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Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces.

Recently, deep learning has been introduced into the BCI community due to its better

generalization and feature representation abilities. However, most studies currently only

have validated deep learning models for single datasets, and the generalization ability for

other datasets still needs to be further verified. In this paper, we validated deep learning

models for eight MI datasets and demonstrated that the cross-dataset variability problem

weakened the generalization ability of models. To alleviate the impact of cross-dataset

variability, we proposed an online pre-alignment strategy for aligning the EEG distributions

of different subjects before training and inference processes. The results of this study

show that deep learning models with online pre-alignment strategies could significantly

improve the generalization ability across datasets without any additional calibration data.

Keywords: brain-computer interface, cross-subject variability, cross-dataset variability, deep learning, transfer

learning, EEG

1. INTRODUCTION

Brain-Computer Interfaces (BCIs) enable humans to directly control machines via brain signals
without any physical intervention (Wolpaw et al., 2002). A typical BCI system consists of
three parts: paradigms, neuroimaging techniques, and decoding algorithms. Paradigms are
mental tasks that invoke brain activities while the corresponding brain signals are recorded
by neuroimaging techniques. Researchers prefer electroencephalography (EEG) among various
neuroimaging techniques because of its non-invasive, high temporal resolution, and low-cost
characteristics. Decoding algorithms further translate measured brain signals into commands to
control computerized devices.

Decoding algorithms are crucial to achieving an efficient and robust BCI system. Over the
past 20 years, many effective BCI decoding algorithms have been proposed due to advances in
machine learning. Most decoding algorithms extract discriminant features with well-designed
spatial filters for improving within-subject classification accuracy. Common Spatial Pattern (CSP)
and its variants (Ramoser et al., 2000; Grosse-Wentrup and Buss, 2008; Kai Keng Ang et al.,
2008; Lotte and Guan, 2011; Samek et al., 2012) are still most commonly used algorithms for
motor imagery (MI) paradigm. For the steady-state visually evoked potential (SSVEP) paradigm,
Canonical Correlation Analysis (CCA) (Lin et al., 2007) and Task-related Component Analysis
(TRCA) (Nakanishi et al., 2018) are able to improve the speed of SSVEP-based BCI spellers.
xDAWN (Rivet et al., 2009) and DCPM (Xu et al., 2018) algorithms are also perform well on P300-
based BCI applications. Recently, algorithms based on Riemannian geometry have been introduced
into the BCI community, and they provide a unified signal processing framework for decoding
brain signals (Barachant et al., 2010; Congedo et al., 2013, 2017a; Lotte et al., 2018). However, most
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algorithms are unable to reuse pre-trained models across subjects
or different sessions of the same subject. These two problems in
BCI are referred to as cross-subject and cross-session variability
problems. To reduce high variability in individual EEG data,
a calibration stage is required to collect training data at the
beginning of each session, which is inconvenient for both patients
and healthy subjects.

A natural idea for decoding brain signals is to use
deep learning models instead of handcrafted feature
extraction methods. Manual feature extraction reduces
the possibility of utilizing information across subjects.
Deep learning utilizes all information in data to train a
robust classifier, which often outperforms other machine
learning models in classification tasks. Some deep learning
models [e.g., Shallow ConvNet (Schirrmeister et al.,
2017), EEGNet (Lawhern et al., 2018)] can achieve better
performance than traditional methods in within-subject
classification task.

Deep learning is also able to ameliorate cross-session
and cross-subject variability problems with its robust feature
extraction architecture. However, deep learning models used in
BCI suffer the lack of data problem. It is hard to collect a
sufficient amount of high-quality training data for a specific BCI
task. The lack of data problems makes deep learning models
easily overfit. Some data augmentation methods may alleviate the
overfitting problem for within-subject classification tasks (Wang
et al., 2018; Dai et al., 2020). For cross-subject classification
tasks, an easier way is to train the model directly on the entire
dataset regardless of subject-specific information (Schirrmeister
et al., 2017; Lawhern et al., 2018). In practice, however, we
found that a pre-trained model from one public dataset may
fail to predict new data from another public dataset even if
the model performs well on its training dataset. The model
is highly specialized in its training dataset structure that a
minor change to the test data may make the model invalid. A
similar phenomenon was reported in Jayaram and Barachant
(2018), where the authors found that the performance of classical
supervised BCI algorithms depends on the specific dataset. A
public dataset is usually acquired under the same condition
in the same lab. Can an algorithm that performs well on one
dataset work on another dataset under different conditions?
Currently, most studies have only validated the use of deep
learning models for a specific dataset, and the generalization
ability for other datasets still needs to be further verified. The
cross-dataset variability problem in deep learning was proved in
our cross-dataset experiment.

