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The human masticatory system is a complex functional unit characterized by a multitude

of skeletal components, muscles, soft tissues, and teeth. Muscle activation dynamics

cannot be directly measured on live human subjects due to ethical, safety, and

accessibility limitations. Therefore, estimation of muscle activations and their resultant

forces is a longstanding and active area of research. Reinforcement learning (RL) is an

adaptive learning strategy which is inspired by the behavioral psychology and enables

an agent to learn the dynamics of an unknown system via policy-driven explorations.

The RL framework is a well-formulated closed-loop system where high capacity neural

networks are trained with the feedback mechanism of rewards to learn relatively complex

actuation patterns. In this work, we are building on a deep RL algorithm, known as

the Soft Actor-Critic, to learn the inverse dynamics of a simulated masticatory system,

i.e., learn the activation patterns that drive the jaw to its desired location. The outcome

of the proposed training procedure is a parametric neural model which acts as the

brain of the biomechanical system. We demonstrate the model’s ability to navigate

the feasible three-dimensional (3D) envelope of motion with sub-millimeter accuracies.

We also introduce a performance analysis platform consisting of a set of quantitative

metrics to assess the functionalities of a given simulated masticatory system. This

platform assesses the range of motion, metabolic efficiency, the agility of motion, the

symmetry of activations, and the accuracy of reaching the desired target positions. We

demonstrate how the model learns more metabolically efficient policies by integrating a

force regularization term in the RL reward. We also demonstrate the inverse correlation

between the metabolic efficiency of the models and their agility and range of motion. The

presentedmasticatory model and the proposed RL trainingmechanism are valuable tools

for the analysis of mastication and other biomechanical systems.We see this framework’s

potential in facilitating the functional analyses aspects of surgical treatment planning and

predicting the rehabilitation performance in post-operative subjects.

Keywords: mastication modeling, reinforcement learning, soft actor-critic, inverse dynamics, jaw, motor control,

musculoskeletal modeling, computational biomechanics
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1. INTRODUCTION

The stomatognathic or masticatory system is one of the most
complex functional units in the human body. It is characterized
by amultitude of skeletal components, teeth, soft tissues, muscles,
tendons, ligaments, and fibrous disks. The mandible is at the
heart of this complex and is connected to the skull via the
mandibular condyles. The condyles of the mandible are located
inside the glenoid fossa of the temporal bone and the collective
of them forms the temporomandibular joint (TMJ), hence the
name. The TMJ is a ginglymoarthrodial joint and enables the
mandible to exhibit rotational and translational movements
constrained by the passive tensions of the ligaments, muscles,
and other passive factors (Gallo et al., 2000). Two TMJs form
a functional masticatory system which enables the mandible to
rotate and translate with six degrees of freedom across its limited
domain of motion (Drake et al., 2014). The TMJs are among the
most utilized joints in the human body and play an essential role
in chewing and speaking functions.

During mastication, like any other biomechanical routine,
a set of time-varying neural and muscular activations work
in unison to enable kinematics. Motor control is a highly
complex process that involves the nervous and musculoskeletal
systems. The peripheral neurons innervate the muscles. Upon
excitation of the neural pathways, the skeletal muscles are
activated which generate forces to actuate the joints. Neural
excitation patterns and, in turn, the muscle activation trajectories
are often unknown.

An electromyograph is a highly sensitive voltmeter that
detects the electric potential from the transmembrane current
of the muscle fibers and a common research tool in many
disciplines. The intramuscular electromyography examination
(iEMG), which requires placement of small needles into several
muscles to record their electrical activity, is an invasive procedure
and is known to cause discomfort for the subject. If a robust
electrode contact with the skin is feasible, electrical activities
of shallow muscles can be, to some extent, captured via
the non-invasive and convenient method of surface EMG
(sEMG). However, sEMG suffers from a higher rate of crosstalk,
i.e., misleading signals coming from adjacent muscles (Farina
et al., 2004). Clearly, not every muscle is accessible for
neither sEMG nor iEMG examination. Moreover, there are
many concerns regarding the applicability, reliability, sensitivity,
and reproducibility of EMG measurements (Vigotsky et al.,
2018). Different segments of the same muscle do not generate
consistent electrical signals (Ahamed et al., 2014), and the
relationship between the recorded EMG signals and the
generated muscle forces is deemed complex (Al Harrach et al.,
2017). Due to the safety, ethical, and technical limitations
of in vivo studies and limited accessibility to deep muscles
and peripheral neurons, muscle dynamics cannot be directly
measured on live human subjects. Therefore, the estimation of
muscle activations and the resultant forces is a longstanding
and active area of research. Computational biomechanics is
considered, to a limited extent, as one of the few possibilities
to understand the neural and muscular activation patterns of
humans (Erdemir et al., 2007).

Building controllers for musculoskeletal systems is a
challenging task as they are inherently underdetermined due
to the disparity between the degrees of freedom of the rigid
bodies and the number of skeletal muscles (Lee et al., 2014). The
masticatory system is also shown, in theory, to be mechanically
redundant; therefore, multiple muscle activation patterns can
generate similar motion trajectories and bite forces (Osborn,
1996). This redundancy often results in non-unique solutions for
the inverse dynamics problem. In computational modeling and
computer animation, the joint torques and muscle excitations
are estimated so that the model follows a given motion trajectory
while, possibly, considering external forces. In the prior works,
the inverse dynamics challenge has been tackled with numerical
solvers which have either a static or dynamic viewpoint to the
optimization problem.

In the static approach, the problem is solved for each timestep
with the most likely set of activations which drive the model
closer to the desired trajectory (Otten, 2003). Static optimization
has been a popular choice in biomechanics thanks to its
simplicity (Seireg and Arvikar, 1975; Pedersen et al., 1997; Thelen
et al., 2003). The low computational costs of static solvers have
extended their application to complex three-dimensional many-
muscle models (Lee et al., 2014). However, this formulation
is sensitive to the given trajectory and often results in non-
smooth outcomes. An extension to the static optimization is the
forward-dynamics assisted tracking where consecutive steps are
collectively considered for temporal consistency. This allows for
the inclusion of muscle contraction dynamics as a regularization
factor to reduce sensitivity to the input kinematics (Erdemir
et al., 2007). Dynamic optimization stands on the other end
of the spectrum and considers muscle forces, among other
performance criteria, as time-dependent variables. It optimizes
an integral cost function to address a subset of the mentioned
challenges (Anderson and Pandy, 1999, 2001). Even though
inverse dynamic solvers are fairly straightforward, they have
certain limitations including the inconsistencies between the
measured external forces and the body kinematics (Faber et al.,
2018), the need to solve complex differential equations, andmany
more (Kuo, 1998; Hatze, 2002; Fluit et al., 2014). When it comes
to choosing solvers, there is always the trade-off between the
accuracy and the computational cost. More importantly, any
inverse dynamics solution inherently relies on the availability
of motion trajectories as inputs; however, kinematics are not
often easy to obtain from human and animal subjects and are
susceptible to the sensor noise.

