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Background: Cortical entrainment to speech correlates with speech intelligibility and
attention to a speech stream in noisy environments. However, there is a lack of data on
whether cortical entrainment can help in evaluating hearing aid fittings for subjects with
mild to moderate hearing loss. One particular problem that may arise is that hearing
aids may alter the speech stimulus during (pre-)processing steps, which might alter
cortical entrainment to the speech. Here, the effect of hearing aid processing on cortical
entrainment to running speech in hearing impaired subjects was investigated.

Methodology: Seventeen native English-speaking subjects with mild-to-moderate
hearing loss participated in the study. Hearing function and hearing aid fitting were
evaluated using standard clinical procedures. Participants then listened to a 25-min
audiobook under aided and unaided conditions at 70 dBA sound pressure level (SPL)
in quiet conditions. EEG data were collected using a 32-channel system. Cortical
entrainment to speech was evaluated using decoders reconstructing the speech
envelope from the EEG data. Null decoders, obtained from EEG and the time-reversed
speech envelope, were used to assess the chance level reconstructions. Entrainment in
the delta- (1–4 Hz) and theta- (4–8 Hz) band, as well as wideband (1–20 Hz) EEG data
was investigated.

Results: Significant cortical responses could be detected for all but one subject in
all three frequency bands under both aided and unaided conditions. However, no
significant differences could be found between the two conditions in the number of
responses detected, nor in the strength of cortical entrainment. The results show that
the relatively small change in speech input provided by the hearing aid was not sufficient
to elicit a detectable change in cortical entrainment.
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Conclusion: For subjects with mild to moderate hearing loss, cortical entrainment to
speech in quiet at an audible level is not affected by hearing aids. These results clear
the pathway for exploring the potential to use cortical entrainment to running speech for
evaluating hearing aid fitting at lower speech intensities (which could be inaudible when
unaided), or using speech in noise conditions.

Keywords: cortical entrainment, hearing impairment, hearing aid evaluation, speech detection,
electroencephalography

INTRODUCTION

Accurate speech understanding is essential in day-to-day
communication. There is currently much interest in gaining
insight into the entrainment of neural activity in the auditory
cortex to running speech stimuli (Zatorre et al., 2002; Schroeder
and Lakatos, 2009; Giraud and Poeppel, 2012; Ding et al., 2017;
Riecke et al., 2018). Cortical entrainment can be defined as
the phase adjustment of neuronal oscillations in the auditory
cortex to ensure high sensitivity to relevant (quasi-)rhythmic
speech features (Lakatos et al., 2005; Giraud and Poeppel,
2012; Peelle et al., 2013; Alexandrou et al., 2018). These phase
adjustments are considered to persist over time (Lakatos et al.,
2005). Alternatively, cortical entrainment has been defined as
the “observation of a constant phase of neural response to
the same speech stimulus,” which avoids the need for an
intrinsic relationship between the speech stimulus and neuronal
oscillations (Alexandrou et al., 2018).

There is strong evidence that the neural activity in the auditory
cortex entrains to low-frequency modulations in speech (in the
delta-, theta-, and gamma-band, see e.g., Giraud and Poeppel,
2012; Ding et al., 2017). This idea stems from studies that
showed high speech recognition of vowels and consonants after
removing high-frequency spectral cues (Shannon et al., 1995).
Furthermore, it has been shown that running speech shows a
dominant frequency component in this slow modulation range
resulting from rhythmic jaw movement associated with syllable
structure in English (Peelle et al., 2013), especially around 4 Hz
(Golumbic et al., 2012). When removing these low-frequency
components, cortical envelope tracking is reduced, with the
reduction in correlation consistent with a decrease in perceived
speech intelligibility (Doelling et al., 2014). These results have
led to the hypothesis that cortical entrainment to speech can be
an objective measure for evaluating speech understanding and
intelligibility and for an evaluation of hearing loss treatment
strategies (Somers et al., 2018).

The exact electrophysiological mechanisms behind cortical
entrainment to speech remain unclear. One electrophysiological
model suggests that the auditory cortex segments (running)
speech into discrete units based on temporal speech features,
which allows cortical readout of syllabic and phonetic units
(Giraud and Poeppel, 2012). Here, speech onsets are suggested
to trigger a stronger coupling between theta-band (4–8 Hz)
activity and gamma-band (25–40 Hz) activity cortical generators,
with gamma-band activity controlling the excitability of neurons
and theta-band activity tracking the temporal speech envelope.
Cortical entrainment to these oscillations has also been suggested

to be asymmetric, with theta-band activity more strongly
represented in the right hemisphere and gamma-band activity
more strongly represented in the left hemisphere (Morillon et al.,
2012). Computer models of coupled theta-band/gamma-band
coupling have further shown that theta-band activity can regulate
a phoneme-level response based on gamma-band spiking activity
(Hyafil et al., 2015). Studies have also found that theta-band
phase-locking of the cortex to speech stimuli is an important
mechanism for discriminating speech (Luo and Poeppel, 2007;
Howard and Poeppel, 2012).

