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The mammillary body (MB) has been thought to implement mnemonic functions.
Although recent animal studies have revealed dissociable roles of the lateral and medial
parts of the MB, the dissociable roles of the lateral/medial MB in the human brain is
still unclear. Functional connectivity using resting-state functional magnetic resonance
imaging (fMRI) provides a unique opportunity to noninvasively inspect the intricate
functional organization of the human MB with a high degree of spatial resolution. The
present study divided the human MB into lateral and medial parts and examined their
functional connectivity with the hippocampal formation, tegmental nuclei, and anterior
thalamus. The subiculum of the hippocampal formation was more strongly connected
with the medial part than with the lateral part of the MB, whereas the pre/parasubiculum
was more strongly connected with the lateral part than with the medial part of the MB.
The dorsal tegmental nucleus was connected more strongly with the lateral part of the
MB, whereas the ventral tegmental nucleus showed an opposite pattern. The anterior
thalamus was connected more strongly with the medial part of the MB. These results
confirm the extant animal literature on the lateral/medial MB and provide evidence on
the parallel but dissociable systems involving the MB that ascribe mnemonic and spatial-
navigation functions to the medial and lateral MBs, respectively.

Keywords: hippocampus, tegmentum, fornix, mammillotegmental tract, resting-state functional connectivity

INTRODUCTION

The mammillary body (MB) receives inputs from the hippocampal formation and tegmental
nuclei and sends outputs to the tegmental nuclei (Vann, 2010). Recent animal research has
revealed that, while the lateral and medial MBs are connected to the same overall structures,
they are connected to different subregions of these structures, thus forming two parallel but
dissociable pathways (Vann and Aggleton, 2004): the medial MB receives inputs from the
subiculum and ventral tegmental nucleus and projects to the ventral tegmental nucleus, while the
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lateral MB receives inputs from the pre/parasubiculum and
dorsal tegmental nucleus and sends outputs to the dorsal
tegmental nucleus (Vann, 2010; Dillingham et al., 2015).
Functional dissociation between the lateral and medial MBs
has also been demonstrated: behavioral studies of selective
disconnections of the medial MB using discrete lesions of
the mammillothalamic tract revealed that the medial MB is
related to spatial memory (Vann and Aggleton, 2004), and
electrophysiological studies reported that the lateral MB contains
head-direction cells, indicating that the lateral MB contributes to
spatial navigation (Blair et al., 1998; Stackman and Taube, 1998;
Taube, 2007).

In humans, diffusion-weighted imaging studies revealed
several tracts that connect with the MB, such as the fornix
and mammillotegmental tract (Granziera et al., 2011; Kwon
et al., 2011; Mori and Aggarwal, 2014; Christiansen et al., 2016;
Cacciola et al., 2017; Wei et al., 2017; Kamali et al., 2018; Choi
et al., 2019; Maller et al., 2019). Clinical studies also revealed
that memory-impaired patients with Korsakoff syndrome exhibit
atrophy of the MB (Squire et al., 1990; Harding et al., 2000;
Tsivilis et al., 2008; Fama et al., 2012; Kril and Harper, 2012;
Aggleton, 2014; Kopelman, 2015; Isenberg-Grzeda et al., 2016;
Arts et al., 2017; Johnson and Fox, 2018). However, the lateral-
medial dissociation in the MB is much less evident in humans
than in animals. Functional connectivity analyses of resting-
state data obtained with functional magnetic resonance imaging
(fMRI) (Fox and Raichle, 2007; Honey et al., 2009; Biswal
et al., 2010; Yeo et al., 2011; Margulies et al., 2016; Miyashita,
2016) may identify the lateral-medial dissociation in the human
MB. Resting-state functional connectivity is known to reflect
anatomical connectivity, and resting-state fMRI has been widely
used to infer how strongly different brain areas are connected
(Fox and Raichle, 2007). Notably, functional connectivity
has been used in previous studies to demonstrate distinct
compartments within the hippocampus that are connected with
other brain structures (Poppenk and Moscovitch, 2011; Lacy and
Stark, 2012; Libby et al., 2012; Duncan et al., 2014; Shah et al.,
2018; Vos de Wael et al., 2018; Dalton et al., 2019) and small
subcortical structures with differential functional connectivity
profiles (Li et al., 2014; Hirose et al., 2016; Kline et al., 2016;
Zhang et al., 2016, 2018; Kumar et al., 2017). The present
study aimed to reveal the dissociation between the two systems
consisting of the lateral/medial MB and target regions connected
with the MB, such as the hippocampus and tegmental nuclei
(Figure 1). The MB was divided into lateral and medial parts,
and the resting-state functional connectivity was calculated. To
attain a sufficient signal-to-noise ratio in functional images with
a higher spatial resolution (1.25 × 1.25 × 1.25 mm3), each
subject was highly sampled: 1,000 volumes in each of the 10 daily
sessions.