Reinforcement learning (RL) is an adaptive control strategy
inspired by behavioral psychology where organisms’ actions
are encouraged or averted through antecedent stimuli. The RL
paradigm is very similar to the habit development processes
in the basal ganglia of the brain and it is suggested that
understanding the RL-based control strategies is helpful in
the analysis of human behavior (Yin and Knowlton, 2006).
With the rise of deep learning and its integration into the RL
framework, unprecedented solutions for control and decision
making problems were introduced (Mnih et al., 2013). A deep
reinforcement learning (Deep RL) solution is essentially a
well-formulated closed-loop system where high capacity neural
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networks are trained with the feedback mechanism of rewards
to learn relatively complex actuation patterns. RL solutions are
shown to scale well to high-dimensional state and action spaces
for biomechanical control (Abdi et al., 2019a).

The main challenge when using RL solutions for motor
control is to design a training algorithm, without much
knowledge of the systems’ dynamics, which teaches the agent
to carry out complex musculoskeletal tasks and maximize a
delayed reward signal. In computer graphics, where models
are not muscle driven and their validity is not an issue, RL
is used to teach agents to mimic locomotion tasks (Peng
et al., 2018). In biomechanics, some RL-based solutions have
been introduced for the motor control tasks either via muscle
activations (Abdi et al., 2019b) or joint activations (Clegg et al.,
2018). In human locomotion, most works have focused on arm
movement (Golkhou et al., 2005; Jagodnik et al., 2016) and
gait control (Peng et al., 2017; Kidziński et al., 2018; Jiang
et al., 2019). Recent interdisciplinary collaborations have helped
to bridge the gap between reinforcement learning and motor
control in biomechanics using the OpenSim and ArtiSynth
modeling environments (Kidziński et al., 2018; Abdi et al.,
2019a). These efforts gained more traction after the “learning
to run” challenge of NeurIPS 2017 where variants of the policy
gradient family of controllers were implemented to generate gait
patterns (Kidziński et al., 2018).

In this work, we are demonstrating our deep reinforcement
learning approach toward learning the neural excitation patterns
of mastication. We implemented the Soft Actor-Critic (SAC)
reinforcement learning algorithm with a domain-engineered
reward function to teach the RL policy how to move the jaw in its
3D Posselt envelope of motion. To address the underdetermined
nature of the system, we encourage the agent to minimize
the generated muscle forces to reduce the metabolic energy
expenditure. The outcome of the proposed training process is
a parametric model that acts as the brain of the biomechanical
system. Our contributions are 4-fold. Firstly, we design a
physiologically accurate jaw model, based on the works of Sagl
et al. (2019b), with a new take on the TMJmodeling suited for the
computationally demanding training process of reinforcement
learning. Secondly, we demonstrate the feasibility of training
a neural network to estimate the efficient excitation patterns
to drive the jaw model in its domain of motion. Thirdly, we
conduct experiments to show the sensitivity of the model to the
coefficients of the reward function. We also demonstrate how
the model’s neural excitations match the expected physiological
patterns during standard jawmovements. Lastly, we introduce an
analytical framework consisting of a set of quantitative metrics to
assess the functional performance of a given masticatory system
and report on the performance of different models.

2. MATERIALS AND METHODS

2.1. Data Acquisition
The biomechanical model used in this study is constructed based
on the clinical data of a healthy male 30-years-old volunteer at
the Medical University of Vienna. A single full-skull CT scan was
acquired from the participant in the closed-mouth position to
model the bony structures (Siemens Sensation 4). The in-slice

resolution of the scan was 0.3 × 0.3 mm with a slice thickness
of 0.5 mm. A full-skull 3D MRI scan was also acquired to
model the origin and insertion points of the masticatory muscles
(Siemens Magnetom Prisma 3T with a 64-channel head coil). A
coronal Double Echo Steady State T1-weighted sequence with
water excitation was used for image acquisition, covering the
maxillofacial region down to the shoulders. The resolution of the
MRI scan was 0.3 × 0.3 mm with a slice thickness of 0.5 mm.
Further details of the data acquisition process are discussed in a
prior publication of our team (Sagl et al., 2019a).

Given the central role that teeth play in the masticatory
system, and in order to obtain high-resolution dental surfaces,
physical plaster models (dental casts) of the subject’s dentition
were created with Gypsum Stone IV. The dental casts were then
digitized with an optical scanner (Ceramill map 400) with 3D
accuracy of smaller than 20 µm. The dental segment of the upper
and lower jaws obtained from the CT scan was then replaced with
the high-resolution 3D optical scans of the dentitions.

2.2. Modeling
We used the open-source mechanical modeling platform,
ArtiSynth1, to implement the 3D biomechanical model of the
subject. The model used in this study is based on the validated
model of Sagl et al. (2019b), with some alterations in the TMJs
and the occlusal surfaces to lower the computational cost. This
model consists of three rigid bodies: jaw, skull, and the hyoid
bone. To speed up the training, the model is simplified with the
fixed hyoid bone assumption. To make up for the loss in the
range of mouth opening, the hyoid bone is moved about 10 mm
inferoposteriorly according to the values reported by Muto and
Kanazawa (1994). The forward simulation steps are computed
with the semi-implicit backward Euler method. For stability
reasons, small timesteps of 0.001 s are used by the integrator
across experiments.

Teeth are assumed to be rigidly attached to the mandible and
the collective of them is referred to as the jaw rigid body with
an estimated mass of 200 g (Langenbach and Hannam, 1999).
The moment of inertia of the jaw is calculated based on its 3D
geometry with the uniform density assumption.

2.2.1. Masticatory Muscles

Muscles are modeled as point-to-point Hill-type springs which
provide a practical formulation of the muscle contraction
mechanism (Hill, 1953). Considering the challenges with
the estimation of tissue’s biomechanical properties (Blümel
et al., 2012), here, muscles’ cross-sectional areas, length-
tension function, and velocity-tension function are based on
the parameters reported in the literature (Langenbach and
Hannam, 1999; Peck et al., 2000; Hannam et al., 2008). Each
modeled point-to-point muscle resembles a spring that only
applies forces along its main axis. While we acknowledge the
over-simplifying assumptions with the Hill-type point-to-point
muscles, the designed model competes with other masticatory
models in complexity, details, and biomechanically relevant
intricacies (Koolstra and van Eijden, 2005; Choy et al., 2017).

1www.artisynth.org
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Large muscles (e.g., temporalis) and those with multiple heads
(e.g., masseter and lateral pterygoid) are modeled with multiple
actuators. One exciter is assigned to each point-to-point actuator.
An exciter is the counterpart of the motor axons that innervate
the skeletal muscle. In response to the neural excitation, the
muscle contracts according to the Hill-type model’s function
along the muscle compartment’s longitudinal axis. This process
is referred to as the excitation-contraction coupling. All neural
excitations are parameterized as the normalized ratios of their
maximal activation in the 0 to 1 range.

The modeled masticatory system has 24 actuators and 24
associated exciters (12 on each side) associated with the following
muscles: temporalis (3 actuators), lateral pterygoid (2 actuators),
masseter (2 actuators), medial pterygoid, anterior digastric,
geniohyoid, and mylohyoid (2 actuators on each side). All
exciters are assumed to be disjoint, allowing for any excitation
pattern to be deemed feasible. The muscle bundles and their
exciters are demonstrated in Figures 1A,B.