On the other hand, some studies have suggested that
theta-band activity only reflects perceptual processing of
speech, whereas delta-band (1–4 Hz) activity is involved with
understanding speech (Molinaro and Lizarazu, 2018). This is
in line with speech spectrum studies showing spectral peaks at
sentence and word rates (0.5 Hz and 2.5 Hz, respectively) and
showing that delta-band activity contains prosodic information
which if removed reduces perceived speech intelligibility
(Woodfield and Akeroyd, 2010; Edwards and Chang, 2013).
One study comparing EEG responses to speech in noise at
different frequencies with behavioral responses showed a decline
in delta-band activity with reduced speech signal-to-noise ratio
resembling the decline in subjectively rated speech intelligibility,
whereas theta-band activity showed a linear decline (Ding and
Simon, 2013). Another study showed that delta-band, low theta-
band and high theta-band entrainment correspond to different
features of the speech stream, indicating that both delta-band and
theta-band entrainment might be necessary for optimal speech
understanding (Cogan and Poeppel, 2011).

Several studies have focused on cortical responses to
short speech like sounds using magneto- (MEG) or electro-
encephalography (EEG) (Shahin et al., 2007; Ding and Simon,
2013; Millman et al., 2015; Mirkovic et al., 2015; Di Liberto et al.,
2018a). Traditionally, these studies focused on evoked cortical
responses to short stimuli such as words, consonants and vowel
or speech-like tones (Friedman et al., 1975; Cone-Wesson and
Wunderlich, 2003; Tremblay et al., 2003; Shahin et al., 2007; Van
Dun et al., 2012). Often, these stimuli are short such that they can
be repeated, which allows the signal-to-noise ratio of the cortical
response to be enhanced through coherent averaging (Ahissar
et al., 2001; Aiken and Picton, 2008), or through correlation
between template and response EEG averages (Suppes et al.,
1998). These studies have shown that cortical responses differ for
different speech tokens (Cone-Wesson and Wunderlich, 2003;
Tremblay et al., 2003) even at infancy (Van Dun et al., 2012).
They have also been used to estimate auditory thresholds in adults
(Lightfoot, 2016). Furthermore, it has been suggested that cortical
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evoked potentials can reflect speech-in-noise performance in
children (Anderson et al., 2010).

The main issue with these approaches is that these short
speech stimuli consist of individual, independent onsets and
offsets to which the evoked response is measured. Running
speech, however, is a continuous flow of onsets and offsets, which
are dependent on the stimulus and adapt to the spectro-temporal
structures of the stimulus. Running speech therefore gives the
potential to track a collective of speech features (often referred
to as cortical entrainment), rather than only onsets (evoked
responses) (Ding and Simon, 2014). Another aspect of repeated
short stimuli is that they do not reflect ecologically relevant
stimuli that are encountered in everyday life (Alexandrou et al.,
2018). In most cases, running speech is taken from audiobooks
(Ding and Simon, 2013; O’Sullivan et al., 2014; Di Liberto et al.,
2015; Mirkovic et al., 2015). Although still not exactly the same
as naturally occurring every-day speech (dialogues), these stimuli
are considered more relevant as they can be encountered in
naturally occurring circumstances such as theater visits or news
bulletins (Alexandrou et al., 2018).

