dataset (e.g., EMG components which have high
power modulations above 20 Hz and topographies located
at the periphery of the head model). An average of 5
dipoles were retained (range: 3–9) for each subject. One
participant in the CP group was excluded from further IC
analyses as no dipoles were retained (all but 2 ICs for this
subject had greater than 20% residual variance; the remaining
2 were removed based on the above criteria). To assess
cortical activity relative to rest, time-frequency decompositions
(2–50 Hz, 400 points) were computed for the standing
epochs; standing spectrograms (averaged across time points
and epochs) were subsequently subtracted from the epoched
walking spectrograms to produce gait-related ERD/ERS plots
(Bulea et al., 2015).

Finally, ICs from both groups (CP and TD) were pooled
and clustered globally by k-means using parameters from
ERSPs (ERSP magnitudes from 8 to 30 Hz), PSD (2–50 Hz),
scalp topographies (absolute value) and dipole coordinates
(Talairach space). The first ten dimensions identified by principal
component analysis (PCA) were retained for each clustering
measure except for the dipole coordinates (3 dimensions) (Gwin
et al., 2010; Bulea et al., 2015). The resulting feature vector
was further reduced to 17 principal dimensions with PCA.
Previous studies have used feature vectors incorporating some
combination of dipole locations, scalp projections and PSD for

clustering brain ICs with k-means (Gwin et al., 2010; Bulea
et al., 2015; Luu et al., 2017). Because dipole locations and scalp
projections were expected to be more variable across subjects
in the CP group, we chose to include ERSPs in the feature
space to more stringently classify the cortical function of each
IC. The k-value was set to the total number of components
divided by the total number of subjects across groups, rounded
up to the nearest whole number. An IC was reallocated to an
outlier cluster if it was 3 or more standard deviations from
its assigned cluster centroid. For post hoc comparisons, global
clusters were split into two subclusters: one containing the ICs
from CP participants and one with ICs from TD participants.
Owing to the unilateral involvement of our CP cohort, IC
clusters that were lateralized and symmetric about the midline
were reorganized from left and right to dominant (less affected)
and non-dominant (more affected) clusters based on clinical
assessment by the study physician in CP and the Edinburgh
Handedness Inventory (Oldfield, 1971) in TD. In this data-driven
approach to clustering, it is expected that not all individuals
will appear in a given cluster. Overall, this method allowed
for a more functionally relevant and direct comparison of
ICs across groups.

Grand mean cluster ERSPs were computed by subtracting
the mean spectral power (averaged globally across all time
points and strides); significance thresholds for these ERSPs
were recomputed using the bootstat function in EEGLAB
(1000 points of surrogate data shuffled across time points and
strides, alpha = 0.05, two-tailed). ERD/ERS plots were averaged
across strides for each IC cluster. To compare the ERSPs
and ERD/ERS between groups, a non-parametric bootstrapping
function, condstat, was implemented in EEGLAB (1000 points
of surrogate data shuffled across strides, alpha = 0.05, two-
tailed). Time points exhibiting significant reduction in power
(suppression) in the ranges of 8 to 13 Hz (mu-band) and
14 to 30 Hz (beta-band), respectively, were also marked for
each IC. Previous studies have shown that frequency bands
of motor related ERD can vary by age in children (Cuevas
et al., 2014), however, no differences in group level ERD results
were found when individual specific mu- and beta-bands were
used in our cohort.

EMG Data Analysis
Electromyographic channel data were detrended, high-pass
filtered (3rd order Butterworth, 35 Hz), full-wave rectified and
low-pass filtered (3rd order Butterworth, 5 Hz) to create linear
envelopes. Each EMG envelope was segmented by gait cycle
(DHS to DHS), normalized by the maximum activation value
per channel in each gait cycle and time-interpolated (cubic
spline) to 150 points. EMG signals were linearly time-warped
using the built-in EEGLAB function, timewarp (Delorme and
Makeig, 2004) to match the EEG data and ensure gait events
occurred at the same median latency across outcome measures.
The resulting EMG signals were averaged across strides for each
individual subject.

For each participant, muscle synergies were extracted from
the pre-processed, averaged EMG data using non-negative
matrix factorization (NNMF) (Lee and Seung, 1999). NNMF
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decomposes a set of EMG into weighting and activation matrices
as described by the following equation:

EMGo =

n∑
i=1

WiCi + e; EMGr =

n∑
i=1

WiCi

where, EMGo is the original, mean EMG matrix (muscles x time),
n is the number of muscle synergies ranging from one to sixteen,
W is a synergy matrix (muscles × n) representing weighting
coefficients of individual synergies, C is a synergy matrix (n
× time) representing temporal profiles of synergy activations
and e is the residual error. Matrix multiplication of W and C
results in the reconstructed EMG matrix, EMGr (muscles ×
time). Here, a 16-synergy reconstruction is equivalent to the
original set of processed EMG signals. To prevent a local minima,
the NNMF procedure was performed with 100 replicates for
each synergy number.