2.2.2. Temporomandibular Joint

The 3D shape of the condyles and the mandibular fossae
(glenoid fossae) are obtained from the CT scan. Given the
high computational cost of finite element methods, and in
order to speed up the computationally demanding process of
reinforcement training, the condylar disks are excluded from
the current jaw model. The forward and downward movement
of the condyle is guided by a curved bilateral planar constraint
mimicking the articular eminence’s role during jaw opening.
In absence of the condylar disc, and following the original
design (Sagl et al., 2019b), the articular cartilage is modeled
as an elastic foundation contact model with a thickness of
0.45 mm (Hansson et al., 1977). Based on the available literature,
the Young’s modulus and Poisson ratio of the elastic foundation

are set to 2.7MPa and 0.49, respectively (Koolstra and van Eijden,
2005). For a fast and stable simulation, the elastic foundation
is computed with the constraint regularization method of
Servin et al. (2006).

The retrodiscal tissues, superior retrodiscal lamina, and
the temporomandibular ligaments of the condylar capsule are
modeled with a multi-point spring. This multi-point spring
resembles a passive ligament which is wrapped around the
condyle and connects its medial and lateral ends to the back of
the mandibular fossa and the tympanic plate (Figure 1C). The
ligaments grant passive stability to the TMJ. They are designed
with a slack length of 7.5 mm longer than the closed jaw position.
The Young’s modulus of the ligaments is set to 2.45 MPa based
on the recent work of Coombs et al. (2017) on the retrodiscal
tissue. This design constrains the motion of the condyles inside
the mandibular fossae, counters the forward pull of the superior
head of the lateral pterygoid, and facilitates the posterior rotation
of the condylar neck during jaw closure. It also allows the condyle
to slightly reach beyond the summit of the articular eminence
at its full stretch during mouth opening which matches that of
a healthy subject (Muto et al., 1994).

2.3. 3D Envelope of Motion
The 3D envelope of motion was estimated through manual
activation of the masticatory muscles in the simulation
environment. To calculate the 3D envelope of the current
model, a trained dentist used the graphical user interface of
the simulation environment to set the excitation levels of the
masticatory muscles and drive the jaw to the extremities. The
excitations were slowly updated to move the jaw from one end-
point to another and the 3D position of the lower mid-incisal
point was tracked in between the boundary end-points.

A B C

FIGURE 1 | The masticatory model. (A) Posterior view of the jaw and the masticatory muscles of the left (L) and right (R) side: anterior belly of digastric (LAD, RAD),

posterior mylohyoid fibers (LPM, RPM), anterior mylohyoid fibers (LAM, RAM), geniohyoid (LGH, RGH), medial pterygoid (LMP, RMP), superior head of lateral pterygoid

(LSLP, RSLP), and inferior head of lateral pterygoid (LILP, RILP). (B) Lateral view of the model and the masticatory muscles: posterior, middle, and anterior fibers of the

right temporalis (RPT, RMT, RAT), superficial and deep heads of the right masseter (RSM, RDM). (C) The temporomandibular ligaments of the condylar capsule, and

other connective tissues contributing to passive retraction of the condyle, are modeled with a multi-point spring which is directly attached to the medial and lateral

ends of the condyle.
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FIGURE 2 | The 3D envelope of motion of the lower mid-incisal point. The

end-points of the envelope include: maximum protrusion (PR), edge-to-edge

(E), maximum intercuspation position (ICP), retruded contact position (RCP),

end of pure rotational opening (R), maximum mouth opening (MO), maximum

left laterotrusion (LL), and maximum right laterotrusion (RP).

The end-points of the envelope were decided based on
the works of Posselt (1952) and Koolstra et al. (2001). The
following jaw positions were used to form the 3D envelope
of motion: maximum intercuspal position (ICP), edge-to-
edge (E), maximum protrusion (PR), maximum left and right
laterotrusion (LL and RL), retruded contact position (RCP),
end of the pure rotational opening (R), and maximum mouth
opening (MO). The trajectories of the boundary movements of
the lower mid-incisal point are visualized in Figure 2.

The 3D envelope of motion is important for this research in
three capacities. Firstly, the fact that the simulated 3D envelope
of motion resembles that of Posselt’s attests the validity of the
designed jaw model for the current application. Secondly, it
defines the feasible space of motion for the jaw which is necessary
for the RL training of the model. Lastly, it defines the optimum
motion domain of the non-pathological jaw which acts as a
reference for further evaluation of the learned control policies
(see section 4).

3. MOTOR CONTROL WITH SOFT
ACTOR-CRITIC

In reinforcement learning, we often seek to train a policy,
π , which maximizes the expected sum of the future rewards
(J). A policy is simply a mapping from the state space to
the action space, i.e., it tells the agent what to do at each
situation. This is analogous to the brain’s functionality in live
subjects. The policy can be a deterministic mapping function
or a probabilistic distribution over the possible set of actions.
The optimal policy (π∗) is the one that achieves the maximum
rewards and is defined as

π∗ = argmax
π

J(π) , (1)

J(π) = Eat∼π(.|st)
[

∑

t

γ tr(st , at)
]

, (2)

where at and st denote the action and the state at time t,
respectively. In the jaw model, actions are the changes in the
neural excitations. Here, γ is the factor that discounts the value
of future rewards, i.e., near future rewards are worth more than
far future rewards. As mentioned earlier, J(π) is the expected sum
of future rewards for the policy π , and r(.) is the reward function
that determines the bonus or penalty associated with actions and
state-transitions. The reward function to train the motor control
of the jaw model is discussed in section 3.2.

The state-transitions (dynamics model), reward function, and
the optimum trajectory to the desired goal are all unknown to
the agent in the beginning. It is then the agent’s responsibility
to interact with the environment and gather information. In
reinforcement learning, the agent switches between two strategies
to learn about its space, namely, exploration and exploitation.
When the agent keeps on pursuing what he believes to be
the optimum solution, it is exploiting its learned policy. On
the other hand, exploration is when the agent decides to try
something new which is not in line with its learned policy. An
RL algorithm should maintain a balance between its exploration
and exploitation strategies for efficient training.

Different RL algorithms have different takes on how to
search for the optimum policy. The Soft Actor-Critic (SAC)
algorithm belongs to the family of model-free reinforcement
learning. It is an off-policy solution that forms a bridge
between stochastic policy optimization and deterministic policy
gradient algorithms (Haarnoja et al., 2018a,b). Unlike its many
alternatives, SAC is considered to be relatively insensitive to its
hyper-parameters which makes it an intriguing option for our
current biomechanical modeling setting.

The SAC algorithm contains an entropy term to improve the
agent’s exploration. The agent is rewarded with respect to the
entropy (H) of its learned policy which discourages a premature
convergence to sub-optimal deterministic policies (Mnih et al.,
2016). The agent is rewarded for randomness (higher entropy)
which is also a popular phenomenon in nature (Eysenbach and
Levine, 2019). The higher entropy results in more exploration
of the environment. It also works as a regularizer that stabilizes
the training and is shown to accelerate learning. The SAC
formulation for the optimal policy can be summarized as

π∗ = argmax
π

Eat∼π(.|st)
[

∑

t

γ t
(

r(st , at)+ αH(π(.|st)
)]

, (3)

H(π(.|st)) = E
[

− logπ(.|st)
]

, (4)

which is similar to Equation (2), except for the added entropy
term. Here, α is the temperature parameter that determines the
relative strength of the entropy regularization term.

