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Working memory (WM) refers to the temporary retention and manipulation of information,
and its capacity is highly susceptible to training. Yet, the neural mechanisms that allow
for increased performance under demanding conditions are not fully understood. We
expected that post-training efficiency in WM performance modulates neural processing
during high load tasks. We tested this hypothesis, using electroencephalography (EEG)
(N = 39), by comparing source space spectral power of healthy adults performing low
and high load auditory WM tasks. Prior to the assessment, participants either underwent
a modality-specific auditory WM training, or a modality-irrelevant tactile WM training,
or were not trained (active control). After a modality-specific training participants showed
higher behavioral performance, compared to the control. EEG data analysis revealed
general effects of WM load, across all training groups, in the theta-, alpha-, and beta-
frequency bands. With increased load theta-band power increased over frontal, and
decreased over parietal areas. Centro-parietal alpha-band power and central beta-
band power decreased with load. Interestingly, in the high load condition a tendency
toward reduced beta-band power in the right medial temporal lobe was observed
in the modality-specific WM training group compared to the modality-irrelevant and
active control groups. Our finding that WM processing during the high load condition
changed after modality-specific WM training, showing reduced beta-band activity in
voice-selective regions, possibly indicates a more efficient maintenance of task-relevant
stimuli. The general load effects suggest that WM performance at high load demands
involves complementary mechanisms, combining a strengthening of task-relevant and
a suppression of task-irrelevant processing.

Keywords: auditory working memory, working memory load, post-training plasticity, EEG, source space

INTRODUCTION

Working memory (WM) has been defined as the ability to temporary maintain and manipulate
stored information (Baddeley, 2003; D’Esposito, 2007; Jonides et al., 2008). Language processing
highly relies on WM processes, as information needs to be maintained and integrated over time,
for example during phrasal or sentence level processing (Montgomery, 2000; Emmorey et al., 2017).
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Particularly verbal WM is crucial for speech comprehension
(Buchsbaum and D’Esposito, 2019), but speech comprehension
additionally requires the processing of extralinguistic cues,
such as voice features and prosody (Larrouy-Maestri et al.,
2013; Hellbernd and Sammler, 2016). Language learning can
benefit from prosodic cues, suggesting interactions of verbal and
extralinguistic memory (Schon et al., 2008; de Diego-Balaguer
et al., 2015). Here, in a voice recognition task, we focus on
auditory WM of extralinguistic cues. WM capacity varies among
individuals (Luck and Vogel, 2013), but can be improved by
training (Morrison and Chein, 2011), such that tasks of higher
difficulty can be managed successfully following training. The
present study investigated the neural mechanisms that allow
enhanced auditory WM performance at high difficulty levels
following WM training.

A classical paradigm to assess WM processing at several
difficulty levels is the n-back task. In n-back tasks participants
receive a stimulus sequence and have to decide whether or
not the current stimulus matches the stimulus presented n
trials before (Figure 1A). The n, thus, represents the adjustable
load factor; the higher the n, the higher the WM demands.
Electroencephalography (EEG) and magnetoencephalography
(MEG) studies have reported a parametric relationship between
increasing WM load and oscillatory activity (typically neuronal
power increases), mainly in the theta- (Krause et al., 2000; Jensen
and Tesche, 2002; Hellbernd and Sammler, 2016) and gamma-
bands (Kaiser et al., 2003; Palva et al., 2011; Roux et al., 2012).
Furthermore, this WM-related theta- and gamma-band activity
has been predominantly associated with frontal (Jensen and
Tesche, 2002; Barnett et al., 2008; Dupoux et al., 2008; Kaiser
et al., 2009) and parietal areas (Sauseng et al., 2009; Scharinger
et al., 2017; Kapeller et al., 2018), which are commonly considered
to represent the core WM network (for reviews see Wager
and Smith, 2003; D’Esposito and Postle, 2015; Eriksson et al.,
2015). In WM tasks, the fronto-parietal theta- and gamma-band
oscillatory activity have been suggested to reflect retention of
relevant information (for a review see Roux and Uhlhaas, 2014).

In contrast, the functional roles of alpha- and beta-band
activity in WM have not been yet clearly defined (for a
review see Roux and Uhlhaas, 2014). For example, alpha-band
modulations have been consistently reported to vary with WM
load. Nevertheless, the direction of the relationship remains
controversial, reporting both load-induced alpha-band increases
(Scheeringa et al., 2009; van Dijk et al., 2010) and load-induced
alpha-band decreases (Haegens et al., 2014; Chen and Huang,
2015). A positive relation between WM load and synchronized
alpha power (Jokisch and Jensen, 2007; Medendorp et al.,
2007) has been interpreted in the light of the inhibition-timing
hypothesis (Klimesch et al., 2007), which has linked increases in
alpha-band amplitude with an inhibition of task-irrelevant brain
regions. Conversely, a decrease in alpha-band amplitude has been
associated with a release from inhibition (Klimesch et al., 2007;
Klimesch, 2012) and an overall enhanced cortical engagement
at higher load demands (Gevins et al., 1997; Palomaki et al.,
2012; Chen and Huang, 2015). Similarly, the contribution of beta-
band power to WM is not well understood. Although several
studies have reported beta-band activity to be modulated by WM

load (Deiber et al., 2007; Chen and Huang, 2015; Palva et al.,
2011; Scharinger et al., 2017), beta-band power has not been
particularly associated with a specific functional role in WM tasks
(for reviews see Roux and Uhlhaas, 2014; D’Esposito and Postle,
2015; Eriksson et al., 2015). Some studies, however, propose a
role for (low) beta-band activity in short-term memory (Kopell
et al., 2011), cognitive WM processes (Scharinger et al., 2017)
or more general integrative functions (Donner and Siegel, 2011)
such as the maintenance of the current (motor or cognitive)
state, as it is required during WM delay periods (Engel and Fries,
2010). Furthermore, functional connectivity particularly in the
beta-band has been found to be enhanced between WM-relevant
frontal and parietal regions in WM tasks (Palva et al., 2010, 2011;
Salazar et al., 2012).