Evaluation of cortical entrainment to running speech can be
achieved through coherence analysis, with a focus on finding
responses in the relevant frequency bands (Luo and Poeppel,
2007; Doelling et al., 2014). A technique that has gained much
popularity for reconstructing running speech features from EEG
(and MEG) signals is the temporal response function (TRF),
which represents a linear mapping between features of the speech
stimulus and the neural response (Lalor et al., 2006; O’Sullivan
et al., 2014; Crosse et al., 2016a). TRF algorithms can be used
either to predict EEG signals from stimulus features (forward
model) or to reconstruct stimulus features from collected EEG
signals (backward model) (Crosse et al., 2016a). Early studies
used forward models to predict EEG responses to unseen
stimuli based on a single stimulus feature (e.g., the speech
envelope) (Lalor and Foxe, 2010). Recently, however, multivariate
TRF models have been used to predict EEG responses in
separate frequency bands based on speech spectrograms (Crosse
et al., 2016a) and even phonetic features (Di Liberto et al.,
2015). Similarly, although traditional backward models mostly
attempted to only reconstruct a single feature from recorded EEG
data (Ding and Simon, 2012, 2013, 2014; Mirkovic et al., 2015),
multimodal algorithms have been developed that allow extracting
information from both audio and visual features simultaneously
(Crosse et al., 2016b). The TRF has shown the potential to identify
an attended speaker in a cocktail party setting of many competing
voices (Power et al., 2012; Horton et al., 2013; O’Sullivan et al.,
2014), to predict speech-in-noise thresholds (Vanthornhout et al.,
2018), to decode speech comprehension (Etard and Reichenbach,
2019), and has been used to investigate atypical speech processing
in subjects suffering from dyslexia (Di Liberto et al., 2018b). TRF
algorithms have also shown to have better response detection as
compared to a cross-correlation analysis between EEG signals
and speech stimuli (Crosse et al., 2016a).

Currently, interest is growing to apply TRF algorithms for
evaluating hearing function and hearing aid fitting (Decruy
et al., 2019). Better audibility, due to wearing a hearing aid,
is expected to correlate with the level of cortical tracking of

the speech envelope. Some studies have, however, shown that
presenting vowel stimuli through hearing aids may affect cortical
evoked responses, possibly due to the effect of hearing aid speech
processing software on the speech spectrum (Easwar et al., 2012;
Jenstad et al., 2012). The potential effect of hearing aid processing
on cortical entrainment has, however, not yet been explored.

This study aimed to determine how cortical entrainment to
the temporal envelope of running speech stimuli is affected
by hearing aids in a cohort of mild-to-moderate hearing-
impaired subjects when presenting the speech stimuli at an
audible level. This was achieved by comparing the correlation
between the original temporal speech envelope and the envelope
reconstructed from EEG signals under aided and unaided
conditions using a backward TRF algorithm. Mild to moderate
hearing impaired subjects were chosen as they represent
the largest group of users that are seen in typical hearing
aid clinics (Suppes et al., 1998). If no effect of hearing
aid processing would be observed, it would provide a first
step toward objective audiological evaluation of hearing aid
fitting using ecologically relevant stimuli, rather than clicks
or tone stimuli (Billings, 2013). This might also facilitate the
application of TRF algorithms in future real-time hearing
aid speech processing, for example through providing input
for optimization of hearing aid algorithms through cortical
entrainment evaluations obtained from in-the-ear EEG systems
(Mikkelsen et al., 2015).

MATERIALS AND METHODS

Seventeen native English-speaking subjects (11 males, 6 females,
age 65 ± 5 years) with mild to moderate sensorineural and
bilateral hearing impairment were recruited for this study (for
full demographics, see Table 1). Hearing function was assessed
through pure-tone audiometry (PTA). Figure 1A shows the
average PTA hearing levels (in dB). Levels for the left ear at
250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 3000 Hz, 4000 Hz, 6000 Hz,
and 8000 Hz were: 23 dB± 13 dB, 23 dB± 15 dB, 29 dB± 16dB,
43 dB ± 19 dB, 54 dB ± 17 dB, 61 dB ± 14 dB, 69 dB ± 19 dB,
and 68 ± 18 dB, respectively (mean ± standard deviation). For
the right ear, these values were: 29 dB ± 21 dB, 27 dB ± 21 dB,
32 dB ± 23 dB, 43 dB ± 21 dB, 51 dB ± 20 dB, 61 dB ± 17 dB,
68 dB± 24 dB and 65 dB± 18 dB, respectively.

All subjects had hearing aids fitted binaurally based on
NAL-NL2 guidelines with real-ear measurements (see Table 2
for hearing aid features) (Aazh and Moore, 2007; Keidser
et al., 2011). The average use of hearing aids over all subjects
was 84 ± 48 months (mean ± standard deviation, range 4–
191 months). The average real ear hearing aid gain for ISTS
noise at 60 dB SPL input (RESP60, black) and the output
sound pressure level with input of 90 dB SPL and gain full on
(OSPL90, gray) measurements are shown in Figure 1B. Speech
understanding was further evaluated by asking the participants
to repeat a set of randomized Bamford-Kowal-Bench (BKB)
sentences (Bench et al., 1979) presented at 65 dBA SPL under
aided and unaided conditions. The sentence list was different
for both conditions. All participants gave informed consent for
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TABLE 1 | Subject demographics (HF, high frequency).