In our implementation of the deep SAC algorithm,
two parametric models are trained simultaneously, each
parameterized by a neural network: the policy function (π)
and the action-value function (Q), parameterized by φ and θ ,
respectively. The policy function is the actor (brain) and the
action-value function (Q) is its critic with the entropy softening
the expectations, hence the name SAC. During training, at each
simulation timestep t, the actor receives the current state of the
environment st , processes it and takes the action at according to
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its parametric policy πφ . As a result of this action, the agent will
end up in the new state st+1.

In the biomechanical model of the jaw, the state is formed
of the current and the desired orientation of the jaw as well as
the excitation levels of all the masticatory muscles. Given the
constrained motion of the jaw, its orientation is abstracted as
the position of the mid-incisal point. The muscle excitations
are normalized to the [0−1] range. During training, the history
of interactions with the environment are stored in a random
access memory (D), known as the replay buffer. Each sample in
the replay buffer, (st , at , st+1, rt), is a tuple of the current state,
executed action, next state, and the reward associated with the
transition. The buffer allows for a higher sample efficiency as each
sample can contribute to the training of the Q and π networks
multiple times (Lin, 1992; Mnih et al., 2013).

The action-value function, Qθ (st , at), is the expected reward
if, at timestep t, the agent takes the action at at the state st , and
then continues acting according to the learned policy. In other
words, the Q-function estimates the value of an action at a given
state based on its prospective rewards. Due to the co-dependency
of neighboring states, the Q-function of SAC can be computed
recursively with the modified Bellman operator (Lagoudakis and
Parr, 2003) as

Qθ (st , at) = r(st , at)+ γEst+1∼D

[

Vθ̄ (st+1)
]

, (5)

Vθ̄ (st) = Eat∼πφ (.|st)
[

Qθ̄ (st , at)− α logπ(at|st)
]

. (6)

Here, V(.) is the regularized (soft) state-value function which
is simply called the value function. The value function is the
expected future reward of a state. In the SAC formulation, this is
equal to the value of a state and the expected entropy of the state.
In the context of masticatory motor control, the value function
roughly indicates how likely it is for the agent to reach its desired
position and achieve high rewards if it started from the current
jaw orientation and followed its learned policy. Substituting V(.)
into Equation (5) would result in the recursive Bellman equation
for the Q-function. While it is possible to learn the state-value
function separately using a neural network with independent
parameters, in our formulation, the value function is estimated
based on the Q-function defined in Equation (5).

As discussed earlier, all neural networks are trained based on
the randomly drawn samples from the replay buffer (D). The
parameters of the Q-function are updated with the stochastic
gradient descent toward minimizing the mean squared error
between the estimated Q values, calculated by the Qθ function
as Qθ (st , at), and the assumed ground-truth Q value. The
assumed ground-truth Q values are estimated based on the
current reward (rt) and the discounted future reward of the next
state (γVθ (st+1)). Accordingly, the mean squared error objective
function of the Qθ network can be summarized as:

J(Qθ ) = E(st ,at ,rt ,st+1)∼D, at+1∼πφ

[

(

Qθ (st , at))]

−
[

rt + γEst+1∼D

[

Vθ̄ (st+1)
]]

)2
]

.

(7)

In Equation (6), and, consequently, in the nested expectation
on the right-hand side of Equation (7), the parameters of
the networks are denoted as θ̄ . This change in notation is
to highlight a stabilizing practice where the critic is modeled
with two neural networks with the exact same architecture but
independent parameters (Mnih et al., 2015). The secondary
network, referred to as the target network and denoted as Qθ̄ ,
is the one that is used to calculate the assumed ground-truth
value of the next state in Equations (6) and (7). The parameters
of the target critic network (Qθ̄ ) are iteratively updated with
the exponential moving average of the parameters of the main
critic network (Qθ ). This constrains the parameters of the target
network to update at a slower pace toward the parameters of
the main critic, which has shown to stabilize the training. It
also transforms the ill-posed problem of learning the Q-function
through bootstrapping (learning estimates from estimates) into a
supervised learning problem that can be solved via the gradient
descent optimization (Lillicrap et al., 2016).

Another enhancement which played a substantial role in the
success of the current motor control solution is the double Q-
learning (Hasselt, 2010; VanHasselt et al., 2016). In this approach,
two Q networks for both of the main and the target critic
functions are maintained. When estimating the current Q values
or the discounted future rewards, the minimum of the outputs of
the two Q networks is used:

Qθ (st , at) = min(Qθ1(st , at),Qθ2(st , at)) . (8)

This approach prohibits the estimated Q values to grow too large
and is found to speed up the training and help achieve higher
performing policies (Haarnoja et al., 2018a).

As for the optimal policy (Equation 3), the parameters of
πφ is updated to maximize the expected future return as well
as the expected entropy. If the Q-function (critic) is assumed
to be telling the truth, finding the optimal policy is the same
as maximizing Eπ [Vθ̄ (s)]. This can be expanded, based on
Equation (6), as follows

J(πφ) = Ea∼πφ ,s∼D

[

Qθ (s, a)− α logπ(a|s)
]

. (9)

The objective is optimized using the stochastic gradient ascent
based on the random samples drawn from the replay buffer (D).

3.1. Neural Architectures and Space
Definitions
The two functions, Qθ and πφ , are parameterized with neural
networks. In all our experiments, the Q-network is designed as
a 3-layer fully-connected (dense) neural architecture (multi-layer
perceptron with two hidden layers) with Rectifier Linear Unit
(ReLU) activations after the first two layers. As shown in Figure 3,
the sizes of the middle (hidden) layers are set to 256. The Qθ

network estimates the action-value function denoted as Q(s, a);
therefore, its input size is the sum of the dimensionalities of the
action space and the state space and its output size is 1.

The jaw model is formed of 24 masticatory muscles, hence,
the action size of 24. In this context, an action is a command
sent to the simulation environment to increase or decrease the
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FIGURE 3 | Definition of state and action spaces and the architectures of the neural networks. The action is defined as the increase/decrease in the excitation levels

of the muscles. The state is formed of the current and the desired positions of the jaw as well as the current excitation levels of all the masticatory muscles. During

training, the policy network (πφ ) predicts the parameters of the Gaussian distribution, N(µ, σ ). The action is then randomly sampled from this distribution with the

reparameterization trick. During testing, the action is deterministically chosen as the mode of the distribution. During training, the action-value network (Qθ ) predicts

the value of a given action-state tuple (s, a), which form the components of the objective function (see Equations 7 and 9).

excitations of a subset of muscles. Change in each muscle’s
excitation level is capped to the maximum 10% of its excitation
range. The jaw orientation is abstracted and approximately
represented as the 3D position of the mid-incisal point. The state
of the RL agent is then defined as the union of the current neural
excitations for the muscles (24 values), the orientation (3 values)
and velocity (3 values) of the jaw, and its desired orientation (3
values). Therefore, the size of the state space sums up to 33. In
our experiments, the velocity of the desired mid-incisal point is
always zero, i.e., the model is trained to reach a static target state.

The policy network is a probability density function estimator
that predicts the distribution of actions conditioned on the
state. The policy network is formed of two linear hidden layers
of size 256, each followed by a ReLU activation function. In
our design, we are assuming the policy to have a Gaussian
distribution. Therefore, the last layer of the policy network is
formed of two parallel linear layers which encode the mean
and standard deviation of the N(µ, σ ) distribution, respectively
(Figure 3). During training, the estimated distribution is sampled
with the reparameterization trick for the sampling to be
differentiable (Kingma and Welling, 2014). During inference
(testing), the mode of the distribution is used for the optimal
action selection.