Synergy number was determined by the total variance
accounted for (VAF), computed as follows:

VAF = 1−
||EMGo − EMGr||

2

||EMGo − mEMGo||2

where mEMGo is the channel-wise average of EMGo. We set a
VAF threshold of 90% as in previous studies (Kim et al., 2016,
2018) and selected the lowest synergy number that satisfied this
requirement. The weighting coefficients and activation profiles
were normalized by the maximum channel weightings and
activation values, respectively, confining the magnitude of each
synergy to a range of 0 to 1.

To match similar synergies within each group, k-means
clustering with 100 replicates was utilized with squared-
Euclidean distance as the evaluative distance metric. Although
previous gait studies have clustered synergies using only
weighting coefficients (Steele et al., 2015; Kim et al., 2016, 2018;
Shuman et al., 2016) here we added the latency of peak synergy
activation during the normalized gait cycle (16 weights + 1 peak
time index = 17-dimensional feature space) for clustering. The
peak time index was divided by the length of the normalized
time vector to ensure equal parameter weighting. Incorporating
this temporal index is advantageous for correctly classifying and
separating synergies which have similar weight coefficients, but
differ in the time domain. Calinski-Harabasz (CH) index was
used to evaluate the separation between synergies of different
clusters and compactness of synergies within each cluster
(squared-Euclidean distance) (Maulik and Bandyopadhyay, 2002;
Cappellini et al., 2016). Clustering was repeated 100 times with
k-values of two to the total number of synergies in each group; the
k-value that produced the local maximum in the corresponding
CH indices was identified as the optimal number. The most
frequently occurring optimal cluster number and the greatest
CH index across the 100 iterations was selected for further
analysis. Finally, synergy cluster compactness within groups and
clusters was computed using the mean intraclass correlation
coefficient (ICC).

Synergy-IC Overlap
As a preliminary comparison of brain and muscle activity, we
explored the relationship between IC and synergy activity at the
group level for each IC cluster. Synergy activations extracted
from individuals contained in each cluster were averaged and
the overlap between significant periods of cluster mean ERSP
modulation and temporal synergy activation was quantified.
Percentage overlap (rather than correlation coefficient) was
chosen due to the different frequency content between ERSP and
synergy activation signal to provide a descriptive examination
of the correlation between the brain and peripheral activity.
Significant ERSP modulations were defined as above. Significant
periods of synergy activation were marked as regions that
exceeded half of the maximum temporal profile after offset
subtraction and overlap were visually compared between
significant ERSP modulations and synergy activations at the
group level. The proposed analysis makes no assumptions
regarding the type of relationship between cortical signals and
synergy activations as in previously described, regression-based
studies (Pirondini et al., 2017; Pei et al., 2019) and is used only as
a preliminary investigation.

EMG-IC Coherence
Coherence between EMG channels and IC activations for the
motor clusters (DM, NDM) was evaluated by computing the
coherence between high-pass filtered (5th order Butterworth,
1 Hz) and rectified EMG signals and IC activations, both
linearly time-warped by median gait cycle latencies. EMG-
IC cross-coherence was computed using zero-padded FFT
across fixed-windows (400 time points, 2–50 Hz, newcross
in EEGLAB) and was masked for significance using bootstat
(1000 points of surrogate data shuffled across time points and
strides, alpha = 0.05). Coherence values are complex numbers
and therefore can be decomposed into phase and magnitude
components. Phase, in this computation, represents the time lag
between input signals and can be used to determine which signal
is leading/lagging relative to the gait cycle. For visualization of
efferent activity, we additionally masked coherence magnitude
plots to only display time points where IC activations were
leading EMG signals.

RESULTS

Spatiotemporal Metrics
Non-dominant limb stance time relative to the gait cycle was
significantly lower in the CP group (TD: 67.2 ± 0.90%, CP:
64.2 ± 2.30%; p < 0.001) with no significant difference in
dominant limb stance time between groups (Table 2). There were
no significant differences in mean treadmill speed, normalized
step length and cadence between groups (Table 2), however,
mean walking speed (TD: 0.99 ± 0.11 m/s, CP: 0.89 ± 0.10 m/s;
p = 0.053), non-dominant step length (TD: 0.30 ± 0.02, CP:
0.29 ± 0.02; p = 0.052), and non-dominant limb cadence (TD:
104 ± 5.74 step/min, CP: 96.1 ± 10.9 steps/min; p = 0.055)
were all greater in TD, but failed to reach statistical threshold.
Comparing across limbs in the CP group, stance time (p < 0.001)
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TABLE 2 | Spatiotemporal metrics during treadmill walking.

