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Background: The principal aim of this study was to measure the effect of online single-
pulse transcranial magnetic stimulation (TMS) over the right dorsolateral prefrontal cortex
(DLPFC) on cognition via the Cambridge Neuropsychological Test Automated Battery
(CANTAB) in healthy individuals.

Methods: In a single-blind, sham-controlled study, we assessed both 50% and 60%
of the resting motor threshold (RMT) over the right DLPFC in healthy right-handed
(n = 42) adults using cognitive function, such as attention and memory, as a measure via
CANTAB.

Results: We observed an improvement in the cognitive function level during the use of
online low intensities of 50% and 60% RMT active stimulation of the DLPFC compared
to the sham stimulation.

Conclusions: The results showed that low-intensity TMS can indeed effectively modulate
cognitive function in DLPFC. Future research is, however, necessary to investigate the
potential effects of low-intensity TMS on different brain areas to increase confidence in
the observed results.

Keywords: monophasic TMS, neuromodulation, subthreshold TMS, dorsolateral prefrontal cortex, cognitive
functions

BACKGROUND

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that has
become increasingly used in basic neuroscience research (Alford et al., 2007; Balslev et al., 2007)
and has been evaluated as a possible therapeutic intervention in some neurological and psychiatric
disorders (Cotelli et al., 2008; Bashir et al., 2010).

Abbreviations: DLPFC, right dorsolateral prefrontal cortex; CANTAB, Cambridge Neuropsychological Test Automated
Battery; RMT, Resting motor threshold; TMS, transcranial magnetic stimulation; rTMS, repetitive transcranial magnetic
stimulation; RT, response time; SST, Stop Signal Task; PRM, Pattern Recognition Memory; SSRT, stop signal
reaction time.
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The era of using TMS to study cognitive functions began
with the classic work of Amassian et al. (1989), who performed
experiments over the visual cortex in human subjects to impair
the participants’ ability to report briefly presented letters (Bliss
et al., 2003).

The literature includes reports of TMS either improving or
impairing cognitive performance in terms of response time (RT;
Boroojerdi et al., 2001; Drager et al., 2004) and memory tasks
(Cappa et al., 2002; Luber et al., 2007a; Boyd and Linsdell,
2009). Previous work on TMS has presented conflicting results
in terms of increasing or decreasing cognitive performance in
task-related perception, attention, conceptualization, memory,
reasoning, and motor performance (Pascual-Leone and Hallett,
1994; Evers et al., 2001; Cotelli et al., 2006, 2011; Cattaneo et al.,
2008, 2009a,b, 2010). In this study, we focused mainly on the
effects of low-intensity online TMS via a single pulse over the
frontal cortex.

The prefrontal cortex, specifically the dorsolateral prefrontal
cortex (DLPFC), of the brain is one of the most interesting
repetitive transcranial magnetic stimulation (rTMS) regions for
implementing therapeutic interventions for neuropsychiatric
disorders, including major depression (Feredoes et al., 2007;
Gagnon et al., 2011). Cognitive task-related working memory
(WM) and executive function have shown functioning in the
DLPFC region (Hamidi et al., 2009b; Galea et al., 2010).
Interestingly, a single session of rTMS in this region showed
improvement in cognitive task-related response inhibition
(Hamidi et al., 2009a), mental rotation (Hamidi et al., 2011),
and confrontation naming (Hannula et al., 2010). Neuroimaging
methods can highlight the roles of neuronal priming, oscillatory
activity, and synaptic neuroplastic changes in relation to the
cognitive task (Koch et al., 2005; Köhler et al., 2006; Luber et al.,
2007b; Kobayashi et al., 2009).

WM tasks have been studied extensively using single-pulse
TMS and rTMS (Cotelli et al., 2006, 2011; Cattaneo et al., 2008,
2009a,b) to investigate the cognitive process when a limited
amount of information is provided for a brief period. In some
TMS studies, both accuracy and slowing of the RT were used
to measure the impairment of performance (Pascual-Leone and
Hallett, 1994; Evers et al., 2001; Cotelli et al., 2006, 2011; Feredoes
et al., 2007; Cattaneo et al., 2008, 2009a,b, 2010; Galea et al., 2010;
Gagnon et al., 2011).

We conducted the current study to examine the effects
of online single-pulse, low-intensity TMS of the frontal
cortex in healthy individuals regarding their neuropsychological
abilities via using the Cambridge Neuropsychological Test
Automated Battery (CANTAB) to measure their performance on
cognitive tasks.