3.2. Reward Function
At each timestep, the agent receives a reward value from the
environment based on the executed action and its state transition
from st to st+1. The success of an RL experiment heavily relies
on the design of the reward function. Reward functions are
counterparts to the objective functions (loss functions) in the
optimization domain; however, in the realm of RL, the agents
are trained to maximize the expectation of future rewards. The
reward function used in this study is formed of three terms, each
of which encourages the agent to pursue a certain goal. If the
current position of the mid-incisal point is denoted as Pt , and
its desired position as P̂, the designed reward function can be
formulated as:

r(st , at) = −wu log(
∥

∥

∥
P̂Pt+1

∥

∥

∥

2
+ ǫ)

−wr

∥

∥f t+1

∥

∥

2

−ws

∥

∥

∥
elt+1 − er t+1

∥

∥

∥

1
, (10)

where
∥

∥

∥
P̂Pt+1

∥

∥

∥

2
is the second norm of the vector, i.e., the

Euclidean distance (in millimeters) of the current mid-incisal
point to its desired location. The first term incentivizes the
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policy (brain) to drive the jaw toward its desired location. The
logarithmic nature of this term mitigates the destructive growth
of the penalty when the jaw is far away from its deemed target. On
the other hand, when the jaw gets to the sub-millimeter distance
of the target, the agent is highly positively rewarded. The ǫ value
is to avoid the infinite reward in cases where P exactly resides
at P̂. In the second term, f is the vector of the muscle tensions.
The second term acts as a regularizer whichminimizes the energy
expenditure of the collective of the masticatory muscles. In the
third term, el and er are the neural excitations of the left and right
side muscles, respectively. Accordingly, the third term calculates
the first norm of the differences between the bilateral muscle
pairs; thus, it is the non-symmetric penalty that punishes the
action if the bilateral muscle pairs are not similarly activated.
Finally, wu, wr , and ws are coefficients that determine the relative
weights of the target reaching, the force regularization, and the
symmetry terms.

3.3. Training Details
The training process is partitioned into independent episodes.
At each episode of training, the desired position of the mid-
incisal point is randomly chosen from within the 3D envelope
of motion (see section 2.3). The random target positioning
alternates between two approaches. In 50% of the episodes, the
target’s position is set as the weighted linear combination of
all of the envelope’s end-points (Figure 2). The weights of this
linear equation are randomly drawn for each episode. In the
other 50% of episodes, two of the eight envelope end-points
are randomly selected with replacement and the target’s position
is set as a random linear combination of the two points. This
strategy asserts that the boundaries of the envelope are included
in the training for the agent to learn the entire domain of
motion. Moreover, since the end-point selection is done with
replacement, in 0.5 × 0.125 = 6.25% of the episodes the desired
jaw position is one of the end-points with the same point chosen
in the random selection.

The training can continue for tens of thousands of episodes
until no further improvement is noticed in the optimization of
the objective functions. An episode runs for a maximum of T
steps during which the agent interacts with the environment
according to its learned policy. An episode ends with the jaw
reaching the 100 µm proximity of the desired position or with
the agent running out of its maximum T allowed steps for
the episode.

The parameters of the neural networks are primarily
initiated to random values based on the Xavier initialization
function (Glorot and Bengio, 2010). Consequently, the agent will
start by randomly exploring the space. As the agent interacts with
the environment, it collects experiences that eventually get stored
in the replay buffer. The weights of Qθ and the πφ functions
are updated at each timestep based on a batch of 256 samples
randomly drawn from the replay buffer. As a result, the algorithm
alternates between experiencing (filling the replay buffer) and
updating the parameters of the Qθ and πφ networks based on the
randomly drawn buffer samples. The parameters of the networks
are updated to minimize their respective objective functions

(Equations 7 and 9). At the end of each timestep, the parameters
of the target critic network, Q

θ̂
, are updated as the exponential

moving average of the parameters of the Qθ network based on
the target smoothing coefficient τ .

In all of the experiments, the learning rate starts at 0.001
and gradually decreased to 0.0004 at an exponential decay
rate of 0.999995. The α value of the SAC algorithm and the
reward discount value (γ ) are consistently set to 0.3 and 0.99,
respectively. The capacity of the replay buffer is generously set to
include 1 million samples. The coefficient of the target reaching
term, wu, is not updated in between experiments, instead wr and
ws are tuned. The target smoothing coefficient (τ ) is set to 0.005.
The maximum number of steps in an episode (T) was set to 100.

The training is continued until the objective functions of
the actor and the critic converge to a steady-state and stop
improving. In our experiments, and with the non-distributed
implementation of the training procedure, it took an RL model
a few days up to a week to converge. During this time period,
the agent went through 10–30k episodes of training, equal to 2–4
million interactions with the environment.

The SAC learning algorithm and the training procedure were
implemented in Python and used the ArtiSynth-RL plugin to
interact with the ArtiSynth modeling environment (Abdi et al.,
2019a). Our implementations of the jaw model and the training
algorithm along with the scripts to reproduce the experiments are
open-sourced at https://github.com/amir-abdi/artisynth-rl.

4. PERFORMANCE ANALYSIS OF
MASTICATION

The performance of mastication can be quantified based on the
chewing rhythm, velocity, range of mandible displacements, and
the masticatory forces (Xu et al., 2008). The chewing process can
be divided into cyclic jawmovements or gape cycles which can be
measured through lateral and vertical tracking of the jaw (Laird
et al., 2020). According to the literature, a high performing
masticatory system is one with a high frequency of cycles,
high velocity of mandibular movements, high maximum bite
force, and potential for large mandibular displacements. These
quantities can bemeasured with respect to some reference points,
such as the lower mid-incisor point and the condylar centers (Ow
et al., 1998; Tsuruta et al., 2002). Many studies have focused
on the patterns of occlusion and chewing cycle excursions with
different bolus types (Anderson et al., 2002; Peyron et al.,
2002; Foster et al., 2006). The EMG measurements of muscular
activities, albeit variable between subjects, are also shown to have
sufficient correlation within a subject across experiments and
have been suggested as an efficiency metric (Tortopidis et al.,
1998).

The masticatory cycle can be simplified as a tear-drop
movement where the mid-incisal point moves downward,
then laterally toward the working side, and finally retracted
medially to crush the bolus (Murray, 2016). Considering these
masticatorymovements, we propose a framework formasticatory
performance evaluation. This framework is designed to quantify
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the performance of a given masticatory system based on the
following criteria.

4.1. Range of Motion (ROM)
To quantify the range of mandibular motion, the boundary
envelope of the motion is approximated as a convex space
and the volume of this assumed convex hull is calculated.
The range of motion is then defined as the percentage of the
feasible space achieved by the model. We rely on the reference
(optimum) convex hull calculated in section 2.3 by setting the
neural excitations.

4.2. Metabolic Efficiency (ME)
We are assuming a linear relationship between the muscle
tensions and the amount of energy consumed by the muscle
fibers. Accordingly, the metabolic efficiency is defined as the
inverse of the average muscle tensions during a predefined set of
masticatory movements, as follows

ME =
( 1

T

T
∑

t

f̄ t
)−1

, (11)

where T is the total number of steps in an episode, and f̄ t is the
mean of the muscle tension vector at timestep t.