WM training has been shown to alter oscillatory activity
in WM-relevant regions. For example, behavioral training
gains in WM tasks were accompanied by training-induced
increases in frontal (Gevins et al., 1997; Langer et al., 2013)
and fronto-parietal (Jausovec and Jausovec, 2012) theta-band
power, suggesting that training strengthened the WM network,
thereby, facilitating WM performance. Furthermore, functional
connectivity has been found to be altered by WM training (e.g.,
Langer et al., 2013; Astle et al., 2015; Gudi-Mindermann et al.,
2018; Rimmele et al., 2019). While power increases are thought
to reflect local processing (Donner and Siegel, 2011; Buzsaki and
Wang, 2012), functional connectivity is assumed to reflect the
degree of the temporal alignment of brain activity in distributed
networks (Engel and Singer, 2001; Varela et al., 2001; Womelsdorf
et al., 2007). A training study in children reported that 20–25
sessions of a computerized verbal and spatial WM training
relative to a control group enhanced the coupling of resting state
MEG activity between a fronto-parietal network and lateralized
occipital and inferior temporal regions (Astle et al., 2015). In
a consecutive investigation of the same children, the authors
reported training-induced increases in cross-frequency phase
amplitude coupling (Barnes et al., 2016): Following training,
gamma-band power (∼90 Hz) in inferior-parietal and temporal
areas was phase-locked to a slower beta rhythm (16 Hz) at
fronto-parietal areas. These findings demonstrate that neural
mechanisms involved in WM processing change as a function
of training, as indicated by training-induced changes in both
oscillatory power and functional connectivity. Typically, such
changes are assessed by contrasting EEG activity prior to and after
training while the same task is performed. Therefore, it remains
unclear how WM processing at different load demands is affected
by the training-induced neuronal changes. While trained and un-
trained individuals might perform similar at low load demands,
the question arises how the neurophysiological training-induced
changes facilitate WM processing at high load demands, i.e.,
how the underlying mechanisms are altered in trained relative to
non-trained individuals.

The present study investigated how post-training performance
proficiency affects the neural mechanisms involved in successful
WM processing at high load demands. Healthy adults performed
a low load (2-back) and a high load (adaptive n-back) auditory
WM task with voices. In the high load condition, the n-back level
was continuously adjusted to the participants performance, such
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FIGURE 1 | Schematic illustration of the paradigm and trial structure. (A) Example for a stimulus sequence in the auditory 2-back task. Auditory voice stimuli were
successively presented. Different symbols for the loudspeakers represent different voices. After each stimulus the participant indicated via button press whether
(target) or not (non-target) the current speaker matched the speaker presented n = 2 trials earlier. After an inter-trial-interval (ITI) the next stimulus was presented.
(B) The temporal course of a trial is presented time-locked to stimulus onset (0 s). After each stimulus (450 ms) a response was required (unlimited), followed by the
ITI (randomized between 1.3 and 1.7 s). Thus, the shortest working memory maintenance period (highlighted by gray dashed lines) lasted for 1.3 s. This period was
used as the time window of interest. EEG data of this maintenance period (–1.1 to –0.2 s) were analyzed.

that participants were continuously performing at their capacity
limits. This ensured that participants, despite interindividual
differences in WM capacity, always performed at high load
demands. Prior to the test session, participants were adaptively
trained (adaptive n-back) either with the same auditory voice
stimuli as in the test session (auditory training group), or with
task-irrelevant tactile stimuli (tactile training group), or were
not adaptively trained, i.e., the active control group performed
a 1-back task throughout all “training” sessions. The EEG
power during the maintenance phase of the auditory WM
task (Figure 1B) was compared between the low load (2-back
task) and the high load condition (adaptive n-back task).
We particularly focused on whether load-related changes in
neuronal power differ between training groups, since we were
interested in whether the neural correlates of WM processing
at high load demands differ as a function of post-training
performance efficiency. The increase in WM proficiency of
trained participants was expected to result in WM processing
changes. Importantly, if increased proficiency would result in
mere activation differences in the networks activated during
low load demands, no group differences would be expected
during high load processing, as load levels were adjusted to the
individual performance limit across groups. Instead, proficiency-
related changes in WM processing should be present despite
adjusted load levels across groups. Changes in WM networks
were expected to be characterized by more efficient maintenance
mechanisms. As suggested by previous studies, such increases in
efficiency may be indicated for instance by a shift from attentional
control processes to task-specific functions, involving perceptual

processing, thus, by a shift from anterior to posterior activity
(Buschkühl et al., 2012).

MATERIALS AND METHODS

Participants
Forty-one healthy adults participated in the study and
were pseudo-randomly assigned to three groups (cf. section
“Experimental Procedure”). The data of two participants had to
be discarded from the analyses, due to a decreased post-training
performance relative to their pre-training performance (≥2SD
from the mean pre-post-training difference). Thus, the final data
included data sets of the remaining 39 participants (Table 1).
Participants in the three groups did not differ regarding
their sex (χ2(2) = 0.351, p = 0.839), age (F(2,36) = 0.484,
p = 0.620), and education (more vs. less than ten years of
schooling (χ2(2) = 2.60, p = 0.273). All participants were right-
handed, had normal or corrected-to-normal vision, and normal

TABLE 1 | Demographic data of 39 participantsa.

Gender Mean age in Education (>10 years

n (females) years (range) of schooling)

AG 14 6 34 (23–55) 12

TG 11 6 30 (21–48) 9

CG 14 7 33 (21–55) 14

aAG, auditory training group; TG, tactile training group; CG, active control group.
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hearing (self-report). None of the participants had a history of
neurological or psychiatric disorders (self-report). Informed
consent was obtained from all individual participants included
in the study. Participants received monetary compensation
for participation. The study was approved by the German
Psychological Association.

Variables such as the perceived current stress level, wellbeing,
and intelligence have been shown to affect WM performance (e.g.,
Ashby et al., 1999; Luethi et al., 2008; Luck and Vogel, 2013). To
control for such confounding effects, all participants performed
the German version of the Perceived Stress Questionnaire
(PSQ-20: Levenstein et al., 1993; German modified version:
Fliege et al., 2001) and a wellbeing scale [German: Habituelle
Subjektive WohlBefindens Skala (HSWBS): Dalbert, 1992]. An
estimation of the verbal intelligence score was obtained through
the MWT-B (German Mehrfachwahl-Wortschatz-Test: Lehrl,
2005). The three groups did not differ in any of the assessed
psychological variables (PSQ-R20: F(36) = 0.16, p = 0.854;
HSWBS: F(35) = 0.03, p = 0.970; MWT-B: F(35) = 0.91, p = 0.412).

Experimental Procedures
The reported data were part of a larger WM training study
(Table 2), comprising pre-training EEG and MEG recordings,
4 sessions of behavioral WM training, post-training EEG and
MEG recordings, and a final magnetic resonance imaging
(MRI) session. Here, only behavioral and EEG data from the
posttraining assessment and behavioral data from the training
sessions will be reported. The other data have been published
elsewhere. Previous publications investigated differences of the
neural networks changed by WM training between sighted and
congenital blind adults, analyzing the WM processing during a
2-back task prior to and after WM training (Gudi-Mindermann
et al., 2018; Rimmele et al., 2019). In contrast, the present study
focused on neurophysiological differences in WM processing
at individual capacity limits, which have been enhanced (as
shown on behavioral level; cf. section “Behavioral Performance”)
by a previous training treatment, analyzing post-training WM
processing of a demanding adaptive n-back task relative to a low
load 2-back task.

TABLE 2 | Full training procedure and study designa.

Pre-test Training Post-test

EEG/MEG Behavioral WM Training EEG/MEG MR/DTI

Auditory: AG TG CG Auditory:

2-back task

adaptive n-back task

2-back task Auditory: Tactile: Auditory:

1-back task

adaptive n-back task

Tactile: Tactile: Tactile:

2-back task 1-back task 2-back task

adaptive n-back task

1 Session 4 Sessions 4 Sessions 4 Sessions 1 Session 1 Session

aAG, auditory training group; TG, tactile training group; CG, active control group.
Bold black box highlights the conditions that have been analyzed in the present
paper. See text for details.