In this work, we studied the cross-dataset variability problem
of deep learning models. We validated deep learning models
across multiple datasets and observed that the optimal model
trained for one dataset performs significantly worse on other
datasets. The results indicate that deep learning models for BCIs
are unable to generalize well outside the training dataset. To
alleviate the impact of cross-dataset variability, we introduced an
online pre-alignment strategy before the training and validation
processes. The results demonstrate that deep learning models
with online pre-alignment strategy have better generalization
ability across EEG datasets.

2. MATERIALS AND METHODS

2.1. Datasets
Eight MI datasets were used in our experiments (Schalk et al.,
2004; Leeb et al., 2007; Tangermann et al., 2012; Yi et al.,
2014; Zhou et al., 2016; Cho et al., 2017). All datasets are
publicly available and details of them are listed in Table 1.
CNBCIC2019004 and CBCIC2019004 datasets were downloaded
from the 3rd China Brain-computer Interface Competition
website. The rest of datasets were downloaded using the MOABB
package (Jayaram and Barachant, 2018).

Three channels (C3, CZ, C4) were used in this work.
These channels are located on sensorimotor area and exist
in all datasets. Only the left-hand and right-hand MI classes
were included in our experiments. Each trial was 3 s in
length and downsampled to 100 Hz such that the size of
a trial was 3 × 300. All trials were filtered with a 4-order
Butterworth bandpass filter of 3–40 Hz. Zero-phase forward and
reverse filtering was implemented using filter_data() function in
MNE (Gramfort et al., 2013).

For evaluating performance of models, trials were randomly
split into training, validation, and test sets. The training set
was 80% of the available data. The remaining 20% data were
equally partitioned and referred to as validation and test sets.
This splitting process was repeated 10 times on each subject,
producing 10 different folds.

2.2. Notation
In this section, we give the notation and assumptions used
throughout the paper. An overview of the notation is listed
in Table 2. We assume that the EEG data of each channel is
zero mean. This assumption is reasonable in the real world
which also widely adopted in many BCI algorithms (Ramoser
et al., 2000; Grosse-Wentrup and Buss, 2008). All algorithms
below are described with the two-class classification problem in
MI paradigm.

2.3. Traditional Decoding Methods
2.3.1. CSP

The goal of CSP is to find a projection matrix W =

[w1,w2, · · · ,wL], that leads to new time series Ê = WTE, which
maximizes the discriminance between classes. The CSP algorithm
solves the following optimization problem

w∗ = argmax
wi∈RNc ,i∈{1,2,··· ,L}

wT
i C̄

1wi

wT
i C̄

2wi

(1)

with C̄1, C̄2 are average normalized covariance matrices of each
class obtained from

C̄k =

Nk
t

∑

i=1

Eki E
k
i

T

tr(Eki E
k
i

T
)

(2)

where Nk
t is the number of trials of class k, k ∈ {1, 2} and

tr(·) denotes the trace operator. Solutions to (1) are given by
eigenvectors of the generalized eigenvalue problem

C̄1wi = λiC̄
2wi (3)
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TABLE 1 | Details of datasets.

Dataset Classes Subjects Trials per class Trial duration (s) Channels Sampling rate (Hz)

BNCI2014001 Left/right/feet/tongue 9 144 4 22 250

BNCI2014004 Left/right 9 360 4.5 3 250

PhysionetMI Left/right/hands/feet 109 20–30 3 64 250

Cho2017 Left/right 52 100 3 64 512

Weibo2014 Left/right/hands/feet 10 80 4 60 200

Zhou2016 Left/right/feet 4 160 5 14 250

CBCIC2019001 Left/right 18 60 4 59 1000

CBCIC2019004 Left/right 6 40 4 59 250

TABLE 2 | Symbols and notations.