4.3. Agility (Ag)
Agility is defined as the inverse of the time it takes for the
masticatory system to translate the jaw in between a predefined
set of locations in the 3D space.

4.4. Accuracy (Ac)
The ability of the trained RL policy in driving the body of
the mandible toward the desired position is counted as the
accuracy of the system. This metric is evaluated as the inverse
of the Euclidean distance of the lower mid-incisal point to its
desired target position, averaged over multiple episodes, and
formulated as

Ac =
∥

∥

∥
P̂PT

∥

∥

∥

−1

2
, (12)

where PT is the location of the lower mid-incisal point after the
very last iteration of the episode and P̂ is its desired location.

4.5. Symmetry (Sym)
The biomechanical system in question is not fully symmetric;
however, the current metric is designed to evaluate the extent
of symmetric behavior in the trained RL agent. In this context,
symmetry is defined as the inverse of the first norm of absolute
differences between corresponding excitations of the left and
right muscles, averaged over multiple episodes:

Sym =
( 1

T

T
∑

t

∥

∥

∥
elt − er t

∥

∥

∥

1

)−1
. (13)

5. EXPERIMENTS AND RESULTS

After the reinforcement learning model is trained, the trained
stochastic policy is queried with a state (as defined in Figure 3)
and the agent executes the action associated with the mode
of the returned distribution. Accordingly, the inference process
is deterministic.

5.1. Force Regularization
In the first set of experiments, we investigate the impact of
the regularization term in the reward function (Equation 10)
in the metabolic efficiency of the trained agent. Here, we keep
the wu coefficient consistent across experiments and evaluate the
converged model with respect to the wr coefficient based on the
performance metrics discussed in section 4. The non-symmetric
coefficient, ws was set to zero during these experiments.

To test the trained model, a series of 21 target positions on
the border and inside the envelope of movement were defined.
The agent was then tested based on its ability to navigate the jaw
model in between the predefined target locations. The position
of the jaw, neural excitations, and muscle forces were tracked
throughout the experiments.

The results of these experiments are summarized in
Figure 4. As demonstrated, higher values of the regularization
coefficient result inmoremetabolically efficient muscle activation
trajectories according to the model’s perception of metabolic
efficiency, i.e., the muscular tensions (section 3.2). However, with
the model thriving for the least amount of applied force, its agility
slightly decays. For example, in highly regularized models, the
agent delegates the responsibility of jaw elevation to the passive
ligaments of the TMJ. Accordingly, mouth closing is carried out
at a slower pace (see Supplementary Video 1).

A high negative correlation (ρ = −0.87) was also
observed between wr and the model’s range of motion. It is
our understanding that with an excessive force regularization,
lowering the metabolic energy expenditure becomes a priority
as the agent is highly penalized to activate its muscles. Since
reaching the edges of the envelope of motion requires higher
muscle activations, the agent decides not to reach the edges to
save more energy.

5.2. Symmetric Behavior
Similar to live subjects, the masticatory model designed in
ArtiSynth is not completely symmetric. Consequently, the RL
agent as well does not learn symmetric excitation patterns
for the left and right muscles. To explore the impact of the
symmetry term of the reward function (Equation 10) in the RL
training process and to understand the neuromuscular activation
patterns, a set of models were trained with different ws coefficient
values. The models were trained with wr = 0.5 as a balanced
solution between speed, accuracy, range of motion, and the least
neural excitations, based on the results presented in section 5.1.
Given that the neural excitations have a value between 0 and 1,
larger ws values were used to incentivize symmetric activations
compared to the wr values. The values of the wu and wr

coefficients were kept consistent in these sets of experiments.
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A B

C D

FIGURE 4 | Impact of the regularization coefficient (wr ) on performance of the learned motor control based on (A) accuracy, (B) agility, (C) metabolic efficiency, and

(D) range of motion. Given the under-determined nature of the masticatory system, it is expected of the reinforcement learning policies to act differently according to

their respective reward functions and the randomness in their training process. For each sub-figure, seven models were independently trained with different wr

parameters and their performances were quantified. As demonstrated, while increasing wr increases the metabolic efficiency (ME) of the experiment with a high

correlation of 0.97, it has a degrading impact on the model’s range of motion (ROM). Force regularization was shown to have no impact on the model’s accuracy. The

model’s agility decreased on average in highly regularized models. As shown here, the model trained with wr = 0.5 (circled in all sub-plots) demonstrates a balanced

performance across the metrics.

The same series of target positions as the previous section were
chosen and the trained models were tested based on the same
performance criteria. As plotted in Figure 5, higher ws values
encourage the model to learn symmetric activation patterns
for the left and right muscles. However, with more symmetric
behavior, the model becomes damper and fails to explore its
feasible domain ofmotion.Moreover, the non-symmetric penalty
is shown to have a regularization effect, similar to the force
regularization, which decreases the overall neural excitations and
increases the metabolic efficiency (ME) of the model.

5.3. Muscle Activation Patterns
To understand the learned dynamic patterns, a trained agent
was set to navigate in the 3D space in between a predefined
series of positions. The neural excitation patterns were recorded
during these movement. Here, we used the model trained

with wr = 0.5 and ws = 10 as it demonstrated the most
balanced performance.

The neural excitation trajectories recorded in this experiment
are visualized in Figure 6. As demonstrated, while some of
the observations do not match perfectly with our expectations,
they follow our knowledge of the masticatory system to a
good extent. For example, in the right laterotrusion function
(E to RL), the contralateral (left side) lateral pterygoid muscle
(LILP) does the heavy lifting, assisted by the ipsilateral posterior
temporalis muscle and slightly by the contralateral superficial
masseter (Bakke, 2016). To return the jaw to the edge-to-
edge position (RL to E), the left lateral pterygoid abruptly
relaxes and the right lateral pterygoid (RILP) takes over.
When the jaw arrives at the mid-sagittal position, RILP relaxes
at a slower pace. This process is assisted by the ipsilateral
masseter; consequently, to counterbalance the closing force
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A B
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FIGURE 5 | Impact of the symmetry coefficient (ws) on the learned motor control based on (A) accuracy, (B) agility, (C) metabolic efficiency, (D) range of motion, and

(E) symmetry. For each sub-figure, six models were independently trained with different ws parameters and their performances were quantified. As shown, bigger ws

coefficient incentivizes the agent to learn more symmetric activation patterns. However, such model is less accurate, and is not able to explore as much of the state

space. Moreover, the non-symmetric penalty (Equation 10) has a regularization effect which decreases the overall neural excitations and increases the metabolic

efficiency (ME). Accordingly, the model trained with ws = 10 (circled in all sub-plots) demonstrates a balanced performance across the metrics.
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A B
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D

FIGURE 6 | The learned neural excitation patterns for typical masticatory functions. Intercuspal position (ICP) to maximum mouth opening (MO) demonstrates the

mouth opening function. Mouth closing is denoted as MO to E. Edge-to-edge position (E) to right laterotrusive (RL) simulates the right laterotrusion function, and RL to

E is its opposite. The protrusive function is denoted as E to PR. (A) ICP to MO (opening). (B) MO to E (closing). (C) E to RL (right laterotrusion). (D) RL to E (invert right

laterotrusion). (E) E to PR (protrusion).

of the left-side masseter, the posterior fibers of the right
mylohyoid (RPM) are slightly (close to 3%) activated to keep
the jaw in the edge-to-edge position. Similarly, the protrusive

movement of the mandible (E to PR in Figure 6) is driven by
the bilateral contraction of the lateral pterygoid muscles (Ho,
2017).
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Since smaller muscles tend to produce less force, and in
turn, consume less energy, a metabolically efficient model (such
as one trained with wr = 0.5) prioritizes activation of small
muscles over large ones for certain tasks. From the visualized
experiments, the mouth opening task (ICP to MO) is carried out
by activating the bilateral posterior mylohyoid fibers, while other
muscles, such as the anterior digastric and inferior head of the
lateral pterygoid, remain inactive. While this observation is not
in sync with our understanding of the masticatory system, the
model’s decision is optimal according to its own understanding
of the metabolic efficiency. This experiment was conducted
to highlight that the proposed approach to learning neural
excitation patterns is a good tool for generating hypotheses.
However, without subject-specific models and rigorous studies of
the reward functions and fine-tuning of the learning coefficients,
it is not possible to establish a learning paradigm that mimics the
human neural system.