In the pre-training sessions, participants performed an
auditory and a tactile 2-back task. After each stimulus the
participants had to indicate via button press with one of two
fingers (index finger and middle finger of one hand; responding
hand and finger were cross-balanced across participants) whether
the stimulus was identical or not (target – 1/3: non-target – 2/3
distribution) to the stimulus presented 2 trials ago. Following
the participants’ response, the next stimulus was presented after
an inter-stimulus-interval (ISI) of a varying length, randomized
between 1.3 and 1.7 s (Figure 1A).

Auditory stimuli consisted of the pseudo-word “befa” spoken
by ten individuals (i.e., 10 different stimuli, 5 females and 5
males, stimulus duration: 450 ms, digitized at 44, 100 Hz and
peak normalized at 65–75 dB). Participants had to match the
speakers’ identity. The tactile stimuli were applied via Braille
stimulators (QuaeroSys Medical Devices, Schotten, Germany).
Five stimulators were attached to the fingers of one hand.
The Braille stimulation generated a tactile motion percept by
sequentially activating pairs of pins that were horizontally
organized in four-by-two rows (4 × 112.5 ms, total stimulus
duration 450 ms). The apparent motion either started at the
fingertips (downward motion) or moved toward the fingertips
(upward motion), resulting in ten different stimuli (i.e., 2
possible motion percepts at 5 fingers of one hand). Participants
had to match the finger and the motion direction. Thus, the
characteristics of the task, i.e., the length of each stimulus and
the number of different stimuli, were held constant across the
auditory and the tactile tasks.

Participants were pseudo-randomly assigned to three groups:
auditory training group (AG), tactile training group (TG), and
active control group (CG). In the AG and the TG an adaptive
n-back task either with voices or with tactile stimuli was used
during training. WM load was adaptively changed by adjusting
the n-back level: The first block of the first training session started
with a 2-back task. After every block the n was individually
adjusted. The n increased by one if the performance exceeded
both a hit rate of 70% and a correct rejection rate of 75%. The
n decreased by one if the performance dropped below 60% in
either hits or correct rejections. Otherwise, the n did not change.
Spoken feedback after each block informed participants about
their performance and announced the n-level of the upcoming
block. Participants were instructed to strive toward the highest
possible n-level and to prioritize accuracy over speed. Every
consecutive training session started with the highest n that was
reached at least three times during the previous training session.
Each block consisted of 30 + n trials. For all n-back levels,
sequences of targets and non-targets were constructed pseudo-
randomly: The position of the targets (10× n-back targets) varied
randomly, while a fixed number of interfering distractors were
incorporated (3 × “n-minus-1”-back lures and 3 × “n-plus-1”-
back lures per block). A training session comprised 30 blocks and
lasted typically for about 2 h, resulting in approximately 8 h of
training per participant. All sessions took place on consecutive
days or with no more than three days in between.

The AG was trained with auditory stimuli while the TG was
trained with tactile stimuli. The CG performed a constant 1-back
task throughout the four sessions, while the modality (auditory,
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tactile) of the task altered every session. An active control group
was included to control for training-unrelated effects, such as
familiarity with the stimulus material and procedure, as well
as for non-specific effects resulting from being engaged in the
training paradigm over several days. After training, the EEG was
recorded during the auditory 2-back task (low load condition)
and the auditory adaptive n-back task (high load condition).
Note, with respect to the auditory task, the AG received a training
in the same modality in which the post-training task was carried
out, while the TG was trained in a modality that differed from the
modality of the post-training task. In the following, to highlight
this difference, the terms modality-specific training (AG) and
modality-irrelevant training (TG) are used. The CG did not
receive adaptive training.

In the high load condition, we aimed at testing participants’
performance at the individual’s capacity limit, irrespective of
the group affiliation. Therefore, the n-level was set as follows:
In case of the AG the adaptive n-back version started with the
highest n that was reached at least three times during the last
training session. In the case of TG the adaptive n-back version
started 3 levels below the highest n that was reached at least
three times during the last training session, to account for the
modality switch between the tactile training and the auditory
post-training task. For all CG participants the adaptive n-back
version started with a 3-back task. The adaptive nature of the
n-back task was kept for all three groups throughout the high load
condition, to continuously adjust load demands to individual
performance, while accounting for instantaneous learning and/or
fatigue effects. The post-training EEG session comprised twelve
blocks of the auditory 2-back task and fourteen blocks of the
auditory adaptive n-back task. Participants were blindfolded
during all EEG and training sessions, since this study was part
of a bigger project, which additionally included blind individuals.

EEG Data Acquisition and Preprocessing
The EEG was continuously recorded with 94 Ag/AgCl scalp
electrodes (EasyCap GmbH, Herrsching, Germany), mounted in
a cap according to the 10-5 system (Oostenveld and Praamstra,
2001). The electrooculogram (EOG) was recorded to monitor
horizontal eye movements (potential difference between F9
and F10) and blinks (potential difference between Fp1 and an
electrode placed below the left eye). The EEG signal was amplified
with BrainAmp DC amplifiers (Brain Products GmbH, Gilching,
Germany) and digitized using the BrainVision Recorder software
(Brain Products GmbH). The analog EEG signal was sampled
at 5,000 Hz, filtered on-line with a band pass of 0.1–1,000 Hz
and then down-sampled on-line to 500 Hz. Impedances of all
electrodes were kept below 10 k�.

The EEG data were preprocessed and analyzed using
MATLAB 2016a (MathWorks) and the open source MATLAB
toolbox Fieldtrip (Oostenveld et al., 2011)1. In all n-back tasks,
the first n trials of a block were discarded from the analysis,
since only the n + 1st stimulus can be compared to the
stimulus presented n trials ago. Only trials with correct responses
were considered. For preprocessing the continuous data were

1http://www.ru.nl/fcdonders/fieldtrip/

segmented±1.9 s around stimulus onset. Data epochs for correct
targets and non-targets were pooled together. Data were high
pass filtered at 1 Hz. A standard automatic routine was applied
to exclude data epochs contaminated by eye movements and
muscle artifacts. The frequency ranges of the signal time courses
that typically contain eye artifacts (1–15 Hz in 2 bipolar EOG
channels) and muscle artifacts (110–140 Hz, in 94 data channels)
were band-pass filtered and z-normalized per time point and
electrode. The z-scores were averaged over electrodes, in order
to accumulate evidence for artifacts, which typically occur in
more than one electrode. Trials exceeding a predefined z-value
(eye artifacts: z = 4; muscle artifacts: z = 15) were considered as
artifacts and excluded. Line-noise was removed by subtracting
50-, 100-, and 150 Hz-Fourier components from the signal
time course. Electrodes characterized by high variance across
trials (visual inspection) were interpolated (spline interpolation;
Perrin et al., 1989; mean number of removed electrodes: 2;
range: 0–5). Last, all data channels were re-referenced to a
common average reference.