MATERIALS AND METHODS

Subjects
The present study reanalyzed the data published previously
(Ogawa et al., 2018). Ten right-handed healthy subjects (six

men and four women) participated in the experiments. The age
of the subjects was in the category of young subjects [mean
age, 27.0 ± 7.7 years (mean ± SD), age range, 20–39 years],
as has most often been studied in normal subjects. They
were confirmed to be healthy by annual medical checkups
and had no psychiatric history. Written informed consent
was obtained from all subjects according to the Declaration
of Helsinki. All experimental procedures were approved by
the Institutional Review Board of Juntendo University School
of Medicine.

MRI Procedures
fMRI data were acquired using a 3-T MRI scanner
(Siemens Skyra, Erlangen, Germany). T1-weighted
structural images were obtained for anatomical reference
(resolution = 0.8 × 0.8 × 0.8 mm3). Functional images were
obtained using multi-band gradient-echo echo-planar sequences
[repetition time (TR) = 4.0 s, echo time (TE) = 41.6 ms,
flip angle = 73◦, field of view (FOV) = 160 × 160 mm2,
matrix size = 128 × 128, 120 contiguous slices, voxel
size = 1.25 × 1.25 × 1.25 mm3, multi-band factor = 4]. To
attain a higher spatial resolution, a small FOV (160 × 160 mm2)
was set (Osada et al., 2017; Ogawa et al., 2018). Although
this small FOV did not always cover the posterior part of the
occipital cortex, the areas of interest in the present study were
intact. We acquired 100 volumes in each fMRI run at the
resting state and repeated the process for 10 runs in each of the
10 daily sessions. Thus, 10,000 total volumes were collected for
each subject.

Image Analyses
Functional images were preprocessed for resting-state functional
connectivity (Hirose et al., 2016; Osada et al., 2017, 2019;
Ogawa et al., 2018; Tamura et al., 2019; Fujimoto et al., 2020).
Images were corrected for slice timing and realigned using
Statistical Parametric Mapping (SPM8) software1. Temporal
filters (0.009 Hz < f < 0.08 Hz) were applied to the images using
in-house-written MATLAB scripts. A general linear model was
used to regress out nuisance signals that were correlated with
head motion, whole-brain global signals, averaged ventricular
signals, and averaged white matter signals. The obtained
residual images were spatially normalized to the Montreal
Neurological Institute (MNI) template with interpolation to a
1 × 1 × 1 mm3 space.

Then, we estimated the functional connectivity between the
MB (the lateral/medial part of the MB or the whole MB) and
target regions of interest (ROIs), such as the subiculum and
pre/parasubiculum in the hippocampal formation, tegmental
nuclei, and anterior thalamus, for each subject. Resting-state
functional connectivities were calculated based on the procedures
reported previously (Osada et al., 2017; Ogawa et al., 2018).
The time-series signals in the lateral/medial part of the MB
or whole MB were averaged across voxels (Figure 1). The
averaged time-series signals in the seed MB regions were used
to calculate their correlations with the time-series signals in

1https://www.fil.ion.ucl.ac.uk/spm/
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FIGURE 1 | Mammillary body (MB) and regions connected with the MB. The MB receives inputs from the hippocampal formation and tegmental nuclei and sends
outputs to the tegmental nuclei and anterior thalamus. By dividing the MB into lateral and medial parts, the functional connectivities with the hippocampal formation,
tegmental nuclei, and anterior thalamus were investigated in the present study. Schematic drawings of the subcortical structures are shown in the middle row, and
magnetic resonance imaging (MRI) images of the corresponding slices for the dashed lines are shown in the lowest row.

the voxels of the target ROIs in the ipsilateral hemisphere. A
voxel-wise correlation was calculated for the target ROIs, and
the correlation coefficient was then converted to Fisher’s z and
further to Gaussian z scores. The z score for each daily session
was subject to the fixed effectsmodel to obtain the z score for each
subject. The resultant z-score images were spatially smoothed
[full width at half maximum (FWHM) = 2 mm], and the z scores
were averaged across voxels in the target ROIs for subsequent
analyses of the lateral vs. medial part of the MB.