Preferred treadmill speed (m/s) Normalized step lengtha Stance time (%) Cadence (steps/min)

Non-dominant Dominant Non-dominant Dominant Non-dominant Dominant Average

TD 0.99 ± 0.11 0.30 ± 0.02 0.31 ± 0.01 67.2 ± 0.90 67.4 ± 0.82 104 ± 5.74 104 ± 4.92 104 ± 5.17

CP 0.89 ± 0.10 0.29 ± 0.02 0.30 ± 0.03 64.2 ± 2.30 68.4 ± 1.61 96.1 ± 10.9 108 ± 10.8 102 ± 10.1

p 0.053 0.052 0.539 <0.001 0.072 0.055 0.287 0.598

Mean ± standard deviation; Bold values indicate significant differences between groups (p < 0.05, independent t-test) aStep length was normalized by participant
height in meters.

and cadence (p = 0.002) were significantly lower in the non-
dominant compared to dominant limb with no difference in
normalized step length.

EEG Component Clusters
At the group level, global k-means clustering resulted in six
IC clusters for preferred speed walking (2 outlier components).
Clustered scalp topographies and grand mean ERSPs (Figure 1)
were spatially determined to represent activity from the frontal
(FR), dominant parietal (DP), dominant motor (DM), non-
dominant motor (NDM), non-dominant parietal (NDP) and
prefrontal (PF) regions based on the cluster centroid dipole
locations in the MNI template. Brodmann areas were identified
in a ±2 mm range of all individual dipoles within a given cluster
(Table 3; Lancaster et al., 2000). Each of these clusters contained
subsets of individuals that were considered to be representative of
each group. With regard to group representation, the percentages
of total subjects (respective of each group) contained in each
IC cluster were most different between groups in the NDM
cluster (91% of subjects with TD; 38% of subjects with CP) with
differences also observed in the DP cluster (82% of subjects with
TD; 56% of subjects with CP), the DM cluster (55% of subjects
with TD; 75% of subjects with CP), and the PF cluster (36% of
subjects with TD; 75% of subjects with CP).

At the group level, instances of mu- and beta-suppression
most often occurred during single limb stance and/or swing,
evidenced by the grand mean ERSPs (Figure 1). In the TD
group, the DM and NDM clusters exhibited a consistent
decrease in power for the duration of single stance and swing,
respectively, across both the mu- and beta-bands. Low gamma-
band power (25–50 Hz), in phase with mu- and beta-band
modulations, also decreased in the TD motor clusters. In the
CP group, the DM and NDM clusters showed periods of
decreased power in the same phases of the gait cycle (single
stance and swing); however, these instances were spectrally
discontinuous across the mu- and beta-bands after significance
masking. Additionally, gamma-band power in the DM cluster
was in phase with beta-band power during early swing but
appeared offset from mu- and beta-band modulations in the
NDM cluster, exhibiting significant activity instead from initial
contact through mid-stance.

Statistical comparison of ERSPs between groups showed
significant differences in mu- and beta-band power in the DP,
NDM, and FR clusters (Figure 1). In the DP cluster, the CP
group had significantly more mu-band power centered around
initial contact. In the NDM cluster, the CP group briefly displayed

increased power in the mu-band at the beginning of single stance
and decreased power in the same frequency range during loading
response and terminal swing. While, descriptively, the CP group
exhibited more mu-band power before and after toe-off in the
FR cluster, differences in the mu- and beta-bands were not
largely apparent. Significant changes in gamma-band power were
observed between groups for all clusters except the DM cluster. In
the DP, NDP, and PF clusters, the CP group consistently showed
more gamma-band power during mid-stance. Similarly, the CP
group had increased gamma-band power during double stance
in the FR and NDM clusters.

The percentage of the gait cycle with mu-suppression relative
to the mean was significantly greater in the TD group for the DM
cluster (p < 0.001) (Table 4). For the NDM cluster, the percentage
of mu-suppression was also greater in the TD group, however,
this trend was not significant (p = 0.075). Conversely, the
percentage of mu-suppression for the NDP cluster was greater,
but not significantly, in the CP group (p = 0.055). No other
significant differences were found when comparing mu- and
beta-suppression between groups in the remaining IC clusters.

Spectrograms computed relative to quiet standing (i.e.,
ERD/ERS) revealed continuous desynchronization in the mu-
and beta-bands across groups and clusters (Figure 2). In both
groups, the strongest instances of mu-band desynchronization
were present from mid-stance to initial contact in the NDM
clusters and from swing to late stance in the DM clusters.
In the TD group, increased gamma-band power was observed
throughout the gait cycle in the DM, NDM, NDP, and PF clusters.
The same clusters exhibited increased gamma-band activity in the
CP group, with the addition of the FR cluster.