Additionally, trials were excluded according to the following
criteria: First, all blocks in which the n-back level dropped to n = 2
(low load condition) were excluded from the high load condition
to avoid identical n-back levels between load conditions. Second,
the adaptively changing n-back levels allowed to instantaneously
(block-wise) adjust the load demands (n-back level) to individual
capacity limits throughout the high load condition. To avoid
n-back levels outside individual capacity limits, which might
have occurred during the adjusting process, blocks exceeding
individual capacity limits (accuracy rates < 60%) and falling
below individual capacity limits (accuracy rates > 90%) were
excluded. The average number of included trials per participant
was 182 trials (47%) [SD = 42 (11%)] in the 2-back low load
condition and 103 trials (25%) [SD = 45 (11%)] in the n-back
high load condition.

Data Analyses
Estimation of Spectral Power and Source
Reconstruction
Discrete Fourier Transforms of EEG maintenance activity (−1.1
to −0.2 s; Figure 1B) were calculated at 2.5–100 Hz (segment
length: 0.4 s; segment shift: 0.08 s; frequency resolution: 2.5 Hz).
The cross-spectrum of the Fourier transformed time segments
was retrieved per participant for each electrode and frequency
bin in both conditions (low and high load) (Genovese et al.,
2002; Nolte et al., 2004). Cross-spectra were averaged across time
segments and across trials.

The standard Montreal Neurological Institute (MNI) average
brain was used for source reconstruction. Based on the cortical
surface of the standard head model a grid was created as a set
of 3,000 as equally as possible distributed source points. Every
source point represented an equivalent current dipole (cf. Cromer
et al., 2010). A standardized three-dimensional map of electrode
locations was generated. First, the locations of the 94 employed
electrodes were measured three times on a template plastic head,
using the ultrasonic Elpos system (zebris Medical GmbH, Isny
im Allgäu, Germany). Next, to minimize measurement errors, the
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FIGURE 2 | Spectral (A) and spectro-temporal (B) distribution of maintenance activity. (A) The mean overall power spectrum (log power; SEM, shaded area) is
displayed separately for the low load (black line) and the high load (blue dashed line) conditions. Power values of the averaged maintenance activity (–1.1 to –0.2 s)
were averaged across all voxels and across participants of all training groups. The gray boxes highlight the pre-selected frequency-bands that were used for further
analyses (from left to right: theta, 2.5–5 Hz; alpha, 10–12.5 Hz; beta 17.5–22.5 Hz; gamma 60–80 Hz; the spectral resolution of 2.5 Hz is considered). Note,
oscillatory peaks are present in all pre-selected frequency bands in the spectral profile of the averaged maintenance activity. (B) The sensor-space time-frequency
representations of low (left; <36 Hz) and high (right; >36 Hz) frequencies are depicted separately for the low load (top) and the high load (bottom) conditions,
averaged across all electrodes and across participants of all training groups. Stimulus-locked (0 s, solid black line) spectral power from –1.6 to 1.6 s (stimulus
duration 0.45 s, right dashed black line) is expressed in percent change (Rel. change in%) relative to baseline activity (–0.2, left dashed black line; to 0 s, solid black
line). Colored boxes highlight the pre-selected frequency-bands that were used for further analyses (left: red, theta; blue, alpha; black, beta; right: blue, gamma).
Note the sustained increase of band-specific activity during the maintenance period (–1.1 to –0.2 s, colored boxes). In further analyses only this maintenance period
was analyzed, since the rest of the trial may be overlaid by reaction times (cf. Figure 1B).

positions of the three independent measurements were averaged
and centered along the midline. These standard electrode
locations and the standard grid model were used to compute a
standard leadfield matrix. If needed, the standard leadfield was
individually adjusted by excluding noisy channels, characterized
by high variance across trials, which were interpolated during
the individual preprocessing procedure (cf. section “EEG Data
Acquisition and Preprocessing”). Exact Low-Resolution Brain
Electromagnetic Tomography (eLoreta), a discrete, linear, three-
dimensional distributed, weighted minimum norm inverse
solution, was used to calculate a spatial filter based on the
individually adjusted leadfields. The eLoreta spatial filter localizes
the power distribution of the EEG signal with exact maxima for
single dipoles (Shafi et al., 2007). The real parts of the cross-
spectrum were projected into source space by multiplication
with the spatial filter for every source point. Source space
power was defined as the maximal eigenvalue of the cross-
spectrum, over the three dipole directions. The resulting value
per source point represented the power value at that source point
(cf. Polomac et al., 2015).

Finally, source power estimates were log-transformed and
averaged over frequency ranges of interest, resulting in four
frequency bands that were used for further analyses: theta
(2.5–5 Hz), alpha (10–12.5 Hz), beta (17.5–22.5 Hz), and
gamma (60–80 Hz). These frequency ranges were selected
to best represent the core of the theta-, alpha-, beta-, and
gamma-bands (cf. Kubicki et al., 1979), given the frequency
resolution of 2.5 Hz. The inspection of the overall power
spectrum (averaged across voxels) showed that the pre-selected
frequency bands in fact captured oscillatory peaks in the

spectral profile of the averaged maintenance activity (Figure 2A).
Furthermore, for additional confirmation that oscillatory activity
in the pre-selected frequency bands represented sustained
WM-relevant activity, time-frequency representations (TFRs)
of maintenance activity were calculated (overall power across
sensors was analyzed in sensor space). The spectral parameters
were estimated using multitapers for a trial length of −1.6
to 1.6 s around stimulus onset (Figure 1B) with a spectral
smoothing of 4.5 Hz for frequencies below 36 Hz and with
a spectral smoothing of 8 Hz for frequencies above 36 Hz.
For TFRs a sliding time window of 0.4 s was used that was
stepped by 50 ms through the trials. TFRs were normalized
by 200 ms pre-stimulus activity (baseline). Figure 2B shows
TFRs of the WM maintenance as percent change relative to
baseline. Note, the pre-stimulus baseline, which itself is part of the
maintenance period, most probably has reduced WM-relevant
activity during the maintenance period. Despite this constraint
the inspection of the temporal domain of maintenance activity
confirmed that the pre-selected frequency bands represented
frequency ranges of the sustained, narrow-band maintenance
activity (Figure 2B).

Statistical Analyses
Analyses of behavioral data were conducted using R (R Core
Team, 2016) implemented in RStudio (v0.99.486; R Studio Team,
2015)2. Behavioral training effects were tested by analyzing
the mean WM capacity, represented by the individual n-back
levels. A one-way analysis of variance (ANOVA) was run on

2http://www.rstudio.com/
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the mean n-back levels that were reached during the adaptive
high load condition.