It is reasonable to suggest that a single TMS pulse will induce
a distinct temporal sequence of facilitation and suppression at a
given cell (Romero et al., 2019), which will be related either to
direct stimulation of the cell or, more likely, in other cortical
structures, to the activation of excitatory or inhibitory inputs
within the local network. This study investigated the neural
effects of low-intensity TMS on performance (Romero et al.,
2019). We used monophasic, single-pulse TMS with intensities
far below previously reported intensities (50% and 60% MT).

Due to the low intensity of the TMS used, we hypothesized
modulating effects over the stimulated area and thus changes
in performance on the Stop Signal Task (SST) and Pattern
RecognitionMemory (PRM), which were assessed via CANTAB.

MATERIALS AND METHODS

Participants
We recruited 42 participants, including 24 males and 18 females
with mean ages of 25.6 and 26.1, respectively, to participate
in a single-blind online sham or active-stimulation measured
study. The random sequence generator (https:random.org 2017)
was used to randomly allocate each subject to one of the three
conditions (active 50%, active 60%, and the sham stimulation).

All participants had either normal or corrected-to-normal
visual acuities, and they were screened for risk factors of
the noninvasive brain stimulation application through safety
questionnaires. All participants were naive to TMS stimulation,
and none were taking medication or had a history of neurological
or psychiatric disorders. Written informed consent was obtained
from each participant before the experiment, which was
approved by the IRB of King Saud University.

Procedure and Materials
The demographic information and the safety of the TMS
questionnaires were completed in the screening section.
The participants then performed cognitive function tasks
using the CANTAB research suite software (version 6.0.37,
Cambridge Cognition, Cambridge, UK) during single-pulse
TMS stimulation.

Stop Signal Test
The SST measured response inhibition (impulse control) via
each participant’s response to an arrow stimulus of two choices,
depending on the direction in which the arrow was pointing on
the touchscreen, and mental processing speed. The subject had
to inhibit their response when an audio tone sounded during the
task. Therefore, this test comprised two parts.

(1) When each subject was presented with a stimulus of a
left-pointing arrow on the screen, they were told to press the
left button. When they were presented with a right-pointing
arrow, they were told to press the right button. There was one
block of 16 trials for the participant to practice this task.

(2) The participant was told to continue pressing the buttons
on the press pad when they saw the arrows, as before;
however, they were told that, if they heard an auditory signal
(a beep), they should withhold their response and not press
the button.

Pattern Recognition Memory
PRM is a two-choice, forced-discrimination paradigm that is
used to test visual PRM. In the task, a sequence of visual
patterns, which could not be easily described via verbal labels,
was presented in the center of a screen. In the recognition phase,
the subjects were required to choose between a pattern that they
had already seen and a novel pattern.

Frontiers in Human Neuroscience | www.frontiersin.org 2 July 2020 | Volume 14 | Article 205

https:random.org
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Bashir et al. TMS and Cognitive Functions

Experimental Procedure
During the experiment, the subjects were seated in a height-
adjustable chair, and their head position was fixed by a chinrest at
a distance of 1 m in front of a computer screen. The stimulation
setup consisted of a frameless stereotaxic system for navigation
(Visor2 ANT; Netherlands). A brain MRI of each subject was
used to ensure stimulation accuracy both during and across the
sessions. Co-registration errors to the MRI’s surface landmarks
were matched to ≤3 mm at each follow-up session. During
the delivery of TMS, the 3D brain image of the participant’s
cortex and the hot spot were visualized with brain stimulation
software for optimal delivery. Individually determined positions
(DLPFC) were used during all TMS conditions for guidance of
the coil to ensure consistency of the TMS application throughout
the experiment.

Prior to the experiment, the individual resting motor
threshold (RMT) was obtained at the right abductor pollicis
brevis muscle by delivering TMS to the contralateral (left) M1.
The RMT was determined as the minimum intensity needed for
eliciting motor-evoked potentials of at least 50 µV in amplitude
(baseline to peak) in at least four of eight single TMS pulses. The
participants were asked to relax their hand muscles and to keep
their eyes open during the procedure.

During the SST and PRM, TMS was applied at the visual
stimulus onset over the right DLPFC. The intensity of the
TMS pulses was set to 50% and 60% of the individual RMT,
respectively. Additionally, the sham TMS was applied by tilting
the coil 90% away from the head so that only the outer edge
of the coil was attached to the subject’s head. The stimulator
output during the sham was set to 50% of the individual RMT.
The monophasic single-pulse TMS delivered 320 stimuli, with an
overall duration of 1 ms between stimuli.

Analysis
The SST had five outcome measures: covered direction errors,
the proportion of successful stops, the RT on the GO trials,
SSD (50%), and the stop signal reaction time (SSRT). A
statistical comparison was performed using an ANOVA with the
factors’ stimulation intensity (50%, 60%, and sham). Regarding
the significant main effects, post hoc paired-sample t-tests
were calculated between intensities. A significance threshold of
p < 0.05 was applied. The normal distribution of the data was
tested using the one-sample Kolmogorov–Smirnov test over all
conditions and learning stages.