When comparing ERD/ERS plots between groups (Figure 2),
upper mu-ERD was significantly greater for the CP group in all
motor and parietal clusters with significant differences persisting
throughout the gait cycle. These differences were also present
in various segments of the beta-band for the DP, DM, and
NDM clusters. Despite predominant instances of greater ERD
in the motor clusters of the CP group, we also found phasic
periods of less ERD in the CP group. These phenomena occurred
in the lower mu-band during single stance and swing for the
DM cluster and during terminal swing and loading response
for the DP cluster as well in the lower beta-band during single
and double stance for the NDM cluster. Similarly, lower beta-
ERD was significantly decreased before and after toe-off in the
CP group for the FR cluster. In the PF cluster, upper mu-
and beta-ERD were both lower for the CP group during single
and double stance.
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FIGURE 1 | Time-frequency modulations relative to mean gait cycle activity during treadmill walking. Grand mean gait event related spectral perturbations (ERSPs)
computed for each cortical cluster in (A) TD and (B) CP, displayed in dB. (C) Between group differences of spectrograms calculated by subtracting grand mean
ERSPs in CP from TD, displayed in dB. ERSPs and difference spectrograms were masked for significance (alpha <0.05); non-significant values were set to 0 dB
(green).
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FIGURE 2 | Time-frequency activity relative to quiet standing during treadmill walking. Grand mean event-related desynchronization (ERD)/event-related
synchronization (ERS) plots for each cortical cluster in (A) TD and (B) CP, displayed in dB. (C) Between group differences of spectrograms calculated by subtracting
grand mean ERD/ERS plots in CP from TD, displayed in dB. Difference spectrograms were masked for significance (alpha <0.05); non-significant values were set to
0 dB (green).
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TABLE 3 | IC Cluster characteristics.

IC Cluster location Brodmann areasa Scalp topographiesb # of Subjects (ICs) % of total subjects

TD CP TD CP TD CP

Frontal 6, 8, 32 5 (6) 3 (5) 45% 38%

Dominant parietal 5, 7, 18, 19, 31, 39, 40 9 (10) 5 (7) 82% 56%

Dominant motor 3, 4, 6, 8, 9, 22 6 (9) 6 (7) 55% 75%

Non-dominant motor 3, 4, 6, 8, 22, 24 10 (12) 3 (3) 91% 38%

Non-dominant parietal 5, 7, 13, 18, 19, 22, 31, 39, 40 7 (13) 6 (12) 64% 75%

Prefrontal 6, 8, 9, 10, 24, 32 4 (6) 6 (8) 36% 75%

aBrodmann Areas were found within a ±2 mm area of all individual dipoles in each cluster b Individual scalp topographies were inverted to best match the cluster polarity;
individual topographies of the motor and parietal clusters were mirrored about the y-axis according to hemisphere dominance.

TABLE 4 | Mu- and Beta-suppression percentage relative to gait cycle.

IC cluster location Mu-suppression (%) Beta-suppression (%)

TD CP p TD CP p

Frontal 25.3 ± 11.5 32.9 ± 6.78 0.228 43.4 ± 10.8 46.3 ± 13.4 0.707

Dominant parietal 22.9 ± 8.20 25.9 ± 14.5 0.597 32.1 ± 12.6 39.0 ± 6.17 0.209

Dominant motor 42.8 ± 12.7 17.0 ± 8.42 <0.001 48.1 ± 10.8 44.7 ± 16.2 0.621

Non-dominant motor 38.6 ± 16.2 18.9 ± 13.2 0.075 44.3 ± 15.5 45.8 ± 16.1 0.884

Non-dominant parietal 17.5 ± 13.9 27.8 ± 11.3 0.055 38.3 ± 13.3 44.8 ± 9.68 0.175

Prefrontal 19.8 ± 13.9 30.3 ± 8.99 0.109 39.8 ± 14.8 35.3 ± 16.8 0.616

Mean ± standard deviation; Bold values indicate significant differences between groups (p < 0.05, independent t-test).

The CP group exhibited significantly greater gamma-band
power throughout the gait cycle in all IC clusters excluding those
from the dominant hemisphere (DP and DM). Interestingly,

the TD group showed greater gamma-band power, particularly
during single stance, in the DP and DM clusters. Delta- (2–4 Hz)
and theta- (4–7 Hz) band differences varied between clusters.
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While power was significantly decreased throughout the gait
cycle in the CP group for the DP and NDM clusters, power
increased during all phases of the gait cycle except single stance
in the CP group for the NDP cluster at these frequencies.

EMG Synergy Clusters
For all subjects and conditions, 4 to 6 synergies were extracted
from the averaged strides using the 90% VAF criteria. The mean
extracted synergy numbers for unrestricted walking in TD and
CP were 5.0± 0.4 (12 subjects; VAF = 0.92± 0.02) and 5.0± 0.5
(9 subjects; VAF = 0.93 ± 0.02), respectively, with no significant
differences discerned between groups (synergy number: p = 1.0;
VAF: p = 0.74).