Prior to comparing accuracy rates between load conditions,
the load demands in the adaptive high load condition had to be
adjusted to represent individual capacity limits, despite differing
n-back levels between participants (cf. section “Behavioral
Results”), differing training experience between participants,
and differing WM capacity between participants. To this end,
three preprocessing steps were applied. The first two steps were
identical to those used for preprocessing EEG data. First, all
blocks in which the n-back level dropped to n = 2 (low load
condition) were excluded from the high load condition to avoid
identical n-back levels between load conditions. Second, the
adaptively changing n-back levels allowed to instantaneously
(block-wise) adjust the load demands (n-back level) to individual
capacity limits throughout the high load condition. To avoid
n-back levels outside individual capacity limits, which might
have occurred during the adjusting process, blocks exceeding
individual capacity limits (accuracy rates <60%) and falling
below individual capacity limits (accuracy rates >90%) were
excluded. The average number of included blocks per participant
was 11 blocks (330 trials) out of 14 blocks (420 trials) in
total. Finally, performance is by definition negatively correlated
with the load factor n. Thus, in a third preprocessing step,
the variance in accuracy, introduced by various n-back levels
within the adaptive high load condition, had to be accounted
for. To this end, the individual n-back levels were recoded for
standardization: Each individual’s highest n-back level during
the adaptive high load condition represented her/his individual
limit in WM capacity. Starting from this personal maximum, the
remaining n-back levels were coded in a descending order (max,
max–1, max–2, etc.). The amount of n-back levels processed
during the high load condition varied between 1 and 6 levels
(Figure 3A). However, the highest number of different n-back
levels processed by more than one participant in all three groups
was 3, i.e.: max, max–1, and max–2 (Figure 3A). All blocks
outside these n-back levels (i.e., max–3, max–4, max–5) were
excluded from further analyses3.

Having adjusted the load demands within the high load
condition a mixed logistic regression model (generalized linear
mixed model, GLMM with a logit link function) was run on
high load accuracy rates to ensure that the adjusting procedure
worked and, thus, similar requirements prevailed within the high
load condition across groups and participants despite differing
n-back levels. To this end, the covariate recoded n-back-levels
(max, max-1, max-2) and the predicting variable group (AG,
TG, CG) were included as fixed effects. The covariate recoded
n-back-levels was, furthermore, included into the random effects
structure, allowing for random intercepts and slopes for each
subject. Significance of fixed effects was tested with Wald χ2 tests.
The GLMM confirmed that following the adjusting procedure
and after having accounted for the covariate (χ2(1) = 16.01,

3For example, during the adaptive n-back session one particular participant
performed several blocks of 4-backs, 5-backs, 6-backs, and 7-backs. This
participant’s 7-backs were coded as her/his individual maximal level (max), 6-backs
as max–1, 5-backs as max–2, and 4-backs as max–3. Blocks with 4-back levels
(max–3) were excluded from further analyses.

FIGURE 3 | Preprocessing in behavioral n-back data. (A) Individual frequency
distribution of all prevailing recoded n-back levels is depicted for each group
(“max” represents the highest n-back level, an individual reached in the
adaptive high load condition; “max–1,” “max–2,” etc. represent the remaining
n-back levels, coded in a descending order). Single lines (blue color-coding)
represent individual data. Data from the three individually highest n-back levels
(left of the dotted line) were included in the following analyses. (B) Mean
accuracy rates are shown separately for each group and load condition; and
for each n-back level in the adaptive high load condition. Error bars indicate
one standard error of the corresponding mean.

p < 0.001) performance within the high load condition no longer
differed between groups (χ2(2) = 4.45, p = 0.108; Figure 3B),
indicating comparable load demands between groups irrespective
of differing n-back levels. Note that prior to the adjusting
procedure performance between groups did differ significantly
within the high load condition (χ2(2) = 6.16, p = 0.046; not
shown) despite accounting for the covariate (χ2(1) = 10.16,
p = 0.001). This indicates the natural differences in load demands
due to differing n-back levels reached in different groups during
the adaptive procedure of the task.
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The key interest in the present study was to investigate
whether WM training alters neural mechanisms when load
demands approach individual capacity limits. Particularly,
we expected neural mechanisms under high load demands
to be altered in response to different types of WM training.
Thus, source power of WM maintenance activity was
contrasted between the low and the high load condition:
Powdiff = Powhigh−load – Powlow−load, resulting in load-related
power changes. Importantly, as detailed above, in the adaptive
high load condition, load demands had been adjusted prior to
the analysis in order to represent individual capacity limits,
eliminating the confound of interindividual differences in WM
capacity across trained and non-trained participants.

To statistically evaluate differences in WM load effects in the
auditory WM task between groups (AG, TG, CG), for each of the
four frequency bands, cluster-based permutation tests on load-
related power changes were employed (1,000 iterations; Maris
and Oostenveld, 2007), with group affiliation being randomly
permuted across participants. Specifically, two planned group
contrasts were performed: (1) the auditory training group was
contrasted with both other groups (AGPowdiff vs. TGPowdiff &
CGPowdiff), to analyze the impact of modality-specific WM
training on the load effect; (2) both, i.e., auditory and tactile,
training groups were contrasted with the active control group
(AGPowdiff & TGPowdiff vs. CGPowdiff) to analyze the general
impact of WM training on the load effect, irrespective of training
modality. Spatial clusters were formed of adjacent source points
with t-values below p < 0.05. The t-values within clusters were
summed. Clusters, which exceeded 95% of the largest summed
t-values from the permutation distribution, were considered
statistically significant when p < 0.025 (two-sided t-tests).

RESULTS

Behavioral Performance
In order to test the effects of load on WM performance, accuracy
rates were compared with a GLMM, including the predicting
variables WM load (low and high load) and group (AG, TG,
CG) as fixed effects. The WM load was additionally included into
the random effects structure, allowing for random intercepts and
slopes for each subject. The GLMM confirmed the expected main
effect of load (χ2(1) = 60.67, p < 0.001; Figure 4A), reflecting
the expected drop in performance in the high load condition
across all groups. The predicting variables group (χ2(2) = 4.29,
p = 0.117) and the interaction between WM load and group
(χ2(2) = 4.36, p = 0.113) were not significant. Note that the
absent interaction effect between WM load and group provides no
conclusions about training-related performance changes, as the
n-back levels were adjusted. Instead, in this analysis the absent
interaction effect again confirms that the adjusting procedure
(cf. section “Data Analyses”) was successful and load demands,
as indicated by accuracy, were comparable across groups despite
differing n-back levels in the high load condition.

In order to address training-related performance differences,
we analyzed the mean WM capacity, represented by the mean
n-back levels reached during the adaptive high load condition.

FIGURE 4 | Behavioral training effects in the auditory n-back task. Single dots
represent individual data. (A) Accuracy rates are displayed separately for each
group and load condition, demonstrating the load effect irrespective of group
affiliation. Color-coded dots represent individual data. Error bars indicate the
standard error of the corresponding mean. (B) The mean absolute n-back
level (i.e., not recoded) is shown per group, with highest mean n-back levels in
the auditory training group (AG), followed by the tactile training group (TG),
and finally, the active control group (CG). Both training groups reached higher
n-back levels (AG: significance; TG: tendency) compared to the active control
group (CG). Asterisks indicate significance, the plus-symbol indicates marginal
significance.