Symbol Description

Nt Number of trials

Nc Number of channels

Ns Number of samples

Ei EEG data matrix of a single trial, Ei ∈ R
Nc×Ns

Ci Covariance of Ei , Ci ∈ R
Nc×Nc

W Spatial filter matrix, W ∈ R
Nc×L, L ≤ Nc

wi A spatial filter vector, wi ∈ R
Nc ,W = [w1,w2, · · · ,wL]

where eigenvalues are sorted in descending order. CSP selects
eigenvectors with the L/2 largest/smallest eigenvalues to form
projection matrix W, which is also named spatial filters. The
feature vector fi ∈ R

L of Ei is given by

fi = log

(

var(WTEi)
∑

var(WTEi)

)

(4)

where var(·) denotes the variance operator on each row of Êi and
log(·) denotes the logarithm operator of elements. CSP is usually
followed by a linear or non-linear classifier to classify test data.

2.3.2. FBCSP

The Filter Bank Common Spatial Pattern (FBCSP) (Kai Keng
Ang et al., 2008) extends the CSP algorithm to EEG data with
multiple frequency bands. The goal of FBCSP is to address
the problem of manually selecting the subject-specific frequency
band for the CSP algorithm. The key step in FBCSP is feature
selection, which selects a subset of features that leads to the
smallest classification error. FBCSP estimates the importance of
each feature vector with mutual information and selects the L
most important w to form the projection matrixW used in (4).

2.3.3. MDRM

The Minimum Distance to Riemannian Mean (MDRM)
(Barachant et al., 2011) is an algorithm based on Riemannian
Geometry. Riemannian Geometry considers matrix Ci as a point
in a Riemannian manifold. MDRM computes the Riemannian
center of each class and compares Riemannian distances from

test points to centers. The Riemannian distance of two covariance
matrices C1,C2 is given by

δR(C1,C2) = ‖Log(C−1
1 C2)‖F =

[

Nc
∑

i=1

log2(λi)

]1/2

(5)

where Log(·) is the logarithm operator of a matrix, and λi is the
i-th eigenvalue of matrix C−1

1 C2. The Riemannian center C̄k
R of

each class is defined as follows

C̄k
R = argmin

C̄k
R

Nk
t

∑

i=1

δR(C̄
k
R,C

k
i ) (6)

with k ∈ {1, 2}. Although there is no closed form solution to
(6) when Nk

t > 2, the problem can be solved with iterative
algorithms (Moakher, 2005; Pennec et al., 2006; Congedo et al.,
2017b). With Riemannian centers, a new test covariance Ctest is
classified as follows:

argmin
k∈{1,2}

δR(C̄
k
R,Ctest) (7)

2.4. Deep Learning Models
2.4.1. ShallowNet

ShallowNet (Schirrmeister et al., 2017) imitates FBCSP’s design
in the deep learning structure. The architecture of ShallowNet
is listed in Table 3. The first convolution layer is designed to
convolve in a temporal direction, which is analogous to bandpass
filtering. The second convolution layer is designed to convolve
in a spatial direction, which is analogous to spatial filters in
CSP. Shallow ConvNet uses a squaring activation function and
average pooling layer to imitate feature mapping in (5). Instead of
mutual information selection in FBCSP, ShallowNet uses a fully
connected layer to combine all features and predict probabilities
of classes.

2.4.2. EEGNet

EEGNet is a CNN-based model proposed by Lawhern et al.
(2018). The architecture of EEGNet is listed in Table 4. EEGNet
is designed for general EEG recognition tasks. EEGNet retains
temporal and spatial convolution layers in Shallow ConvNet.
Instead of simple convolution in ShallowNet, EEGNet introduces
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TABLE 3 | ShallowNet architecture.

Layer Input size Output size Kernels Kernel size Stride Padding

Conv2d 1× 3× 300 10× 3× 300 10 (1, 21) (1, 1) (0, 10)

BatchNorm2d 10× 3× 300 10× 3× 300

Conv2d 10× 3× 300 15× 1× 300 15 (3, 1) (1, 1) (0, 0)

BatchNorm2d 15× 1× 300 15× 1× 300

Pow2 15× 1× 300 15× 1× 300

AvgPool2d 15× 1× 300 15× 1× 17 (1, 55) (1, 15) (0, 0)

Log 15× 1× 17 15× 1× 17

Dropout 15× 1× 17 15× 1× 17

Linear 255 2

TABLE 4 | EEGNet architecture.