The optimal synergy cluster number from k-means was five
for both the TD and CP group (Figures 3, 4). These five
clusters were ordered by the peak timing of their activation
profiles and determined to be similar across groups in terms of
mean activation profiles (Figures 3A,B) and weight coefficients
(Figures 4A,B) (Activation Profiles: r = 0.95 ± 0.02; Weight
Coefficients: r = 0.77 ± 0.16). Descriptions of the synergy
clusters (referred to as Synergy Cluster A, B, C, D and E
for each group) are provided below and in Table 5. With
regard to cluster compactness, the TD group generally had
higher average ICC values computed across weight coefficients,
but lower ICC values across activation profiles compared
to the CP group.

Cluster A, active primarily during terminal swing and loading
response, promoted knee extension and foot stabilization. In the
TD group, this cluster was associated with dominant TA, RF,
VL, MH, and HL activity as well as non-dominant SOL, PL,
and RF activity. In the CP group, this cluster exhibited similar
muscle activity, with the addition of increased non-dominant MG
activity. Notably, in the CP group, this cluster exhibited the lowest
average ICC calculated across weight coefficients (ICC = 0.30).

Cluster B was active from loading response through mid-
stance and was primarily responsible for hip extension and knee
stabilization for forward progression. In the TD group, this
cluster involved dominant RF, VL and MH activity as well as non-
dominant TA, RF and HL activity. In the CP group, dominant RF
and VL (two primary knee extensors) activity were diminished
while non-dominant TA and MG activity increased.

Cluster C, active primarily during terminal stance, accounted
for hip and knee extension throughout the stance phase and ankle
plantarflexion in preparation of toe-off. In the TD group, this
cluster was associated with dominant MG, SOL, and PL activity
as well as non-dominant TA, MH, and HL activity. In the CP
group, muscle activity was similar with the exception of increased
non-dominant MG, PL, RF, and VL activity.

Cluster D acts as a reciprocal to cluster B, promoting support
and stabilization during terminal swing and initial contact of
the contralateral leg. Muscle activity was similar between groups
with the exception of increased non-dominant MG, SOL, and PL
activity in the CP cluster.

Cluster E acts reciprocally to cluster C, maintaining extension
and initiating leg lift during mid- to terminal stance of the
contralateral leg. Muscle activity was again similar between
groups with the exception of increased non-dominant MG,

activity in the TD group and increased non-dominant MH
activity in the CP group.

Synergy-IC Overlap
Plotting of significant synergy and IC activations across the gait
cycle revealed no clear pattern of correlation between the two
signals (Figure 5). The activation profiles of synergy clusters
A-E were averaged relative to the subset of subjects contained
in each IC cluster. Despite this reorganization, mean activation
profiles were relatively consistent with grand mean results from
Figures 3, 4. Synergy activation was distributed across strides,
with each of the five synergy clusters locked to a particular
phase of the gait cycle. Mu- and beta-suppression, as previously
described, were typically coupled and occurred during multiple
phases of the gait cycle, primarily during single stance and
swing. Therefore IC activity overlapped with many synergies,
but showed no preference in terms of timing to one particular
synergy, regardless of IC cluster location or group. Most often,
mu- and beta-suppression overlapped with synergy clusters B, C,
and E, with the onset of suppression leading the onset of muscle
activation in many cases.

EMG-IC Coherence
For both groups, significant periods of coherence were found
across many frequencies between EMG channels and IC
activations (Figures 6, 7). In the DM cluster of the TD group
(Figure 6), delta-band coherence was observed in the non-
dominant MG and SOL during initial double stance. Similarly, in
the DM cluster of the CP group, delta-band coherence appeared
in the dominant MG and non-dominant VL during terminal
double stance. The CP group additionally showed gamma-
band coherence bilaterally in the HL during single stance.
Mu- and beta-coherence were present in the DM cluster of
both groups, though these instances were scattered and not
consistent across muscles.

In the NDM cluster (Figure 7), the TD group displayed
less coherence compared to the DM cluster, however, mu-
coherence was observed briefly during terminal double stance
in the dominant RF and VL. In the NDM cluster of the
CP group, delta-coherence was present during initial double
stance in the dominant MG, SOL, RF, and VL. The strongest
gamma-coherence in this cluster occurred during single stance,
appearing bilaterally in the HL and, to a lesser extent, unilaterally
in the dominant PL. These instances of gamma-coherence
were similar to those found in the DM cluster in terms of
timing and frequency.