Delineation of MB and Target ROIs
While the whole MB was manually delineated using normalized
functional images, the lateral and medial MBs cannot be visually
demarcated with MRI. The whole MB was covered by at most

six parasagittal slices with a thickness of 1 mm. Because the
volume of the medial MB was larger than that of the lateral MB
(Vann, 2010; Corso et al., 2019), the whole MB was divided into
lateral and medial parts by designating the two outer parasagittal
slices as the lateral part of the MB and the four inner slices as
the medial part of the MB. A 1-by-5 division of the slices was
not adopted because every lateral slice may not have contained
the lateral MB. The volumes of the lateral part of the MB were
28.4 ± 8.1 mm3 (mean ± SD) and 28.7 ± 9.0 mm3 in the left and
right hemispheres, respectively. The volumes of the medial part
of the MB were 89.3 ± 17.4 mm3 and 90.7 ± 10.4 mm3 in the left
and right hemispheres, respectively.

The target ROIs consisted of the subiculum and
pre/parasubiculum of the hippocampal formation, tegmental
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nuclei, and anterior thalamus; each was manually delineated
using normalized functional and structural images. The
subiculum and pre/parasubiculum were demarcated according
to Yushkevich et al. (2015) and Dalton et al. (2017). Situated at
the ventral part of the hippocampal formation, the subiculum
and pre/parasubiculum were delineated based on the anatomical
landmark of the vestigial hippocampal sulcus and uncal sulcus
(Supplementary Figure S1A). The pre/parasubiculum is located
medially to the subiculum. The borders between the two
structures were delineated based on the histological atlas of
the human hippocampus (Mai et al., 2007; Dalton et al., 2017)
(Supplementary Figure S1B).

The ventral and dorsal tegmental nuclei were demarcated
based on the histological atlas of the human brain stem (Paxinos
and Mai, 2004; Naidich et al., 2009). The ventral tegmental
nucleus is situated ventrally to the medial longitudinal fasciculus
and extends approximately 4 mm rostrally from the level of the
caudal pole of the locus coeruleus (Huang et al., 1992). The dorsal
tegmental nucleus is located within the central gray matter and
extends approximately 5mm caudally from the level of the rostral
pole of the locus coeruleus (Huang et al., 1992) (Supplementary
Figure S1C).

The anterior thalamus consists of the anterior medial,
anterior ventral, and anterior dorsal thalamic nuclei. Although
the anterior ventral and anterior medial nuclei occupy most
(approximately 90%) of the entire anterior nucleus (Kumar et al.,
2017), the borders between the three structures are difficult to
identify on MRI images. Performed according to the histological
atlas of the human thalamus (Mai et al., 2007), our delineation
was restricted to the entire anterior thalamus (Supplementary
Figure S1D).

RESULTS

Functional connectivity was calculated between the whole
MB or lateral/medial part of the MB and target ROIs in
the subiculum, pre/parasubiculum, ventral/dorsal tegmental
nucleus, and anterior thalamus. Figure 2A shows the functional
connectivity between the whole MB and hippocampus in sagittal
sections. The medial part of the MB featured greater connectivity
(i.e., higher ROI-wise correlation values) with the subiculum
than the lateral part of the MB (Figures 2B,C; see also
Supplementary Figure S2A). Figure 3A shows the functional
connectivity between the whole MB and hippocampus in coronal
sections. The pre/parasubiculum was found to connect more
strongly to the lateral part of the MB than to the medial part
of the MB (Figures 3B,C; see also Supplementary Figure S2B).
A three-way analysis of variance (ANOVA) was conducted with
the region (subiculum or pre/parasubiculum), lateral/medial
MB, and left/right sides as factors. A significant interaction
(region × lateral/medial MB) was observed (F(1,9) = 27.9,
P = 0.0005; P = 0.002 after threefold Bonferroni correction
for multiple comparisons), with no significant main effect
(region, F(1,9) = 0.002, P = 0.9; lateral/medial MB, F(1,9) = 0.4,
P = 0.5; left/right side, F(1,9) = 0.7, P = 0.4). Since the
hippocampus extends along the longitudinal axis, the subiculum
was divided into three parts (Supplementary Figure S3), and