Layer Input size Output size Kernels Kernel size Stride Padding

Conv2d 1× 3× 300 8× 3× 300 8 (1, 31) (1, 1) (0, 15)

BatchNorm2d 8× 3× 300 8× 3× 300

Depthwise Conv2d 8× 3× 300 16× 1× 300 16 (3, 1) (1, 1) (0, 0)

BatchNorm2d 16× 1× 300 16× 1× 300

Elu 16× 1× 300 16× 1× 300

AvgPool2d 16× 1× 300 16× 1× 75 (1, 4) (1, 4) (0, 0)

Dropout 16× 1× 75 16× 1× 75

Seperable Conv2d 16× 1× 75 16× 1× 75 16 (1, 15) (1, 1) (0, 7)

BatchNorm2d 16× 1× 75 16× 1× 75

Elu 16× 1× 75 16× 1× 75

AvgPool2d 16× 1× 75 16× 1× 9 (1, 8) (1, 8) (0, 0)

Dropout 16× 1× 9 16× 1× 9

Linear 144 2

depthwise separable convolution (Chollet, 2017) to reduce the
number of training parameters. EEGNet also replaces squaring
activation with ELU activation.

2.5. Online Pre-alignment Strategy
Recently, many Transfer Learning approaches have been
introduced into BCIs to reduce cross-subject variability (Zanini
et al., 2018; Rodrigues et al., 2019; Yair et al., 2019). An approach
named Riemannian Procrustes Analysis (RPA) was proposed
by Rodrigues et al. (2019). RPA takes three steps to match
data distributions of source domain and target domain: re-
centering, stretching, and rotation. The re-centering step aligns
the Riemannian center of covariance matrices to identity matrix.
The stretching step modulates dispersions of two domains to the
same level. The rotation step further rotates matrices from target
domain to match that of source domain with predetermined
markers. The re-centering step has also been mentioned in
Reuderink et al. (2011) and Zanini et al. (2018) as follows

Ĉi = M−1/2CiM
−1/2 (8)

where M is the Riemannian center of training covariances and
Ĉi is the aligned covariance matrix. In this work, we applied re-
centering step before the training and validation processes, and
this is named the pre-alignment strategy (PS). Instead of direct
operation on covariances, we transformed Ei+1 to aligned time
series Êi+1 by

Êi =
1

Ns
M−1/2Ei (9)

The above transformation has also been mentioned in He and
Wu (2020), where the authors used Euclidean mean covariance
instead of Riemannian mean covariance M here. Although PS
is an unsupervised method, they still require enough calibration
data of each subject to compute the expected Riemannian center
M. We implemented an online pre-alignment strategy (OPS) on
continuous EEG data for each subject. Assuming that Mi is the
Riemannian mean of previous available covariances, Ei+1 is the
EEG data of the next trial, and Ci+1 is the covariance of Ei+1. A
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FIGURE 1 | Pipelines of our methods. (A) The pipeline of pre-alignment

strategy. (B) The pipeline of online pre-alignment strategy.

recursive Riemannian mean update rule is given as follows

Mi+1 = geodesic

(

Mi,Ci+1,
1

i+ 1

)

= M
1/2
i

(

M
−1/2
i Ci+1M

−1/2
i

)
1

i+1
M

1/2
i

(10)

where M1 = C1. This recursive algorithm was proposed by Ho
et al. (2013), which asymptotically converges in probability to
the Riemannian mean expectation. OPS is efficient in practice
since it avoids the calibration stage and repeatedly recalculating
the Riemannian mean of the previous data. Figure 1 shows the
pipelines of our methods. The aligned time series are given by

Êi+1 =
1

Ns
M

−1/2
i+1 Ei+1 (11)

2.6. Experiments
Within-subject, cross-subject, and cross-dataset experiments
were carried out in this work. In the within-subject experiment,
we compared the subject-specific performance of both traditional
methods and deep learning models. In the cross-subject
experiment, the unsupervised transfer ability of two deep
learning models was verified in a single dataset. In the
cross-dataset experiment, we further validated deep learning
models on different datasets with/without online re-centering
transformation. The Wilcoxon signed rank test was used to
compare the performance of different methods.