DISCUSSION

This study represents the first evaluation of cortical activity using
EEG during walking in two pediatric cohorts, one with TD
and one with CP. The evaluation was performed on a treadmill
rather than overground for logistical reasons, mainly to minimize
motion artifact and maximize the number of strides for EEG
analyses. It is important to note that the participants in the CP
group were at the highest levels of functional mobility in CP
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FIGURE 3 | Muscle synergy activations. Mean (standard deviation) activation profiles for each synergy cluster in (A) TD and (B) CP. Mean intraclass correlation
coefficients (ICC) are reported in the upper left corner of each plot.

and were minimally, but not significantly, slower in comfortable
gait speed and in cadence on the more involved side than those
with TD. Consequently, the groups showed many similarities,
particularly in the synergy analyses, however, some potentially
important differences were also identified. In addition, both
groups, while under 21 years of age, were comprised mainly of
adolescents whose gait patterns are likely to be highly similar to
those of adults.

With respect to the EMG data, consistent with previous
studies, between 4 to 6 synergies extracted via NNMF were able
to sufficiently recreate individual channel EMG during normal
walking (Ivanenko et al., 2004; Chvatal and Ting, 2012; Kim
et al., 2016). However, in contrast with other findings (Steele
et al., 2015; Kim et al., 2018), no significant differences were

found in mean synergy numbers and VAF between individuals
with CP and TD across conditions with an average of 5 synergies
identified for each group. This inconsistency could be attributed
in part to the high level of functioning in the CP cohort as
well the number of muscles used in the synergy extraction
(Kim et al., 2016) and the procedure of averaging the EMG
data across strides. Comparing synergy clusters between CP and
TD, activation and weight matrices were highly correlated for
paired clusters. Overall, though correlated between groups, the
synergy weight coefficients of the CP clusters exemplified much
more non-dominant (affected) limb activity, evidenced especially
in Synergy Cluster C (Figure 4). The observed differences in
weight coefficients can be attributed to abnormalities in selective
motor control seen in children with CP (Leonard et al., 1991;
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FIGURE 4 | Muscle synergy weightings. Mean (standard deviation) weight coefficients for each synergy cluster in (A) TD and (B) CP. Asterisks (*) indicate significant
differences between groups for individual muscle weightings, relative to each synergy cluster (p < 0.01, independent t-test). Mean intraclass correlation coefficients
(ICC) are reported in the upper left corner of each plot.

Crenna, 1998), supported by previous synergy studies in this
population (Kim et al., 2018).

A previous cohort study demonstrated that children with
unilateral and bilateral CP exhibited a combination of similar
and disparate synergies relative to those of children with TD on
a stride-to-stride basis (Kim et al., 2018). Our observation of
similar synergy numbers between groups after averaging can be
interpreted to represent the most frequently occurring synergies
of each group. While averaging and concatenating strides has
been shown to exclude relevant stride-to-stride variability of
muscle activity (Oliveira et al., 2014), this was deemed a necessary
step in our methodology. EEG time-frequency analysis requires a
relatively large number of trials to make meaningful conclusions.

Consequently, in order to directly compare synergy results with
cortical activity, this stride averaging procedure was utilized
consistently for both the EMG and EEG datasets.

Similar to the finding of the same number of muscle synergies
in each group, the IC clustering results showed six distinct
clusters that all contained cortical sources from both CP and
TD participants. At the group level, we observed roughly the
same peripheral output (no extraneous, voluntary movements in
CP and no significant difference in gait speed) but consistent
differences in cortical activation between groups within each
cluster. These differences may reflect altered cognitive and/or
motor requirements for execution of the same task. These results
are also similar to the results found in healthy adults using nearly
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TABLE 5 | Synergy structure characteristics.

Synergy cluster # of Subjects (Synergies) Activation profiles Weight coefficients

ICC r ICC r

TD CP TD CP Between groups TD CP Between groups

A 11 (11) 9 (10) 0.64 0.70 0.94 0.80 0.30 0.86

B 8 (8) 9 (10) 0.67 0.68 0.94 0.62 0.50 0.52

C 12 (15) 9 (9) 0.41 0.83 0.98 0.70 0.78 0.86

D 12 (14) 8 (8) 0.40 0.70 0.92 0.61 0.64 0.70

E 12 (12) 8 (8) 0.55 0.71 0.94 0.83 0.62 0.92

r indicates Pearson correlation coefficient computed between mean structures for each cluster.