RESULTS

All data were normally distributed and thus fulfilled the
requirements for parametrical testing. The mean intensity (±SD)
of the RMT over all sessions was 42.5% (±6.4%), with a
range between 34% and 46% of the maximal stimulator output
(Table 1). A repeated-measures ANOVA found no significant
difference in the individual RMTs between the sessions (F = 2.20,
p > 0.05).

Low-intensity TMS induced changes in performance of the
RT on the GO trials and the SSRT. The ANOVA showed a
significant main effect of the TMS’ intensity on the RT for the

GO trials [F = 4.61, p < 0.05 (0.037)] and for the SSRT [F = 4.06,
p < 0.05 (0.041)]. There was also a trend toward significance
of the intensity on the RT for the GO trials [F = 3.71, p < 0.1
(0.052)] and for the SSRT [F = 3.86, p < 0.05 (0.05)]. There was
no significant difference in direction errors and the proportion
of successful stops in the SST. The post hoc paired-sample t-
tests between the intensity revealed significantly faster reaction
times at 50% [mean ± SD (ms)] for the RT during the GO trials
(698.12 ± 68.20) and the SSRT (640.90 ± 82.16) compared to
those of the sham [mean ± SD (ms)] at 742.20 ± 72.1 for the
RT during the GO trials and 702.04 ± 108.18 for the SSRT, with
t = −4.12, p < 0.05 and t = −3.88, p < 0.05, respectively. The
results showed faster reaction times at 60% [mean ± SD (ms)]
for the RT during the GO trials and the SSRT (704.14 ± 74.4 and
660.42 ± 84.57, respectively), compared to those of the sham,
with t = −2.92, t = −3.02, p < 0.05, respectively (Figure 1).

There was no significant difference between the 50% and 60%
RMT intensity (p < 0.05) for any SST measurements.

The ANOVA showed a significant main effect for TMS
intensity in the PRM correct trials [F = 4.02, p < 0.05 (0.04)].
The post hoc paired-sample t-tests between the intensity revealed
significantly improved PRM performance at 50% [mean ± SD
(%): 88.8± 9.1] as well as better performance at 60% [mean± SD
(%): 90.2 ± 9.8; t = −3.76, p < 0.05] compared to the sham
[mean ± SD (%): 80.7 ± 9.3; t = −3.06, p < 0.05; Figure 2].

DISCUSSION

This study investigated the neuropsychological alterations of
a cohort of healthy individuals with online single-pulse, low
intensities of 50% and 60% of the RMT TMS protocol on
the DLPFC compared to a sham group. The findings showed
that low-intensity TMS significantly impacted the cognitive
performance of the RT during the GO trials and the SSRT.
There was no significant improvement in PRM compared
to the sham group. Considering these results, it can be

FIGURE 1 | Comparison of Stop Signal Task (SST) for mean reaction time
(RT) on GO trial, and stop signal reaction time (SSRT) during 50% and 60% of
resting motor threshold (RMT) and sham stimulation for the right dorsolateral
prefrontal cortex (DLPFC). Error bars are standard deviation.
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FIGURE 2 | Comparison of pattern recognition task performance in %
during 50% and 60% of RMT and sham stimulation for the right DLPFC. Error
bars are standard deviation.

suggested that subthreshold single-pulse TMS might maintain
its conditioning abilities if, instead of a second TMS pulse,
upcoming neural activation would reach the modulated area
during ‘‘normal’’ neural processing. If this suggestion is correct,
a conditioning subthreshold TMS pulse could lead to a change
in excitability in a target area, which might result in changes
in performance. Previous work with lower intensities of TMS
showed a similar pattern of enhanced performance from the
baseline level (Pascual-Leone and Hallett, 1994; Balslev et al.,
2007; Cotelli et al., 2008; Silvanto and Muggleton, 2008; Silvanto
et al., 2008b; Oliveri et al., 2010). In particular, the role of
the DLPFC was studied while participants were performing an
SST. The DLPFC was activated when the two nonassociated
concepts required the same response, indicating a need for the
cognitive control of inhibition and excitation (Pascual-Leone
et al., 1994; Thut et al., 2005; Luber et al., 2007a; Cattaneo
et al., 2010). The mechanism of inhibition and excitation in
the cortical structure for a single TMS pulse is not clear;
it is likely that, in cortical structures, there is activation of
excitatory or inhibitory inputs within the local network for task
performance (Luber et al., 2007a; Cattaneo et al., 2010; Pascual-
Leone et al., 1994). The strength of the TMS stimulus might
be affected by the functional state of the network to produce
performance enhancements (Cattaneo et al., 2009a,b; Hannula
et al., 2010; Thut et al., 2011). Low-intensity, single-pulse TMS
for a targeted region should arguably represent a similar pattern
in individuals with lesions or damage in that target area. This
study provides further evidence that the DLPFC is involved in