FIGURE 2 | Functional connectivity in the subiculum. (A) Voxel-wise maps of
functional connectivity in the ipsilateral hippocampus (seed: the whole MB)
shown in the sagittal sections of functional images in one representative
subject. The color scale indicates the Gaussian z score of the functional
connectivity. The hippocampus and subiculum are delineated by yellow
curves. X indicates the X coordinate of the Montreal Neurological Institute
(MNI) space. A, anterior; P, posterior; D, dorsal; V, ventral. (B) Voxel-wise
maps of differential functional connectivity in the hippocampus (seed: the
medial vs. lateral MB). The color scale indicates the Gaussian z score of the
differential functional connectivity (hot, medial > lateral; winter,
lateral > medial). (C) Gaussian z score averaged across voxels in the left/right
subiculum (seed: medial/lateral MB). The error bars indicate the standard
error of means across subjects. *P < 0.05, **P < 0.01, paired t-test.

a three-way ANOVA was performed with the lateral/medial
MB, left/right subiculum, and position (anterior, middle, and
posterior) as factors. We found a significant effect of the
interaction between lateral/medial MB and position (F(2,18) = 5.6,
P = 0.01) but did not find a main effect of position
(F(2,18) = 1.1, P = 0.4).

Figure 4A shows the functional connectivity between the
whole MB and the ventral tegmental nucleus. The medial part of
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FIGURE 3 | Functional connectivity in the pre/parasubiculum. (A) Voxel-wise
maps of functional connectivity in the hippocampus (seed: the whole MB)
shown in the coronal sections of one representative subject. The
hippocampus, subiculum, and pre/parasubiculum are delineated by yellow
curves. Y indicates the Y coordinate of the MNI space. L, left; R, right. (B)
Voxel-wise maps of differential functional connectivity in the hippocampus
(seed: the medial vs. lateral MB). (C) Gaussian z score averaged across
voxels in the left/right pre/parasubiculum (seed: medial/lateral MB). *P < 0.05,
paired t-test.

the MB exhibited greater connectivity with the ventral tegmental
nucleus than the lateral part of the MB (Figures 4B,C; see also
Supplementary Figure S2C). Figure 5A shows the functional
connectivity between the whole MB and the dorsal tegmental
nucleus. Differential functional connectivity was found: the
lateral part of the MB was found to connect more strongly
to the dorsal tegmental nucleus than the medial part of the
MB (Figures 5B,C; see also Supplementary Figure S2D). A
three-way ANOVA was conducted with the region (ventral or
dorsal tegmental nucleus), lateral/medial MB, and left/right side

FIGURE 4 | Functional connectivity in the ventral tegmental nucleus. (A)
Voxel-wise maps of functional connectivity in the midbrain (seed: the whole
MB) shown in the transverse sections of one representative subject. The
ventral tegmental nucleus is delineated by a purple curve. Z indicates the Z
coordinate of the MNI space. (B) Voxel-wise maps of differential functional
connectivity in the midbrain (seed: the medial vs. lateral MB). (C) Gaussian z
score averaged across voxels in the left/right ventral tegmental nucleus (seed:
medial/lateral MB). *P < 0.05, paired t-test.

as factors. A significant interaction (region × lateral/medial
MB) was observed (F(1,9) = 35.9, P = 0.0002; P = 0.0006 after
threefold Bonferroni correction for multiple comparisons), with
no significant main effect (region, F(1,9) = 3.6, P = 0.09;
lateral/medial MB, F(1,9) = 0.3, P = 0.6; left/right side, F(1,9) = 0.3,
P = 0.6).

Figure 6A shows the functional connectivity between the
whole MB and thalamus. The medial part of the MB was
found to exhibit stronger connections with the anterior
thalamus than the lateral part of the MB (Figure 6B;
see also Supplementary Figure S2E). A two-way ANOVA
revealed a significant main effect of the lateral/medial MB
(F(1,9) = 16.3, P = 0.003; P = 0.009 after threefold Bonferroni
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FIGURE 5 | Functional connectivity in the dorsal tegmental nucleus. (A)
Voxel-wise maps of functional connectivity in the midbrain (seed: the whole
MB) shown in the transverse sections of one representative subject. The
dorsal tegmental nucleus is delineated by a purple curve. (B) Voxel-wise
maps of differential functional connectivity in the midbrain (seed: the medial
vs. lateral MB). (C) Gaussian z score averaged across voxels in the left/right
dorsal tegmental nucleus (seed: medial/lateral MB). *P < 0.05, **P < 0.01,
paired t-test.

correction for multiple comparisons) but no significant effect
of the left/right anterior thalamus (F(1,9) = 1.0, P = 0.3) or
interaction between the two factors (F(1,9) = 0.002, P = 0.9;
Figure 6C). Furthermore, no significant correlations were
found between whole MB-subiculum and whole MB-anterior
thalamus connectivities (r = 0.1, P = 0.5) or between
whole MB-pre/parasubiculum and whole MB-anterior thalamus
connectivities (r = 0.2, P = 0.4).