identical methods (Bulea et al., 2015). However, the distribution
of individuals across clusters revealed some important group and
hemispheric differences. Fewer subjects with CP were found to
have ICs in the non-dominant motor cluster; this cluster was
represented by the lowest percentage of CP across all clusters. The
highest percentages of individuals with CP were in the DM and
PF clusters, both of which had appreciably lower percentages in
TD. These results suggest an under-reliance on the NDM region
and an over-reliance on the PF and DM regions in CP, which
is not surprising based on upper limb studies that demonstrate
a reorganization that favors use of the dominant hemisphere
over the non-dominant one in both unilateral non-dominant
side and bilateral tasks (Kukke et al., 2015; Inuggi et al., 2018;
Weinstein et al., 2018). These results may also be attributed
to the elevated functional role of the dominant limb during
walking in our cohort, as evidenced by increased dominant
limb stance time and cadence compared to the non-dominant
side. While the representation of individuals within each cluster
varied in both groups, the results for TD were more consistent
than for CP, as shown by the high percentage (91%) of those
with TD represented in the NDM cluster as one example. This
result is similar to earlier findings from Weinstein et al. (2018),
demonstrating that each child with CP likely has their own neural
signature on how their brain develops in response to early injury.
Neurorehabilitation strategies that demonstrate effectiveness in
shifting the reliance more toward the NDM or in lowering the PF
activation during tasks that involve the more affected side warrant
further exploration and development.

In line with previous work from healthy adults (Gwin et al.,
2011; Severens et al., 2012; Seeber et al., 2014; Bulea et al., 2015),
we observed, for the first time in a younger cohort, cortical activity
modulated relative to the gait cycle in mu-, beta- and low gamma-
bands. The motor (dominant and non-dominant) regions in
the TD group had stronger within stride modulations of mu-
and beta-band activity and slightly different timing patterns
but were generally quite similar to CP. In the low gamma-
band, the CP group had significantly greater modulations in all
regions except for the dominant motor cluster. This suggests
more cortical activation during gait in brain regions beyond the
affected sensory and motor areas in CP. Compared to standing,
the CP group displayed a greater increase in low gamma-band
activity than the TD group in the frontal areas, also suggesting

increased cortical resources attending to the walking task. These
findings are similar to results showing elevated frontal activity
in more demanding walking tasks in adults (Bulea et al., 2015;
Seeber et al., 2015; Wagner et al., 2016). The frontal cortex has
been implicated in elevated top-down or executive control of
motor tasks (Miller and Cohen, 2001; Danielmeier et al., 2011)
and thus our results suggest that children with unilateral CP
dedicate more executive control to the treadmill walking task
than TD. Interestingly, low gamma-modulation is also elevated
in the non-dominant (more affected) motor and parietal areas
of CP compared to TD. Given previous studies indicating that
greater sensorimotor gamma activity is linked to tasks requiring
greater dynamic control (Mehrkanoon et al., 2014), this suggests
that walking is also more challenging for children with CP.

When evaluating mu-band ERD, we found that both
groups showed significant desynchronization, or elevated cortical
activity, in walking compared to standing as had been shown
previously in healthy adults. The TD group here, however,
differed from earlier results in adults (Bulea et al., 2015; Seeber
et al., 2015) in that, compared to standing, strong beta-ERD in
the motor and parietal areas was not present. In general, the
CP group showed greater cortical activations than TD during
walking as measured by mu- and beta-ERD in the NDM, DM,
NDP, and DP areas. These results are interesting because they
are in disagreement with some upper extremity EEG studies
that show less task-related ERD in the motor areas. However,
fNIRS results from our group (Sukal-Moulton et al., 2018) also
show that children with bilateral CP display more widespread
motor cortex activation than those with TD for bilateral lower
extremity tasks. Greater cortical activation was associated with
greater muscle activation in our earlier study, suggesting that
brain effort reflects peripheral effort. We found here that, whereas
the overall synergy number did not differ between groups during
walking, there was increased non-dominant limb activity across
multiple synergy clusters in the CP cohort (Figure 4). Enhanced
mu- and beta-ERD, particularly in motor areas, is indicative of
elevated sensorimotor activation during walking (Pfurtscheller
and Da Silva, 1999; Severens et al., 2012; Seeber et al., 2014;
Bulea et al., 2015). Interestingly, recent results also show mu- and
beta-ERD in parietal areas when comparing across walking tasks
of varying difficulty [e.g., active vs. passive walking (Wagner et al.,
2012; Bulea et al., 2015), fast vs. slow walking (Bulea et al., 2015;

Frontiers in Human Neuroscience | www.frontiersin.org 14 February 2020 | Volume 14 | Article 36

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00036 February 21, 2020 Time: 17:0 # 15

Short et al. EEG-EMG During Gait in CP

FIGURE 5 | Overlap between synergy and cortical component activity. Significant periods of synergy activation plotted with mu- and beta-suppression throughout
the gait cycle for each cortical cluster in (A) TD and (B) CP.

Nordin et al., 2019), and step shortening adaptations (Wagner
et al., 2016)]. Collectively, these results suggest that children with
CP require enhanced cortical output to achieve a similar motor
output as those with TD.