some aspect of cognitive stereotyping of the mental response.
These results have important implications for the involvement
of the DLPFC in the neural networks that are involved in
response inhibition stereotypes. The findings suggest that the
additional neural activity that is caused by the TMS pulse may
often have brought the neural response to the target stimulus
above the threshold of awareness. Nonetheless, these findings
should be interpreted in consideration of the high stimulation
protocol variability of the investigated studies (VanDerWerf and
Paus, 2006). Although our results are unique in the sense that
the test included either 50% or 60% subthreshold conditioning
stimuli prior to the task performance, it is difficult to exclude
the variability of the stimulation coil and the stimulation site
as well as the responding time of the individual task session
in this outcome because no physiological measure, such as
an EEG, was obtained. In a previous study, the use of a
monophasic (unidirectional) single-pulse TMS-activated one
neuronal population was oriented in the same direction, which
summated their effects and thus yielded a stronger short-term
effect (Knutson et al., 2007).

The findings of the current study might be attributed to the
TMS effects on remote areas, which can be observed after a
period of stimulation. Vink et al. (2018) applied single pulses of
TMS with an intensity of 60% RMT over the DLPFC in healthy
subjects using a TMS-fMRI setup. They found that when they
delivered TMS pulses with such intensity, it induced neuronal
activity (increased the BOLD fMRI signal) in several connected
brain regions, including the subungual anterior cingulate cortex
(ACC). The ACC might be of particular interest because this
region, along with other prefrontal cortex areas, has been found
to be engaged by attentional and memory processes (Kim, 2014;
Duverne and Koechlin, 2017). Interestingly, it has been reported
that the ACC has a significant role in inhibiting the ongoing
task set, which can be observed in the SST (Boorman et al.,
2013). This may indicate that the effects of stimulation over the
DLPFC might be propagated to other brain regions, providing
a potential neural substrate for processing the PRM task and
response inhibition during the SST (Kim, 2014).

Similarly, in a recent study, Romero et al. (2019) showed that
the effect of single-pulse TMS (with a low-intensity 60% RMT)
had a limited spatial extent of TMS-induced spiking activity
of individual neurons in awake behaving monkeys. Notably, it
was observed that the spread of the single-pulse TMS-evoked
spikes was more focal, while the TMS-induced oscillatory activity
spread more remotely.

Taken together, these findings might highlight that the effect
of the single-pulse TMS in the current study is due to oscillatory

TABLE 1 | Distribution of participants across conditions and experiments.

Experiment 1 Experiment 2 Experiment 3

TMS intensity 50% RMT 60% RMT Sham
Participants (n) 14 14 14
Resting motor threshold (RMT) 43 ± 7.2 42 ± 8.1 42 ± 5.7
Sex (M/F) 8/6 9/5 7/7
Age (years mean ± SD) 26.5 ± 4.64 25.7 ± 4.86 26.6 ± 3.88

RMT, resting motor threshold.
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neuronal activity that influenced other brain areas remotely, such
as the ACC, which resulted in enhancing cognitive performance.

LIMITATION OF STUDY

A limitation of this study was that only monophasic, single-
pulse TMS with two low intensities (50% and 60% RMT) was
employed. Moreover, the investigated cognitive functions in this
study were limited to only the attention and memory domains.
Using different types or intensities of single-pulse TMS would
provide different findings. Further studies on a larger population
size to confirm the efficacy of low-intensity TMS on different
brain regions, including the parietal and cerebral regions, should
be done. In addition, our study’s age range was too broad,
considering that cognitive function could be different according
to age. Finally, single-pulse TMS was used to study functional
connectivity in the brain because stimulation in one area has
been shown to affect blood flow in connected areas (Paus et al.,
1997). Thus, it is likely that the TMS protocol used here not only
impacted the DLPFC but also affected functionally connected
areas as well. Nonetheless, this does not undermine our central
conclusions that the DLPFC is part of a functional network
representing information thatmeasured both response inhibition
and mental processing speed.

CONCLUSION

The current work shows that online low-intensity TMS can
influence executive function and cognitive and visuospatial
associative learning behavior. This creates an exciting
opportunity for developing this approach as a therapeutic
intervention, especially for a group of DLPFC disorders that
lack effective alternative treatments. However, we are still in the
process of understanding much of the properties of low-intensity
TMS and how best to apply this technique to human subjects.
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