Another example is jaw elevation (MO to E) where the
mylohyoid muscles suddenly relax and the closing muscles,
namely the temporalis and masseter, are activated to bring
the condyle back to the glenoid fossa. The passive force of
the condylar ligaments, modeled with the multi-point springs,
play an important role in the jaw closure; therefore, once the
translational phase of jaw closure is over, all muscles temporarily
relax and then get slightly activated to establish the edge-to-edge
relationship. Accordingly, the agent exploits the passive force of
the condylar ligaments tominimize its energy expenditure during
mouth closing.

Supplementary Video 1 captures the dynamics of the jaw
during the experiments described in this section.

6. DISCUSSION

We present a reinforcement learning (RL) approach to
estimate the neural excitations of the masticatory muscles.
The implemented RL algorithm in this research is based
on the Soft Actor-Critic (SAC) formulation which promotes
policies with higher entropies. The SAC has demonstrated
results that outperform other off-policy and on-policy state-
of-the-art RL algorithms, such as the Deep Deterministic
Policy Gradient (Lillicrap et al., 2016), Trust Region Policy
Optimization (Schulman et al., 2015), and the Proximal Policy
Optimization (Schulman et al., 2017), both in terms of
performance and sample efficiency (Haarnoja et al., 2018a).
In our design, the actor and critic functions of SAC were
parameterized by relatively shallow neural networks. We also
leveraged double Q-learning and used a separate target critic
network to stabilize the learning process.

As demonstrated in section 5.3, the muscle excitation
trajectories during opening, closing, laterotrusive, and
protrusive movements matches the known physiological
patterns (Figure 6). Accordingly, the left and right pterygoid
muscles play a substantial role in laterotrusive and protrusive
movements. We would like to highlight that, similar to live
subjects, the jaw model in question is not symmetric. This
asymmetry is apparent in muscle insertion sites, the location

of the curved bilateral planar constraints for the TMJ, and
the shapes of the teeth. Accordingly, it is not expected to
observe symmetric excitation patterns especially when the RL
policy is mainly opting to minimize the metabolic cost of its
actions. As a result, and as Figure 6 represents, muscles of
the left side are more predominantly activated even during
symmetric movements, such as jaw closing and protrusion. The
non-symmetry penalty term in the reward function mitigates
this issue to some extent (Figure 5); however, this gain in
symmetry comes with the cost of a lower range of motion. A
smarter reward function is deemed necessary to achieve higher
performing results.

There have been quite a few metabolic analyses of gait
that consider ground reaction forces, motion trajectories of
limbs, and pulmonary gas exchanges to estimate the metabolic
cost of walking and running. Based on these metrics, multiple
metabolic models are introduced which demonstrate consistent
results in estimating the relative metabolic cost of different
gait tasks (Koelewijn et al., 2019). However, the question
of what is being optimized in biomechanical systems during
mechanical tasks remains unanswered. Should efficiency be
defined as the minimummetabolic cost or should the mechanical
work be also included as a second indicator of efficient
movements (Fetters and Holt, 1990)? Moreover, whether the
fidelity requirements of the task play a role in the metabolic
efficiency trade-off requires further investigations. In the neural
excitation trajectories presented in Figure 6, small muscles
seem to get activated more often while large muscles are
seldomly activated and merely used for balancing. This is
certainly the case for mouth opening where the entire task
is handled by the posterior fibers of the left and right
mylohyoid muscles.

As discussed earlier, motor control of biomechanical systems
is often an underdetermined problem as there are more muscles
than the collective of degrees of freedom of the bodies (Lee
et al., 2014). Consequently, the local maxima that the model’s
policy in the RL training framework converges to is not unique
either. From the trained agent’s perspective, at any state, there
is a distribution of actions to choose from. The agent can be
instructed to act based on either the mode of the distribution
or a randomly drawn sample from the distribution. Regardless,
an infinite number of policies can be trained, differing in
their respective reward functions and other aspects of their
RL formulation, each of which could converge to a different,
but to some extent justified, local maxima. Both the force
regularization and symmetric terms of the reward function
(Equation 10) constrain the solution space of the model;
however, these constraints are rather soft and do not guarantee
a unique solution.

The RL training procedure is computationally intensive
and can take a few hours to a few days depending on the
training algorithm, hardware, the parallel efficiency of the
implementation, and the dimensionality of the action and the
space states. However, once the policy is trained, it is faster than
any inverse dynamics solvers as it does not require an iterative
numerical method to estimate the excitation and forces at every
simulation time step (Abdi et al., 2019a). In deep RL, a trained
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policy is a feed-forward or recurrent neural network which has
learned a deterministic or probabilistic mapping between the
state space and the action space. Therefore, at a given state, the
action can be inferred via a single feed-forward passing of the
model which is quite fast for the shallow neural architectures
used in the deep RL paradigm. In our experiments, the feed-
forward pass of the policy network (see πφ in Figure 3) took
<1 ms running on a GeForce GTX 1080. This is one-tenth of
the time needed for a single forward step of the jaw simulation
in ArtiSynth, running on an Intel Core i7-8700K 3.70 GHz
processor, without even taking into account the overhead of the
iterative inverse dynamics solver.

Similar to other machine learning and RL settings, the hyper-
parameter space was deemed bigger than what could be fully
investigated with our limited computational resources. However,
within the limitations of our study, we found the entropy
coefficient (α in Equation 9) to play a substantial role in the
rate of convergence. According to our findings, and due to
the relatively high dimensional action space, an α value of
<0.2 does not incentivize the agent to explore the environment
with an adequate frequency which, in turn, slows down the
learning process.