In the within-subject experiment, a Linear Discriminant
Analysis classifier was used for CSP and FBCSP feature extraction
methods. In CSP method, the number of selected spatial filters
was set to two. The filter bank of FBCSP is 4–9, 8–15, and 15–
30 Hz. The number of selected spatial filters in FBCSP was set to

four. Both traditional algorithms and deep learning models were
trained on the training and validation sets for each subject. In the
cross-subject experiment, leave-one-subject-out cross-validation
was carried out on each dataset. One subject was chosen as a test
subject, and deep learning models were trained on the rest of
subjects in the same dataset. In cross-dataset experiment, deep
learning models were trained on all subjects of one dataset while
the rest of datasets were both test datasets.

Architectures of Shallow ConvNet and EEGNet in
experiments are listed in Tables 3, 4, respectively. Parameters of
models were mainly from original papers (Schirrmeister et al.,
2017; Lawhern et al., 2018) but were adjusted to fit our input size
and sampling rate of data. The dropout probability was set to
0.5. The optimizer was Adam with learning rate set to 0.001. The
batch size was 16 in within-subject experiment due to the limited
number of available trials. In cross-subject and cross-dataset
experiments, the batch size was 128. Instead of early stopping
used in Schirrmeister et al. (2017), we trained for 120 epochs
and selected the best model on validation set. Both models were
implemented in PyTorch framework (Paszke et al., 2017).

3. RESULTS

3.1. Within-Subject Classification Results
Within-subject classification accuracies of both traditional
methods and deep learning models on eight datasets are listed in
Table 5. Each method was tested under two conditions (with PS
and without PS). Both methods achieved accuracies beyond the
random level. The boldface in Table 5 shows that the accuracy of
method with PS is higher than that without PS. The Wilcoxon
signed rank test showed that the performance of EEGNet with
PS was significantly better than that of EEGNet without PS
(ShallowNet: p = 0.06; EEGNet: p = 0.008). No significant
improvement was observed between traditional methods with
PS and that without PS. In PhysionetMI and CBCIC2019004
datasets, the accuracies of deep learning models were lower than
that of traditional methods.

Figure 2 shows results of the Wilcoxon signed rank test
on each pair of methods. The dark square indicates that the
performance of row method is significantly better than that of
column method (p < 0.05). Under without PS condition, FBCSP
and ShallowNet were significantly better than CSP and MDRM.
Under with PS condition, all methods were significantly better
than CSP. FBCSP, ShallowNet and EEGNet were significantly
better than MDRM, whereas no significant differences were
observed between deep learning models and FBCSP.

3.2. Cross-Subject Classification Results
Figures 3, 4 show results of cross-subject classification on
eight datasets for ShallowNet and EEGNet, respectively. The
performance of deep learning models without OPS in cross-
subject classification was significantly higher than the random
level (ShallowNet: p = 0.008; EEGNet: p = 0.008). ShallowNet
with OPS was significantly better than that without OPS
(ShallowNet: p = 0.046; EEGNet: p = 0.062). Specifically,
for CNBCI2019004 dataset, ShallowNet with OPS increased
the accuracy by 19.8% and EEGNet with OPS increased the
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TABLE 5 | Within-subject Classification accuracies averaged on 10-folds.

CSP FBCSP MDRM ShallowNet EEGNet∗∗∗

w/o PS w/ PS w/o PS w/ PS w/o PS w/ PS w/o PS w/ PS w/o PS w/ PS

BNCI2014001 0.68 0.66 0.70 0.72 0.68 0.68 0.76 0.77 0.78 0.79

BNCI2014004 0.70 0.69 0.74 0.75 0.69 0.69 0.79 0.79 0.79 0.80

PhysionetMI 0.56 0.56 0.59 0.61 0.57 0.57 0.53 0.56 0.51 0.56

Cho2017 0.57 0.57 0.60 0.59 0.58 0.58 0.68 0.68 0.65 0.66

Weibo2014 0.66 0.65 0.68 0.69 0.68 0.65 0.75 0.76 0.71 0.74

Zhou2016 0.81 0.82 0.89 0.88 0.80 0.82 0.83 0.87 0.84 0.88

CBCIC2019001 0.57 0.55 0.60 0.60 0.59 0.57 0.66 0.66 0.71 0.71

CBCIC2019004 0.69 0.69 0.74 0.73 0.70 0.70 0.65 0.65 0.62 0.65

Mean 0.65 0.65 0.69 0.70 0.66 0.66 0.71 0.72 0.70 0.72

Stars correspond to ∗∗∗p < 0.01. The boldface shows that the accuracy of method with pre-alignment strategy (w/ PS) is higher than that without pre-alignment strategy (w/o PS).