A one-way ANOVA revealed a significant effect of group
(F(2,36) = 6.21, p = 0.005; η2

p = 0.204; Figure 4B), reflecting
a training-related increase in WM capacity. The consecutive
Bonferroni-corrected post hoc two-sided t-tests showed the
expected performance advantages following modality-specific
WM training, as indicated by higher n-back levels in the
auditory training group relative to the control group (AG vs.
CG: t(26) = 3.23, p = 0.010). The tactile training resulted in
marginally significant higher n-back levels relative to the control
group (TG vs. CG: t(23) = 2.56, p = 0.053). AG and TG did
not significantly differ in their mean n-back levels (AG vs. TG:
t(23) = 1.58, p = 0.386).

Additionally, to ensure that no baseline differences existed
between groups before training, a one-way ANOVA was run on
pre-training 2-back accuracy rates, revealing no significant effect
of group (F(2,36) = 2.03, p = 0.147; η2

p = 0.101; data not shown).
The individual training tracks (courses of n-back levels over time
across the four training sessions) of AG and TG are shown in
Figure 5. No training tracks can be shown for CG, since this
group performed only the 1-back task with no changes in n-back
levels throughout the four sessions.

Post-training Load-Related Source
Power Changes
We observed a statistical trend for reduced load effects in beta-
band power in sensory processing areas in participants with
modality-specific WM training relative to both other groups (AG
vs. TG&CG; marginally significant cluster, p = 0.069; Figure 6A).
The identified cluster included the right medial temporal lobe,
extending along the superior temporal sulcus. Group-specific

Frontiers in Human Neuroscience | www.frontiersin.org 8 March 2020 | Volume 14 | Article 72

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00072 March 13, 2020 Time: 19:1 # 9

Gudi-Mindermann et al. Post-training Load-Related WM Changes

FIGURE 5 | Individual training tracks measured during the 4 training sessions
of (A) the auditory training group and (B) the tactile training group. The
individual courses (blue color-coding) of n-back levels, averaged over 30
blocks per training session, are shown for all four training sessions,
demonstrating the growing WM capacity with training progress. The zoomed
in area (dotted box) shows participants with more moderate n-back increases.
The horizontal dotted line at 3-back level serves as a guide to highlight
capacity increases.

post hoc analyses (Bonferroni-corrected) confirmed that beta-
band power in the identified cluster, pooled across all significant
voxels, was significantly increased in the high load condition
compared to the low load condition in both the TG and CG
(t(24) = 3.33, p = 0.003; Figure 6B; separately for TG and CG:
TG: t(10) = 2.21, p = 0.052; CG: t(13) = 2.55, p = 0.024), but not
in the AG (t(13) =−1.58, p = 0.137; Figure 6B). Furthermore, in
the high load condition, beta-band power in the identified cluster
was negatively correlated with the maximally reached absolute
n-back level (Bonferroni-corrected) in the TG and CG (r =−0.47,
p = 0.019; Figure 6C), but not in the AG (r = −0.13, p = 0.652;
Figure 6C). No further differences in load-related power changes
were observed between the AG vs. TG and CG, neither in the
theta- (in all identified clusters all p > 0.363), nor in the alpha- (in
all identified clusters all p > 0.462), nor in the gamma-band (in
all identified clusters all p > 0.155). Finally, no general impact of
WM training on the load effect, irrespective of the modality, was

observed when contrasting both training groups with the control
group (AG&TG vs. CG; in all identified clusters all p > 0.197).

Load-Related Modulations in Source
Power
As reported above, load-related power changes were modulated
by WM training only at trend-level. Thus, the main effect
of WM load was additionally analyzed across all participants,
irrespective of group affiliation. In the theta-band, one cluster
with positive t-values (p = 0.015) and one cluster with negative
t-values (p = 0.002) reached significance (Figure 7A). In the high
load relative to the low load condition, theta-band power was
increased at bilateral frontal poles, spreading to left dorsal and
right ventral regions in the frontal lobe. The load-related theta
power decrease was localized to the parietal cortex, with strongest
desynchronization over bilateral inferior parietal lobules. In the
alpha-band power, one significant cluster with negative t-values
(p = 0.002) was found (Figure 7B). The load-related alpha-
band power was decreased over bilateral centro-parietal regions
broadly spreading around pre- and postcentral gyri. In the beta-
band power, a significant cluster with negative t-values (p = 0.010)
was observed over bilateral central parts of the cingulate gyri,
including bilaterally the precuneus (Figure 7C). Finally, in the
gamma-band power no significant clusters were observed (in
all identified clusters all p > 0.284). For full transparency,
furthermore, the low-high load contrast is displayed separately
for each training group (Figure 8).

DISCUSSION

The present study investigated the effects of WM training by
comparing neural mechanisms of auditory WM performance
in different training groups under high load conditions. The
behavioral results confirmed that the WM training was successful
compared to the active control group, showing performance
increases that suggest an extended WM capacity particularly
in the modality-specific (auditory) WM training group. The
EEG results revealed two main findings. First, participants
who received modality-irrelevant tactile WM training and those
who did not receive adaptive WM training (control group),
showed load-related increases in beta-band power in the right
temporal lobe, when performing the auditory WM task. These
changes were not observed in participants who were trained
with task-relevant auditory stimuli. This provides evidence that
for individuals with higher WM proficiency neural processing
was modulated, possibly underlying increases in individual
WM capacity. However, note that the main effect of this
analysis was only observed at trend level and requires follow-
up research for confirmation. Second, we found load-related
power changes across all groups in the theta-, alpha-, and beta-
band: With increasing load demands, theta-band power increased
at bilateral frontal poles, while power decreased in posterior
theta-, centro-parietal alpha-, and mid-central beta-band. This
suggests that WM processing at high load demands requires
both a strengthening of task-relevant processing as well as an
attenuation of task-irrelevant processing.
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FIGURE 6 | Training-related differences in WM load effects (AG vs. TG&CG)* in beta-band power (17.5–22.5 Hz). (A) The observed significant interaction between
training and WM load in the right medial temporal lobe is projected onto a glass brain. In interaction-sensitive voxels, color-coding represents z-scores in power
change between conditions. Note, light-blue to dark-blue colors indicate reduced load effects in the AG relative to the TG and CG. (B) The bar graph shows the
load-related power changes separately for AG and TG and CG, pooled across all interaction-sensitive voxels. (C) The relationship between beta-band power in the
right medial temporal lobe and maximally reached n-back levels in the adaptive high-load condition is depicted separately for AG and TG and CG, showing a
negative correlation for the tactile training group and the control group, but not for the auditory training group. Asterisks indicate significance. * AG, auditory WM
training group; TG, tactile WM training group; CG, active control group.