In a simulated mechanical system, it is possible to assess the
feasibility of a hypothetical motion trajectory by estimating the
motor control resulting in the given kinematics via forward or
inverse dynamics solutions. Therefore, the proposed RL training
framework along with the masticatory performance metrics can
be a viable solution to predict the post-operative functionalities of
a subject. Patients who come out of extensive jaw reconstructive
surgeries suffer from impaired masticatory functions. The brain
of a post-operative patient, who has just come to realize its altered
masticatory system, is in the self-experimental phase, meaning
that it interacts with the environment through experiments and
makes predictions on the results of those interactions to decide
the best trajectory. As the patient fails to predict the results of the
sensorimotor predictions, it enters a self-repairing phase where
it starts to adapt to new world dynamics and compensate for
lost motor abilities by finding new paths and activation patterns.
This brain is also self-growing as it rebuilds the dynamics
model of the jaw via gathering new information through
experiments (Corbacho, 2016). The reinforcement learning
process designed in this study is in sync with the three qualities
of the post-operative brain, namely, self-experience, self-repair,
and self-grow. While the subject is going through rehabilitation,
the clinical team is curious to know, in theory, the extent to
which the subject is expected to regain masticatory performance.
With the proposed approach, such questions can be answered
through virtual surgical interventions in the simulation platform
and retraining of the RL agent to evaluate its adaptation with
the new environment. Moreover, if multiple surgical avenues are
available at the time of treatment planning, the surgeon and, in
turn, the patient would benefit from knowing if an alternative
plan could result in a more optimal functional outcome. We
see a future where the proposed training framework is coupled
with subject-specific biomechanical models as a benchmarking
platform and to answer the what-if questions which are often
raised during treatment planning of surgeries.

7. LIMITATIONS AND FUTURE WORK

Although the main contribution of this work is not to
present the most accurate and validated subject-specific jaw
model, we acknowledge the simplifying assumptions made in
the biomechanical modeling as well as the policy training
procedure. We would like to elaborate on some of these
limitations to highlight potential avenues for enhancement. We
divide these details into two categories, namely, limitations
of the biomechanical model and those of the reinforcement
learning procedure.

In order to speed up the costly process of the RL training,
no component was modeled as finite elements. Consequently,
and in contrast to previous works of Sagl et al. (2019b),
the condylar disks and other soft tissues associated with the
stomatognathic system were excluded from the model. While we
acknowledge that the condylar disks play a non-trivial role in
the masticatory system, we compensated for the loss of accuracy
by modeling the condylar capsule and the adjacent tissues as
passive multi-point springs. The cartilages were also modeled
with elastic foundations (Servin et al., 2006). Moreover, and
similar to all the jaw models presented in the literature, teeth
were assumed to be rigidly connected to the jaw bone with no
periodontal ligaments (PDL). In a more favorable setting with an
abundance of computational power and time, each tooth can be
modeled separately with a PDL that enables a limited extent of
physiological movement.

In the designed stomatognathic system, the hyoid bone
was assumed to be static and was moved inferoposteriorly to
compensate for the loss in the amount of jaw opening. Moreover,
some ligaments which contribute to the passive retraction of the
jaw were not modeled, such as the stylomandibular ligament and
the sphenomandibular ligament.

Here, muscles were modeled as point-to-point axial springs
and large muscles were represented with multiple actuators. This
simplifying assumption matches the conventional wisdom of
prior arts, yet is not in sync with reality. Moreover, the muscles
are assumed homogeneous along their length and their force
functions follow the well-known Hill-type model. As a result,
the muscles ignore the impact of temporal dependency and the
recent contractile conditions of the muscle on their generated
force (Arslan et al., 2019).

Along the same lines, in the current formulation, the
muscle activations were not delicately modeled. Firstly, no
delays were considered between the neural stimulation and
muscle contraction. Encoding such delay is deemed complex
given the discrete temporal simulation with fixed timesteps of
0.001 s. Moreover, a monotonically increasing mapping was
assumed between the excitation level and the muscle activation,
i.e., higher neural excitation would always result in a higher
muscular tension.

Last but not least, we would like to highlight that, similar
to other biomechanical models, the current jaw model relies
on the parameters reported in the literature, such as the mass
of jaw, tissue materials, force-length properties of the muscles,
properties of the condylar capsule, and many more. We cannot
imagine this issue to be resolved in the near future with the
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current imaging and sensing technologies. This limitation has
an adverse impact on the validity of any subject-specific models
designed for treatment planning. Considering the open-source
nature of our research, we invite other researchers to join hands
in improving upon the model by including more details and
alleviating the above limitations.

As for the limitations of the learning procedure, we should
highlight the sample inefficiency of model-free approaches, such
as the Soft Actor-Critic algorithm. Although the implemented
process leverages a replay buffer memory which holds 1 million
samples, it is our understanding that the current training
process does not efficiently use the gathered samples. In our
implementation, after each environment interaction, a batch of
256 samples are drawn from the replay buffer to apply a single
update on the weights of the actor and critic networks. Therefore,
a viable next-step would be to dynamically adjust the number
of parameter updates per environment interaction over time
to achieve a faster and more sample-efficient training. Another
enhancement is to change the paradigm toward model-based
or hybrid reinforcement learning solutions (Nagabandi et al.,
2018). Given the stationary state of the masticatory simulation
environment, model-based approaches are expected to achieve
the same performance with fewer environment interactions.

In the designed motor control paradigm, the neural
pathways are assumed to be completely disjoint. This enables
the reinforcement learning actor to activate each muscle
independently. This assumption is not well-aligned with
the reality of biomechanical systems and the reality of
muscular synergies where co-activation of muscles that share
the descending or afferent neural pathways produce the
kinematic trajectories (Bizzi and Cheung, 2013). In a similar
work by Ruckert and d’Avella (2013), a movement primitive
representation was proposed which employed parameterized
basis functions to exploit the hypothesized muscle co-activations.
Accordingly, the shared knowledge between muscles simplified
the policy search in high-dimensional action spaces. Coupling the
neural excitations limits the degrees of freedom and decreases
the dimensionality of action space; thus, it results in a more
efficient exploration of the smaller action space which makes
the job of the RL agent easier. On the other hand, it raises
the concern of the correctness of neural couplings. Since Kutch
and Valero-Cuevas (2012) have debated the assumption of
same neural origins for the muscle synergies and argued that
constraints arising from the biomechanics could also result in
certain couplings across themuscles, we kept the neural pathways
independent in this research. However, this avenue needs further
exploration.

An important unanswered question in the training is
centered around the reward function. As shown in Figure 4,
different muscle force regularization coefficients would result
in substantially different policies (brains). One policy could be
more agile while the other one generates the least amount of
muscle tensions. Finding the right balance between the agent’s
incentives and validating the outcomes with in vivo studies or
against the available literature will be a valuable and enlightening
research project.

Lastly, a fascinating next step would be to include the occlusal
forces in the process and design the reward function for the agent
to learn a complete chewing cycle. Such rewarding mechanism
should be taking the masticatory rhythm and interocclusal forces
into account. However, some version of bolus modeling might be
necessary to achieve reliable results.

8. CONCLUSION

In this work, we present a new perspective into estimating the
neural excitations of the masticatory musculoskeletal system
based on the paradigm of reinforcement learning. In this
approach, an RL agent is trained to drive the mandible across
the 3D envelope of motion in the simulation environment.
The proposed method does not require dynamic clinical
measurements, such as EMG, kinematics, or joint force
trajectories; instead, the model explores the feasible domain
of motion via environment interactions and learns the right
excitation patterns from its own experiments. We demonstrate
that the agent can be trained to optimize over three objectives:
minimizing the distance to the target, maximizing the metabolic
efficiency of the movement, and maximizing the symmetric
behavior of the left and right neural excitations. The trained
models demonstrate excitation trajectories that match the known
physiological patterns. The proposed approach does not rely on
the availability of the recorded kinematics, therefore, it is deemed
as an intriguing alternative for the inverse dynamics problem.
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