The primary goal of this study was to relate cortical and muscle
activity during a complex bilateral task. Characterization of this
relationship can be explored through simultaneous evaluation
of cortical activity and synergy output. This concept has been
demonstrated in a previous study using multivariate regression to
model the influence of EEG frequency-band power on kinematic
synergies during hand grasping (Pei et al., 2019). Another
study found significant similarities between EEG microstates

and muscle synergies via canonical correlation during hand
reaching and grasping (Pirondini et al., 2017). To our knowledge,
comparative analyses incorporating EEG and muscle synergies
have not been applied to ambulation. However, at this level
of analysis, we failed to find significant correlations between
synergies and activation in cortical sources. The cortical motor
sources presented here were active throughout the gait cycle with
some relative fluctuations at specific phases, differing slightly
across groups. Given that ICs represent coherent activity of large
groups (i.e., thousands or more) of neurons, it is perhaps not
surprising that we did not find significant associations between
ICs and synergy activations.
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FIGURE 6 | EMG-IC coherence relative to dominant motor clusters. Linear coherence magnitudes between non-dominant (left)/dominant (right) EMG signals and
dominant motor IC activations in (A) TD and (B) CP. Coherence plots were masked for significance (alpha <0.05); non-significant values and time points where EMG
signals led IC activations (phase >0 radians) were set to 0 (gray).
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FIGURE 7 | EMG-IC coherence relative to non-dominant motor clusters. Linear coherence magnitudes between non-dominant (left)/dominant (right) EMG signals
and non-dominant motor IC activations in (A) TD and (B) CP. Coherence plots were masked for significance (alpha <0.05); non-significant values and time points
where EMG signals led IC activations (phase >0 radians) were set to 0 (gray).
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It is expected that for a task such as gait, which coordinates
subcortical and spinal pathways to move the entire body while
ensuring dynamic stability and forward progression, mapping
cortical to peripheral output would be far more difficult, if
not impossible. However, EMG–EEG coherence studies have
identified significant relationships that tend to be stronger and
more consistent in static tasks isolated to a few joints, requiring
higher force or effort levels (Mima and Hallett, 1999). As a
next step, we performed coherence analyses relating the motor
sources to EMG activation of individual muscles, focusing on
the efferent control where the cortical activity would presumably
lead the muscle activity. Similar patterns of delta-band coherence
were found across groups for the DM region. Coherence in
this frequency range persisted for the NDM region in the CP
group but was not apparent in TD. In both motor regions, the
CP group uniquely showed gamma-band coherence for the HL,
primarily on the dominant limb, a distal muscle predominantly
affected in unilateral CP, with some evidence that the dominant
side may try to overcompensate to maintain optimal mobility
(Wiley and Damiano, 1998).

One limitation of this study is the loss of stride-to-stride
variability via gait cycle averaging as well as intra-subject
variability due to group-level analysis. Averaging spectrograms
at the group-level has the potential to obscure subject-specific
evidence of cortical contributions to muscle recruitment. This
issue is more consequential in the CP group due to the
distinctive nature of each individual’s brain injury and the
subsequent reorganization of cortical processes. Of particular
note is the inclusion of only three children with CP in the
NDM cluster. To this effect, we clustered brain ICs with an
equivalent focus on spatial and functional organization using
dipole locations and time-frequency parameters. However, the
chance of inaccurately grouping these ICs still persists. Therefore
applying the same clustering analysis at the individual level may
prove more effective in characterizing relationships between the
CNS and periphery, which is particularly important for clinical
applications where the rehabilitation program should be tailored
to the individual. Regarding EMG processing, differences in
specific parameters for time-interpolation, normalization and
filtering can affect the results of synergy extraction by NNMF
(Shuman et al., 2017) and should be considered when comparing
synergy results across studies. Finally, the group results here are
based on a relatively small number of subjects, especially when
comparing ICs within clusters and therefore, we did not control
for multiple comparisons when looking at ERSP and ERD/ERS
difference plots. Also, the cohort with CP was mildly affected with
unilateral involvement and thus, these results warrant further
investigation in larger samples and in different CP subtypes.

CONCLUSION

Electrocortical measurements and muscle synergy analysis are
independently, potentially powerful tools for neurorehabilitation
to better understand and address motor control abnormalities
that impact daily functional activities. However, a quantitative

understanding of how motor control strategies are encoded by
the CNS and communicated to the periphery is generally lacking.
In this study, we compared a subtype of CP with the highest
mobility levels to a group with typical development. Therefore,
finding that muscle synergy weights and activations were not
significantly different at the group level is not unreasonable.
Still, we were able to detect unique differences in distribution
of individuals across brain regions active during gait as well
as significant differences that reflect the unilateral injury that
primarily disrupts distal control and its cortical representation in
the sensorimotor brain regions in CP. Based on our results, we
advocate for the development and implementation of strategies
for CP that are more personalized and which iteratively reduce
cortical activation while improving selective motor control
using brain-computer interface (BCI) methodologies similar to
studies in stroke.
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