Patient
ID

Gender
(M/F)

Age
(years)

Type of
hearing loss

Symmetric
hearing
loss (yes/no)?

Hearing loss
shape, best ear

Hearing loss
shape,
worst ear

Time since
diagnosis (years)

01 F 65 Sensorineural Yes Flat Flat 2

02 M 68 Sensorineural No Sloping HF Flat 11

03 M 61 Sensorineural Yes Sloping HF Sloping HF 14

04 F 52 Sensorineural Yes Ski slope Ski slope 6

05 M 69 Sensorineural No Sloping HF Sloping HF 7

06 M 69 Sensorineural No Sloping HF Sloping HF 11

07 M 70 Sensorineural Yes Sloping HF Sloping HF 3

08 F 70 Sensorineural No Sloping HF Sloping HF 9

09 M 68 Sensorineural No Sloping HF Sloping HF 6

10 M 66 Sensorineural No Sloping HF Sloping HF 9

11 F 57 Sensorineural Yes Sloping HF Sloping HF 13

12 M 68 Sensorineural Yes Sloping HF Sloping HF 11

13 M 64 Sensorineural No Sloping HF Sloping HF 2

14 F 70 Sensorineural Yes Flat Flat 18

15 F 57 Sensorineural No Sloping HF Sloping HF 2

16 M 65 Sensorineural Yes Sloping HF Sloping HF 11

17 M 67 Sensorineural Yes Sloping HF Sloping HF 9

FIGURE 1 | (A) Average hearing levels for the left and right ear based on pure tone audiometry. The dashed line at 20 dB indicates the threshold above which
hearing is considered to be normal. (B) Hearing aid gain according to RESP60 (black) and OSPL90 (gray) tests. Error bars indicate ±1 standard deviation.
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TABLE 2 | Overview of hearing aid settings (SS, soft switching).

Patient
ID

Hearing
aid type

Time using
hearing aid (months)

Hearing aid
program settings

Noise
reduction

Frequency
lowering

01 GN resound UP967 open fit 51.0 Basic, party, T+M No No

02 GN resound UP988 R and
UP977 L plus closed EMs

83.0 Basic+SS, party, T+M No No

03 GN resound UP967 open fit 141.0 Directional, restaurant No No

04 GN resound UP967 open fit 43.0 Basic No No

05 GN resound UP977 open fit 49.0 Basic+SS, restaurant, T No No

06 GN resound UP967 open fit 93.0 Basic+SS, party, music,
T+M

No No

07 GN resound UP967 open fit 4.0 Basic, restaurant, T No No

08 GN resound UP977 and
vented EMs

85.0 Basic, party No No

09 GN resound UP967 open fit 43.0 Directional, restaurant, T No No

10 GN resound UP977 open fit 81.0 Basic+SS, party No No

11 GN resound UP967 open fit 126.0 Directional No No

12 GN resound UP967 open fit 104.0 Basic+SS, restaurant, T No No

13 GN resound UP967 open fit 5.0 Basic, party, T+M No No

14 GN resound UP977 plus
EMs

191.0 Basic, party, T+M No No

15 GN resound UP967 open fit 125.0 Basic+SS, party No No

16 GN resound UP967 open fit 109.0 Basic, party No No

17 GN resound UP967 open fit 89.0 Basic, party, T No No

the study. The study was approved by the local National Health
Service (NHS) ethics committee.

Subjects were asked to listen to eight running speech segments
of about 3 min each under aided and unaided conditions (total
stimulus length of about 25 min). The stimulus was taken
from a freely available audiobook1 and presented by a female
speaker. Speech was sampled at 44,100 Hz and low-pass filtered
at 3,000 Hz using 120th order finite impulse response (FIR)
filter before presentation. Conditions were randomized amongst
subjects. Segments were presented at 70 dBA equivalent sound
pressure level (LeqA SPL) through a loudspeaker positioned
1.2 m directly in front of the subject. After each segment,
participants were asked multiple-choice questions about the
segments’ contents to determine if they paid attention to and
understood the speech. Simultaneously, EEG data were collected
using a 32-channel EEG system (BioSemi, Netherlands, sampling
rate 2048 Hz) with two additional electrodes positioned at
either mastoid. The electrodes were positioned according to the
standard 10–20 system and referenced to the average EEG signal
over all electrodes.