FIGURE 2 | Results of the Wilcoxon signed rank tests on pairs of methods. The dark square shows that the performance of row method is significantly better than

that of column method (p < 0.05). (A) Results of methods without pre-alignment strategy (w/o PS). (B) Results of methods with pre-alignment strategy (w/ PS).

accuracy by 14.3%. But for Cho2017 dataset, accuracies of
models with OPS both suffered a little decrease (ShallowNet: 4%,
EEGNet: 8%).

3.3. Cross-Dataset Classification Results
Figures 5, 6 show results of cross-dataset classification for
ShallowNet and EEGNet, respectively. The row label is the
name of training dataset and the column label is the name
of test dataset. The main diagonal element of each heatmap,
where the training dataset is also the test dataset, is the cross-
subject classification accuracy of the current dataset indicated
in Figures 3, 4.

Figure 5A shows that most cross-dataset accuracies of
ShallowNet without OPS were near the random level,
although their within-dataset accuracies (elements of the
main diagonal) were not. Figure 5B shows that cross-dataset
accuracies with OPS were significantly more improved than
that without OPS in all datasets (p < 0.05). Figure 5C

shows the difference between Figure 5A and Figure 5B.

Figure 6 shows similar results of EEGNet to that in
Figure 5.

4. DISCUSSION

To compare traditional methods and deep learning models, we
first validated three traditional methods and two deep learning
models in within-subject experiment. The results of within-
subject experiment are listed in Table 5 and Figure 2. The
performance of FBCSP was significantly better than that of
CSP and MDRM while no significant differences were observed
between deep learning models and FBCSP.

However, traditional methods are more robust in small
sample learning. The performance of deep learning models is
limited by the amount of data available. We observed that deep
learning models were unable to achieve the same performance
as traditional models in PhysionetMI and CBCIC2019004
datasets, which have relatively small number of trials per
subject (PhysionetMI: 44; CBCIC2019004: 80). We also observed
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FIGURE 3 | Results of cross-subject classification on eight datasets for ShallowNet with online pre-alignment strategy (w/ OPS) and without online pre-alignment

strategy (w/o OPS). Leave-one-subject-out validation was implemented on each dataset, and the validation for each subject was repeated 10 times.

FIGURE 4 | Results of cross-subject classification on eight datasets for EEGNet with online pre-alignment strategy (w/ OPS) and without online pre-alignment strategy

(w/o OPS). Leave-one-subject-out validation was implemented on each dataset, and the validation for each subject was repeated 10 times.

FIGURE 5 | Results of cross-dataset classification for ShallowNet. The model was trained using the row dataset and validated on column datasets. In (A) Results of

ShallowNet without online pre-alignment strategy (w/o OPS) and (B) Results of ShallowNet with online pre-alignment strategy (w/ OPS), the number in each square is

the validation accuracy and the element of main diagonal is the cross-subject accuracy in each dataset showed in Figure 3. (C) The difference between (B) and (A).

that pre-alignment strategy could significantly improve the
performance of deep learning models while no significant
improvement was found in traditional methods. The analysis of

within-subject experiment indicates that deep learning models
can achieve the same performance as traditional methods in
subject-specific classification tasks with enough training data.
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FIGURE 6 | Results of cross-dataset classification for EEGNet. The model was trained using the row dataset and validated on column datasets. In (A) Results of

EEGNet without online pre-alignment strategy (w/o OPS) and (B) Results of EEGNet with online pre-alignment strategy (w/ OPS), the number in each square is the

validation accuracy and the element of main diagonal is the cross-subject accuracy in each dataset showed in Figure 4. (C) The difference between (B) and (A).