FIGURE 7 | Load-related power changes in (A) theta- (2.5–5 Hz), (B) alpha- (10–12.5 Hz), and (C) beta-band (17.5–22.5 Hz), across all training groups, are
projected onto a glass brain. Outside and inside voxels are depicted for the left (LH) and right (RH) hemispheres. Color-coding represents z-scores in power change
between low load and high load conditions.

Behavioral Training Effects
As expected, relative to the control group, the increases in
auditory WM capacity in the training group, as indicated by
the mean n-back levels reached during the adaptive post-
training task, was significant following modality-specific auditory
training, and marginally significant following modality-irrelevant
tactile training. We, thus, observed a marginal transfer of
tactile training on auditory WM. The observed advantage

of modality-specificity (i.e., a significant vs. a marginally
significant WM capacity increase relative to a control group)
between training and task is consistent with previous findings.
For example, Schneiders et al. (2011) observed a greater
training gain in a visual WM task following visual training
as compared to auditory training. Typically, WM training
effects have been described as narrow, declining with transfer
demands (for reviews see Melby-Lervag and Hulme, 2013, 2016;
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FIGURE 8 | Group-specific load effects. Load-related power changes (log power) are depicted for (A) theta- (2.5–5 Hz), (B) alpha- (10–12.5 Hz), (C) beta-
(17.5–22.5 Hz), and (D) gamma-band (60–80 Hz), separately for the three training groups (AG, auditory training group; TG, tactile training group; CG, active control
group). Note the group-specific differences in load effects (cf. Figure 7) vs. similarities (cf. Figure 8) in load effects across groups.

Soveri et al., 2017; but see Au et al., 2015, 2016). Nevertheless,
our findings indicate that both modality-specific auditory and
modality-irrelevant tactile training paradigms improved WM
processing, the latter, however, at a marginally significant level.

Training-Related Differences in WM Load
Effects
Our main focus in the present study was on modulations of WM
load effects, comparing groups with different post-training WM
performance. Individuals who received WM training with task-
irrelevant tactile stimuli (TG) and non-adaptive training (CG),
relative to those who received WM training with task-specific
auditory stimuli (AG), showed load-induced beta-band increases
in the right medial temporal lobe, extending along the superior
temporal sulcus. This increase in beta-band power, furthermore,
correlated negatively with the absolute n-back levels that were
maximally reached under the high load condition.

These results suggest that participants who did not receive
modality-specific WM training (TG and CG) required additional
activation of right medial temporal regions as load demands
increased. The medial temporal lobe (including hippocampal
structures together with anatomically adjacent cortical regions)
has been reliably associated with both encoding and retrieval
of information (for a review see Simons and Spiers, 2003),
being particularly critical for rapid learning of new episodic
information (Patterson et al., 2007). Furthermore, the observed
activation in the right medial temporal lobe extended along
the superior temporal sulcus, an area known to be voice-
selective, with an emphasis on the right hemisphere (Belin et al.,
2000, 2002). The task-relevant features used in the auditory
verbal n-back task of the present study were voices, which
participants had to match regarding the speakers’ identities. Thus,
the increased activation in these memory- and voice-relevant

areas seems to reflect additional support of WM processing
under high load demands. These considerations are in line
with a study by Leiberg et al. (2006). In an auditory Sternberg
task with syllables spoken by a natural voice, the authors
found a load-induced increase in beta-band power over right
temporal MEG sensors during the maintenance period. Leiberg
et al. (2006) related the load-induced parametric beta-band
enhancements to the maintenance of an increased stimulus set,
suggesting that beta-band power codes for the representations
of task-relevant stimulus features. Given that we adjusted the
task-difficulty to a comparable level across individuals and
groups (cf. section “Data Analyses”), these results confirm our
hypothesis. They show that, despite all individuals performing
at their capacity limits (adjusted load-levels), participants of
the tactile training group and the control group recruited
additional brain areas for successful WM processing at high
load demands compared to participants with modality-specific
training. Effects might result from more efficient maintenance
of task-relevant stimulus representations, following modality-
specific auditory training. Probably a higher experience with
task-relevant auditory stimuli facilitated perceptual processing,
supporting maintenance processes. The fact that the beta-band
activity may be related to processing efficiency is further reflected
in the negative correlation between the absolute n-back level
and beta-band power in the right temporal lobe in participants
of the tactile training group and the active control group. That
is, participants with highest gains in performance, as indicated
by higher n-back levels reached during the adaptive high load
condition, showed the least load-induced beta-band increases,
and thus, the least need for additional activation in the right
medial temporal lobe. Possibly, a training-induced efficiency
in maintenance processes results in a more efficient resource
allocation from perceptual to WM-related processing.
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These group-specific differences in beta-band power were
right-lateralized, thus being in accordance with literature
on voice-selective regions (Belin et al., 2000, 2002), and
more general, in accordance with literature on hemispheric
lateralization of the auditory cortex. There is a higher selectivity
of the right auditory cortex for the processing of slow
spectral aspects of auditory input, such as speech prosody
or pitch variations, over fast temporal aspects, along with a
complementary specialization of the left auditory cortex (for
review: Poeppel, 2001; Zatorre et al., 2002; Assaneo et al., 2019).
The right lateralization of the observed effect corresponds to this
functional differentiation, as in our study voices, i.e., sounds’
spectral resolution, had to be maintained and discriminated.

This finding, however, has been observed only at statistical
trend level, and has to be interpreted with caution. Nevertheless,
given this marginally significant result finds support in further
research, these data would provide neurophysiological evidence
for the previously reported “narrowness” of behavioral training
effects (Melby-Lervag and Hulme, 2013, 2016). Narrow training
effects are indicated by attenuated training gains with transfer
to other sensory modalities (Schneiders et al., 2011) or similar
tasks (Dahlin et al., 2008). Our results demonstrate that the
narrowness of training effects may be related to a training-
induced increase in efficiency to maintain representations of task-
relevant features, particularly following modality-specific WM
training. Importantly, as reflected in group-specific WM load
effects during the WM maintenance period, the here reported
training-related benefits go beyond previously reported mere
encoding advantages (e.g., Lustig and Flegal, 2008).

WM Load Effects
Working memory load effects across all participants and groups
were observed in theta-, alpha-, and beta-band power, but not in
gamma-band power.

In line with previous studies (Krause et al., 2000; Jensen and
Tesche, 2002; Deiber et al., 2007; Notebaert and Verguts, 2008),
we found that theta-band oscillatory activity increased with WM
load over bilateral prefrontal regions. The load-related increases
in frontal theta-band power have been functionally related
to enhanced requirements of cognitive control and executive
functioning at higher task demands (Sauseng et al., 2010;
Hellbernd and Sammler, 2016). The distribution of voxels with
significant effects, comprising the frontal theta-band increase,
spread from bilateral mid frontal poles in the left hemisphere to
dorsal regions, and in the right hemisphere to ventral regions.
Neuroimaging studies, aimed at classifying activation patterns
among WM-related regions, have linked dorsal frontal activation
to executive processes, necessary for a continuous updating and
maintenance of the sequential order of items in WM (D’Esposito
et al., 1998; Owen, 2000; Lisman, 2010; Heusser et al., 2016).
Right-lateralized ventral frontal activation was associated with
the manipulation of the stored information (Wager and Smith,
2003), particularly including selection and evaluation of WM
items (Owen et al., 2005). It is reasonable to assume that under
high load conditions both types of these executive functions –
continuous updating and maintenance as well as manipulation –
are required to a larger extent during WM performance. Thus, the

observed asymmetric spreading of theta-band increases toward
left dorsal and right ventral regions possibly reflects distinct
sub-functions involved in WM processing.