Objective assessment of speech understanding was based on
measuring the entrainment of slow neural oscillations to speech,
by correlating the actual stimulus speech envelope with that
reconstructed from the EEG data using a linear model.

The recorded EEG was bandpass filtered (FIR filter, Hamming
window, one-pass forward and compensated for delay) according
to distinct frequency bands of slow neural oscillations. In
particular the corner frequencies of the applied zero-phase filters
were 1–4 Hz (transitions bandwidth: 1 Hz (low), 2 Hz (high),

1https://librivox.org/the-children-of-odin-by-padraic-colum/ (Chapters 2 and 5)

order 6759), 4–8 Hz (transitions bandwidths: 2 Hz (low), 2 Hz
(high), order 3379), and 1–20 Hz (transitions bandwidths: 1 Hz
(low), 5 Hz (high), order 6759), corresponding to the delta-,
theta-, and broad-band EEG activity, respectively. The resulting
signal was furthermore down-sampled to 64 Hz. All the above
specified pre-processing steps were performed using functions
from the MNE python package (Gramfort et al., 2013, 2014).

To extract the temporal speech envelope from the stimulus,
an absolute value of its analytic signal was computed. Specifically,
the analytic signal was a complex signal composed of the original
stimulus as a real part and its Hilbert transform as an imaginary
part. The stimulus’ temporal speech envelope obtained this way
was subsequently filtered and down-sampled in the same way as
the EEG recordings.

To reconstruct the stimulus’ temporal speech envelope
from the EEG data, a spatiotemporal model was established.
Specifically, at each time instance tn, the temporal speech
envelope y(tn) was estimated as a linear combination of neural
recording xj(tn + τk) at a delay τk:

ŷ (tn) =
N∑
j=1

T∑
k=1

[
βj,kxj (tn + τk)

]
The index j refers to the recording channel, τk to the delay

of the EEG with respect to stimulus ranging from −100 ms to
400 ms and βj,k is a set of the decoder’s weights. For each subject,
to obtain the model coefficients, a regularized ridge regression
was applied: β = (XtX + λI)−1Xty, where X is the design matrix,
Xt is the transpose of X, λ is a regularization parameter and I is
an identity matrix. NT columns of the design matrix correspond
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to recording channels at different latencies xj(tn + τk) and each
row represents a different time tn .

To evaluate the reconstruction performance of the decoder,
for each participant, a five-fold cross-validation procedure was
applied. In each of five iterations, 80% of the data (∼20 min) was
used to estimate the model and the remaining 20% (∼5 min)
was employed to reconstruct the temporal speech envelope
from the EEG (ŷ = Xβ). The reconstructed envelope and the
actual (y) were subsequently divided into ten-seconds long parts
(∼30 segments per fold of data) and the Pearson’s correlation
coefficient between the two was computed for each of the
obtained segments. For each subject, 50 different regularization
parameters with values ranging from 10−15 to 1015 were
tested to optimize the decoder. The optimal regularization
parameter was the one that yielded the largest correlation
coefficient averaged across all the testing folds and segments.
For the optimal regularization parameter, correlation coefficients
obtained from all the testing segments, across all the five folds
were then pooled together to form a single distribution. Mean
and standard deviation of this distribution reflected the envelope
reconstruction performance of the optimized decoder.

To assess the empirical chance level reconstruction
performance, the same procedure, including the same cross-
validation and the optimization of the regularization parameter,
was applied but the temporal speech envelope was reversed in
time. The obtained correlation coefficients from short testing
segments were similarly pooled together across all the five folds
to form a null distribution. The chance-level correlations were
subsequently compared to those obtained from the forward
speech model, using the same methodology, via a Wilcoxon
signed-rank test.

As Pearson’s correlation coefficients, used here to assess the
temporal speech envelop reconstruction, were non-normally
distributed, non-parametric tests were used during the study.
EEG correlations and behavioral results under aided and unaided
conditions were compared using a Wilcoxon signed-rank test.
A Kruskal–Wallis test was used for comparing differences
in variances. Linear correlations between cortical entrainment
correlations and behavioral data were fitted using a bisquare
robust regression algorithm. As two subjects could not complete

the BKB sentence test due to experiments overrunning, their
EEG data were excluded for this part of the study. Significance
was assessed after adjusting for multiple comparisons based
on expected false-discovery rates according to the Benjamini–
Yekutieli algorithm (Benjamini and Yekutieli, 2001). Note that
this adjustment allows for p-values to be higher than 1.