Our second analysis considered the feasibility of using deep
learning models to solve cross-subject variability problems.
Leave-one-subject-out cross-validation was carried out on each
dataset. The results of the cross-subject experiment are shown
in Figures 3, 4. The performance of deep learning models
without OPS was significantly higher than the random level.
The results indicate that deep learning models are able to
transfer a pre-trained classifier to a new subject without
additional subject-specific calibration data. We also tested
deep learning models with OPS on eight datasets. Deep
learning models with OPS were significantly better than those
without OPS. The OPS aligns the data of each subject to
the similar distribution, which makes deep learning models
much easier to learn common patterns across subjects. We
also noticed that Cho2017 dataset suffers performance lost
in both deep models with OPS. This may due to different
motor imagery instructions. The authors in Cho et al. (2017)
asked subjects to imagine four sequential finger movements
instead of the clench of fist in other datasets. Imagining
finger movement, which is still an open problem, is much
harder to decode than imagining fist clenching. Besides, we
only used Cz, C3, and C4 channels to decode fist clenching
imagery, which are not sufficient to decode finger movements.
Using more channels around central area may improve the
performance of Cho2017 since they can cover much larger
motorsensory area.

Although deep learning models seem feasible in solving the
cross-subject variability problem as depicted in Figures 3, 4,
we note that deep learning models fail to generalize well in
practice. Our third analysis explored the generalization ability
of deep learning models on large datasets in the cross-dataset

experiment. The results indicate that the cross-dataset variability
problem reduces the generalization ability of deep learning
models. In our second analysis, two models indeed have the
ability to classify trials of a new subject without any calibration
data in the same dataset. However, the pre-trained model
in one dataset is unable to achieve the same performance
on other datasets, which suggests that the model is highly
specialized in its training dataset structure. Similar phenomenon
was reported in paper (Jayaram and Barachant, 2018), where
authors validated the use of traditional methods of different
datasets in within-subject classification experiment. They found
that the significance between algorithms depends on the specific
dataset and results of a single dataset need to be tested on
more datasets.

The reason for cross-dataset variability is still under exploring,
but it may be caused by model overfitting problem. In cross-
dataset classification scenario, a BCI dataset contains two
kinds of variability: physiological variability and environmental
variability. Physiological variability is responsible for the
cross-subject variability while environmental variability is
responsible for the environmental changes. Each dataset
has its own specific configurations, including the amplifier,
the electrode cap, the sampling rate, and the bandpass
filtering settings. Moreover, data of subjects in the same
dataset are acquired in the same laboratory environment.
Deep learning models are usually trained on the data of
all subjects of the same dataset. Since the distribution of
environmental variability is more stable than that of physiological
variability in the same dataset, deep learning models can
easily overfit on the environmental variability. When the pre-
trained model is validated on other datasets, which have
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different distributions of environmental variability, the model
loses its generalization ability since the model is not robust to
environmental changes.

One way to alleviate cross-dataset variability is to add
more subjects from different datasets into the training set.
However, cleaning data is hard due to different settings of
public datasets. Instead of adding more subjects, we use an
online pre-alignment strategy to reduce physiological variability
of each subject without any calibration data. OPS significantly
improves the generalization ability of deep learning models.
Zhou2016 is the dataset with the most significant improvement.
All models trained on other datasets can achieve more than
70% accuracy except for CBCIC2019004. The result is reasonable
since Zhou2016 is a biased dataset in which all subjects are
experienced subjects. We found that the classification accuracies
for some datasets are even higher than their within-subject
classification accuracies (comparing to FBCSP without PS).
For example, for PhysionetMI, nearly all models trained on
other datasets (except CBCIC2019001 and CBCIC2019004) can
achieve more than 60% accuracy, which is higher than its within-
subject accuracy (59%). This finding may suggest that deep
learning models can extract more stable feature representation
than traditional methods. We also found that different datasets
have different impacts on deep learning model training process.
The improvement of CNBCIC2019004 on other test datasets
is limited compared to other training datasets. This may be
due to one drawback of deep learning models. CBCIC2019004,
which only has 480 trials totally, does not have enough data
for training comparing to other datasets. In summary, we
recommend two tips that may be helpful for deep learning based
BCI research:

(1) Use OPS as a preprocessing step.
(2) Collect enough training data.

5. CONCLUSION

In this paper, we have validated deep learning models across
eight MI datasets. The analysis shows that the cross-dataset
variability would reduce the performance of deep learning
models, suggesting the need of validating models on different
datasets for future cross-subject studies. We also proposed the
online pre-alignment strategy to improve generalization ability
of deep learning models. The results demonstrate that deep
learning models with OPS could achieve high performance for
cross-subject classification without the calibration stage.
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