Additionally, we observed load-induced theta-band decreases
in the parietal cortex. Theta-band decreases in regions other than
frontal cortex have been previously reported (Howard et al., 2003;
Meltzer et al., 2008; van Vugt et al., 2010; but see, Raghavachari
et al., 2006; Sauseng et al., 2010). The strongest theta-band
desynchronizations were observed over bilateral inferior parietal
lobules. Bilateral supramarginal gyri, located in the inferior
parietal lobules, have been shown to contribute to phonological
decisions (McDermott et al., 2003; Shalom and Poeppel, 2008;
Hartwigsen et al., 2010). The stimuli in the auditory n-back task
implemented in the present study consisted of a pseudo-word
spoken by different individuals. That is, the speakers’ voices,
thus, the sounds (i.e., phonology) of pseudo-words had to be
maintained and discriminated. Hence, theta-band decreases over
bilateral inferior parietal lobules are probably related to more
efficient processing of voice stimuli. These considerations are in
line with an fMRI study by Schon et al. (2008), who observed
gradual load-induced BOLD-signal decreases in left lateral
temporal regions along with prefrontal activation increases in a
dual n-back task, in which visuospatial and auditory information
had to be maintained simultaneously. The authors related this
anterior-posterior shift in BOLD activity to a load-related shift
from perceptually dominated processing to memory processing.
Thus, similarly as Jaeggi et al. (2007), we speculate that the
observed load-induced desynchronizations over inferior parietal
regions may indicate a shift from phonological processing to
enhanced cognitive control, as indicted by load-induced frontal
theta-band increases.

In the alpha-band, oscillatory power decreased with WM
load over bilateral centro-parietal regions. These load-induced
alpha-band desynchronizations are in good agreement with
previous studies implementing the n-back paradigm (Gevins
et al., 1997; Deiber et al., 2007; Schuster et al., 2018). Together
with previous evidence that parietal regions, in addition to
frontal regions, constitute the core WM network (for a review
see Eriksson et al., 2015), our data suggest that the observed
desynchronizations in bilateral centro-parietal alpha-band power
reflect overall enhanced engagement with high processing
demands (cf. Klimesch et al., 2007).

Interestingly, while our data support the interpretation of
enhanced involvement of both frontal and centro-parietal regions
with increasing load demands, the underlying neural correlates
differ in their spectral profiles, as indicated by load-induced
frontal theta-band increases versus load-induced centro-parietal
alpha-band decreases. However, the relatively low frequency
resolution of 2.5 Hz applied in our analyses (cf. section “Data
Analyses”) may constrain our findings particularly in the low
frequency range.

In the beta-band, we found WM load-induced power
decreases over bilateral mid-central regions. Although in contrast
to some studies, reporting load-related increases of WM-relevant
oscillatory activity in n-back tasks (Deiber et al., 2007; Larrouy-
Maestri et al., 2013), our findings are consistent with the
frequent reports of load-related beta-band desynchronizations,
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mainly at medial regions (along the anterior-posterior-axis)
including the cingulate cortex (Pesonen et al., 2007; Brookes
et al., 2011; Palomaki et al., 2012; Takei et al., 2016; Scharinger
et al., 2017). Interestingly, Brookes et al. (2011) stressed
the largely overlapping spatial distribution of load-induced
beta-band desynchronizations in WM processing with regions
comprising the default mode network (DMN). The DMN
commonly involves the medial prefrontal cortex, bilateral inferior
parietal lobules, and, particularly, medially located posterior
and anterior cingulate cortices (Shulman et al., 1997; Raichle
et al., 2001). This anatomically confined brain system has
been characterized by spontaneous activity during cognitive
disengagement from the external world, and complementary, by
task-induced deactivations (Gusnard and Raichle, 2001; Buckner
et al., 2008). Of particular relevance for the present results is that
simultaneous EEG and fMRI recordings have linked the DMN,
typically studied with neuroimaging methods, mainly to beta-
band oscillatory activity (Laufs et al., 2003; Mantini et al., 2007;
Brookes et al., 2011). Accordingly, we assume that the observed
load-induced decreases in beta-band activity over medial centro-
parietal regions might reflect a task-related attenuation of default
mode functioning. Similarly, in fMRI studies, activity in the
DMN has been observed to decrease with increasing WM load
(Esposito et al., 2006; Woodward et al., 2006; Park et al., 2011;
Piccoli et al., 2015).

Apparently, when it comes to highly demanding cognitive
tasks, complementary mechanisms in terms of suppression of
task-irrelevant processing and strengthening of task-related
processing seem to be relevant for successful performance.
As for alpha-band synchronization (Klimesch et al., 2007),
we hypothesize that beta-band desynchronizations are
involved in inhibitory control. More specifically, alpha-
band synchronizations have been linked to exogenously driven
top-down inhibition to prevent interference from task-irrelevant
sensory input or task-irrelevant sensory/external processing
(Klimesch et al., 2007). For beta-band oscillations, we speculate
that desynchronizations over regions defining the DMN
reflect an endogenously driven top-down inhibitory system to
prevent interference from task-irrelevant internal processes. This
interpretation is consistent with the recently proposed hypothesis
on beta-band functioning by Engel and Fries (2010), stressing
beta’s relevance for maintaining ongoing motor activity and
cognitive sets, particularly when the current state is prioritized
over the processing of new signals, possibly by inhibiting
new sensory input.

In this study, all participants were blindfolded, as it was
part of a larger study investigating WM in congenital blindness
(cf. section “Experimental Procedures”). Blindfolding changes
the overall dynamic pattern of oscillatory brain activity (Berger,
1929; Adrian and Matthews, 1934; Geller et al., 2014). However,
these general effects are constants; the reported load effects,
thus, cannot be explained by blindfolding. Whether the overall
topography of the observed WM effects at high load demands
was modulated by blindfolding cannot be finally excluded but
the parieto-occipital topography of attentional effects on alpha
oscillations, as shown in a previous study (Wostmann et al.,
2020), argues against this possibility.

CONCLUSION

Taken together, our findings on WM maintenance-related
activity in the EEG highlight that neural mechanisms that are
recruited when individuals perform at their capacity limits
were tendency altered after modality-specific WM training.
This interesting finding, however, requires further research
for confirmation. Additionally, replicating and extending
previous WM load effects, we showed that successful WM
maintenance at highly demanding load levels requires both
a strengthening of task-relevant processing as well as an
attenuation of task-irrelevant processing, characterized by
specific electrophysiological signatures.
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