RESULTS

Figure 2 shows the accuracy in repeating the BKB sentences
(left) and answering the multiple-choice questions (right) for
all subjects under aided and unaided conditions. For the BKB
sentences, 16 out of 17 subjects achieved a score above 95%
under aided conditions, with the other subject scoring 92%
(mean± standard deviation: 98%± 2%). The scores for unaided
conditions were distributed over a larger range, with four subjects
scoring less than 90% and another three subjects scoring below
95% (mean ± standard deviation: 84% ± 28%). Applying
a Wilcoxon signed-rank test showed a significant difference
in the distribution means of both conditions (p < 0.001).
A significant difference could still be observed after removing
data from two outliers scoring <50% in the unaided condition
(p = 0.04). Similarly, the Kruskal–Wallis test showed a significant
difference in variance between both conditions (p = 0.032).
For the multiple-choice questions, high accuracy was obtained
for both aided (mean ± standard deviation: 95% ± 10%) and
unaided (mean ± standard deviation: 92% ± 11%) conditions.
No significant difference between the distributions was found
(Wilcoxon signed-rank test).

Correlations between the reconstructed temporal envelope
based on the decoder algorithm and the time-aligned as well as
time-reversed speech envelope were evaluated on the individual
subject and the population level. On an individual level, the
median correlation between reconstructed envelopes and the
aligned speech envelope is higher than the median correlation
between the reconstructed envelopes and time-reversed speech
envelope for all subjects (Figure 3).

Figure 4 shows the overall distribution of correlations between
the reconstructed and speech envelope for the different EEG

FIGURE 2 | Distribution of correct response ratios under aided and unaided conditions for a BKB sentence list (Left) and multiple choice questions related to the
audiobook (Right). A significant difference in accuracy was observed for the BKB sentence lists under aided compared to unaided conditions, but not for the
multiple choice questions (Wilcoxon signed-rank test, α = 0.05).
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FIGURE 3 | Average correlation for individual subjects under aided and unaided conditions for speech envelopes reconstructed from EEG signals to the aligned
speech and time-reversed (TR) speech envelope. Error bars indicate standard deviations. Top: delta activity; Middle: theta activity; Bottom: wideband activity.
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FIGURE 4 | Correlations between reconstructed and real audiobook speech envelopes for delta-band (1–4 Hz, A), theta-band (4–8 Hz, B) and wideband (1–20 Hz,
C) activity under aided and unaided conditions. No significant differences in distribution could be observed (Wilcoxon signed-rank test, p-values adjusted for multiple
comparisons according to Benjamini–Yekutieli algorithm). A Wilcoxon signed-rank test comparing aided/unaided ratios further showed these ratios were not
significantly different from 1 (D).

bands under aided and unaided conditions for the remaining
subjects. Generally, results show that hearing aids did not
significantly alter cortical entrainment to the speech envelope.
For all EEG bands, correlations varied between 0.07 and 0.24 for
wideband and delta-band activity and 0.04 and 0.27 for theta-
band activity over all subjects except subject 13. After checking
the power spectral density function, it was observed that a
technical issue occurred while collecting subject 13’s data, which
were therefore removed from further analysis.

Figure 5 shows the correlations between different EEG bands
under aided and unaided conditions. Both delta-band and
theta-band activity show a strong and significant correlation
after correcting for multiple comparisons, with the wideband
activity under aided and unaided conditions. However, the
correlation between delta-band and theta-band activity is lower
and not significant.

Figure 6 correlates cortical entrainment with the multiple-
choice scores. No significant correlations were found between
the EEG activity and multiple-choice scores after correcting for
multiple comparisons (Benjamini–Yekutieli adjusted p-value).
Changes in cortical entrainment did also not correlate with
change in multiple-choice scores when taking the difference in
correlation in cortical entrainment and multiple-choice scores
between aided and unaided conditions. Similarly, no significant

correlations could be found between behavioral scores obtained
from BKB sentences and neural entrainment (Figure 7).

DISCUSSION

Evaluation of low-frequency cortical entrainment to speech
stimuli has been suggested as a potential indicator of speech
understanding and intelligibility (Cogan and Poeppel, 2011;
Ding and Simon, 2013; Di Liberto et al., 2015; Vanthornhout
et al., 2018), and therefore evaluation of hearing function
and hearing aid fitting. However, the effect of hearing aid
speech processing software on this entrainment has not yet
been investigated (Easwar et al., 2012; Jenstad et al., 2012).
This study investigated if cortical entrainment to temporal
speech envelopes is affected when presenting the speech stimuli
at an audible level under aided against un-aided conditions
in a cohort of mild-to-moderate hearing-impaired subjects.
As the speech was audible for all our subjects, differences
in cortical entrainment observed would be caused by the
application of hearing aids. Speech stimuli used in this
study were taken from an audiobook. Although not equal
to and less frequently occurring in everyday life compared
to natural conversations, this type of stimulus is considered
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FIGURE 5 | Correlation between average decoder correlation values under aided (Top) and unaided conditions (Middle), as well as between aided/unaided ratios
(Bottom). Asterisks indicate significant correlations after correcting for multiple comparisons (Benjamini–Yekutieli adjusted p-values).

more ecologically relevant compared to repeating sentences
(Alexandrou et al., 2018).

Behavioral results (Figure 2) showed that subjects were
able to hear the speech, and that under aided conditions,
subjects performed significantly better in reproducing BKB
sentences. One subject had a lower score of 92% accuracy
under aided conditions, which could not be explained through
demographic or hearing aid characteristics nor the duration
of hearing aid use. However, we did not test our subjects for
cognitive impairment, which even in mild conditions may affect
performance in speech tests and has been shown to affect cortical
and brainstem responses to sound stimuli (Moore et al., 2014;
Bidelman et al., 2017). For the multiple-choice questions, higher
variability in performance could be observed compared to BKB
sentences, which again could not be directly explained through
demographics or hearing aid features. Apart from the suggested
effect of cognitive function, this might have been due to increased
fatigue as it has been shown that listening attentively to long-
duration speech stimuli requires more effort for hearing impaired
subjects (Nachtegaal et al., 2009; Ayasse et al., 2017).

Based on decoder analysis for individual subjects, no specific
trend between aided and unaided conditions could be observed
(Figure 3). Some subjects show a higher correlation under
aided conditions, whereas others show a higher correlation
under unaided conditions. One subject (subject 13) showed a
specifically low correlation for the time-aligned speech under
aided conditions for all EEG bands.

This gave cause to analyze if results were confounded by
which condition was used first in presenting the speech stimulus.
Since a sign test showed that the median difference in correlation
between the first and second condition played to each subject
was not significantly different from 0, it could be determined that
there was no correlation between the strength of the correlation
and which condition was played first. This indicates that, for the
remaining subjects, differences in correlation were not due to a
lack of attention during the repeat of the stimulus.

From Figure 4, it can be observed that no significant
differences in cortical entrainment occurred for either delta-
band, theta-band or wideband activity (Wilcoxon signed-rank
test, Benjamini–Yekutieli adjusted p-value). Unaided against
aided correlation ratios were also tested for each frequency
band to determine if trends in cortical entrainment could be
observed (Figure 4D). However, this analysis also failed to
show any significant trend. Results of this study are similar
to correlations found in previous studies, which mostly used
study populations consisting of younger test subjects (Ding and
Simon, 2012; Crosse et al., 2016b; Vanthornhout et al., 2018).
These results are probably caused by the speech stimuli being
presented at a comparatively high intensity, well audible for the
participants, even without their hearing aid. The good audibility
already presents in the unaided condition, corroborated by the
good unaided speech comprehension (Figure 2, right), lead to a
significant neural response to the unaided speech envelope that
presumably was not further increased by the hearing aid. The
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FIGURE 6 | Correlation between multiple choice accuracy and decoder reconstruction accuracy. Top: aided; Middle: unaided; Bottom: ratio (aided/unaided). No
significant correlations could be observed between EEG activity and multiple-choice accuracy after correction for multiple comparisons (Benjamini–Yekutieli adjusted
p-values).

rationale for using quite a high speech level of 70 dB (A) was
to ensure good entrainment to speech was possible for subjects
even under unaided conditions (Etard and Reichenbach, 2019),
and therefore establish that hearing aids do not significantly alter
this entrainment under fully audible conditions. Due to long
test durations, we could not explore the effect of lower intensity
stimuli in this study. Evaluations of cortical entrainment under
lower intensity stimuli conditions will be an important area of
future research to determine if changes in cortical entrainment
can be observed when hearing impaired subjects are listening
to stimuli only audible under aided conditions, and therefore
if cortical entrainment can find applications in hearing aid
fitting evaluation.

Although hearing aid processing may alter the temporal
speech envelope, our data shows that such alterations do not
significantly alter the cortical entrainment. It could be that the
decoder technique is robust to small changes in the speech
envelope, which would be in agreement with a previous study that
showed that different types of computing amplitude modulation
of speech - using the Hilbert envelope or a more involved model
of the auditory periphery with an auditory filter bank and non-
linear compression - did not greatly affect the neural entrainment
as measured from scalp EEG (Biesmans et al., 2016). This study,
therefore, shows that the application of hearing aids does not
significantly affect cortical entrainment of speech in quiet at
a sound intensity above the hearing threshold. This provides

some reassurance that cortical entrainment to speech can be
evaluated in future studies to determine its potential in improving
hearing aid fitting strategies for speech presented in noise or at
an intensity below threshold for mild to moderately impaired
hearing subjects (where the hearing aid should then make the
speech audible). Recent studies have already shown that cortical
entrainment might have potential in assessing hearing function in
severely hearing-impaired subjects who have received a cochlear
implant (Somers et al., 2018).

Correlations between activities of individual EEG bands
are shown in Figure 5. Although both delta-band and
theta-band entrainment showed a strong and significant
correlation with the wideband activity as expected, the
correlation between delta-band and theta-band activity was
not significant. This reduced correlation possibly indicates
that delta-band and theta-band activity entrain to different
features of speech, as suggested in previous work (Giraud
and Poeppel, 2012; Ding and Simon, 2013, 2014). For aided-
unaided ratios, the only strong and significant correlation
could be observed between the wideband and delta-band ratio,
suggesting that wideband activity might be mostly driven
by delta-activity.

Figures 6, 7 evaluate the correlation between cortical
entrainment and behavioral results (multiple choice questions
and BKB sentence analysis) for all EEG frequency bands of
interest. No significant correlation between cortical entrainment
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FIGURE 7 | Correlation between BKB test accuracy and decoder reconstruction accuracy. Top: aided; Middle: unaided; Bottom: ratio (aided/unaided). No
significant correlations could be observed between EEG activity and multiple-choice accuracy after correction for multiple comparisons (Benjamini–Yekutieli adjusted
p-values).

and behavioral results could be observed, possibly because the
fluctuations in cortical entrainment were larger than those in
behavioral scores and the low number of participants in the
current study. Another study evaluating cortical entrainment
to speech in noise in normal-hearing subjects did find a
correlation between strength of entrainment and behavioral
responses (Vanthornhout et al., 2018). Further studies on
larger hearing-impaired cohorts will be required to evaluate
the strength of the correlation between behavioral responses
to speech and cortical entrainment under aided and unaided
conditions with speech in quiet and noise to determine the
applicability of cortical entrainment analysis on hearing aid
fitting evaluation.

Another interesting aspect was that trends in behavioral
responses to speech (multiple-choice questions) differed to
those of BKB sentences. Correct response ratios for BKB
sentences under unaided conditions were significantly lower
than under aided conditions, whereas no difference could
be found for multiple-choice questions (Figure 2). Apart
from a difference in intensity, a possible reason for this is
that it might be easier to derive the correct answer due to
having a context in running speech. Answers to the multiple-
choice questions were often repeated during the audiobook
or could be derived from the storyline. This repetition can
lead to mind wandering and loss of attention, yet studies
have shown that this would only affect performance in case
strong detachment from the task occurs (Mooneyham and
Schooler, 2016). Through observation, we were able to ensure

participants were never fully losing attention to the speech
stimulus. With audiobooks speech stimuli generally being clear
and at a lower pace than natural conversations, repetition
might have improved recalling answers to the multiple choice
questions under unaided conditions, as studies have shown
reduced speech rate can decrease cognitive load (Donahue et al.,
2017; Millman and Mattys, 2017). BKB sentences on the other
hand are independent from one another and not repeated,
preventing subjects deriving correct answers by using context or
recall from memory.

CONCLUSION

This paper investigated if cortical entrainment to running speech
is affected by hearing aid processing in a cohort of mild-to-
moderately impaired subjects. Speech was presented at audible
levels in aided and unaided conditions. Results show that
measurement of entrainment to the temporal speech envelope
is reliable with and without hearing aids. At these levels
hearing aids do not significantly alter cortical entrainment to the
speech envelope acquired before hearing aid processing, however.
As speech was presented at an audible level, behavioral data
indicated high understanding of the unaided speech stimulus.
No significant correlation between cortical entrainment and
behavioral data could be found. Future studies measuring cortical
entrainment to speech in more challenging conditions, for
example presented at or below subject-specific hearing levels or in
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a noisy environment could further clarify the potential of cortical
responses to optimize hearing aid fitting evaluation.
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