The power analysis was conducted to estimate the minimum
sample size necessary for achieving 80% power at an alpha
of 0.05 for the main/interaction effects in the ANOVA. The
minimum sample size was 6, 5, and 7 in the hippocampal

formation, tegmental nuclei, and anterior thalamus, respectively.
The power analysis confirmed that the sample size in the present
study satisfied the requirement.

DISCUSSION

The present fMRI study investigated the two pathways involving
in the human lateral and medial MBs by using resting-
state functional connectivity. The medial MB was functionally
connected with the subiculum, ventral tegmental nucleus, and
anterior thalamus, whereas the lateral MB was functionally
connected with the pre/parasubiculum and dorsal tegmental
nucleus. Previous animal studies have shown that the medial
MB is involved in memory functions (Kirk et al., 1996; Vann
and Aggleton, 2004; Sharp and Turner-Williams, 2005; Vann,
2010); and the lateral MB, in spatial navigation (Blair et al., 1998;
Stackman and Taube, 1998; Vann, 2005; Taube, 2007; Harland
et al., 2017). The present study validates previous evidence
provided by animal studies for the parallel but dissociable
systems comprising in human MBs as well as the updated Papez
circuit (Vann and Nelson, 2015) in the human brain, which was
revised to include the dorsal and ventral tegmental nuclei.

It is known that the medial MB occupies the majority of the
volume of the whole MB (Vann, 2010; Corso et al., 2019). Out of
the six slices that covered the whole MB, two lateral slices were
designated as the lateral part of the MB in the present study.
Designating only the most lateral slice as the lateral part of the
MB (1-by-5 division) will not be optimal because the one slice
may not have contained the lateral MB. A 3-by-3 division was
not adopted because the volume of the medial MB is known to be
much larger than that of the lateral MB. Therefore, we adopted
the 2-by-4 division. It is also possible, on the other hand, that
the two lateral slices contained the medial MB. However, the
results of the pre/parasubiculum and dorsal tegmental nucleus
showing the lateral-dominant connectivity pattern (Figures 3, 5)
confirmed the lateral vs. medial dissociation in the MB.

The classical Papez circuit consists of the hippocampal
formation, MBs, anterior thalamus, and cingulate cortex (Papez,
1937). Recent studies have proposed an updated conception of
the Papez circuit (Vann and Nelson, 2015), which includes the
dorsal and ventral tegmental nuclei. Animal studies have found
that the dorsal and ventral tegmental nuclei project to the lateral
andmedialMBs, respectively, to form two parallel but dissociable
pathways (Vann, 2010; Saunders et al., 2012; Dillingham et al.,
2015). It has also been demonstrated that lesions in the ventral
tegmental nucleus cause memory impairments (Vann, 2010),
whereas lesions in the dorsal tegmental nucleus induce loss of
head-direction cells in the lateral MB (Bassett et al., 2007). The
present study provides the human analog of the two extended
systems that implement different functions whose underlying
biological mechanism is centered in the lateral and medial MBs.
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FIGURE 6 | Functional connectivity in the anterior thalamus. (A) Voxel-wise maps of functional connectivity in the thalamus (seed: the whole MB) shown in the
coronal sections of one representative subject. The whole thalamus and anterior thalamus are delineated by yellow curves. (B) Voxel-wise maps of differential
functional connectivity in the thalamus (seed: the medial vs. lateral MB). (C) Gaussian z averaged across voxels in the left/right anterior thalamus (seed: medial/lateral
MB). *P < 0.05, paired t-test.
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FIGURE S1 | Target regions of interest (ROIs) on functional images. (A,B) The
hippocampus, subiculum, and pre/parasubiculum are delineated by yellow curves
in the sagittal (A) and coronal (B) sections of functional images in one
representative subject. X indicates the X coordinate of the Montreal Neurological
Institute (MNI) space. Y indicates the Y coordinate of the MNI space. US, uncal
sulcus; VHS, vestigial hippocampal sulcus; A, anterior; P, posterior; D, dorsal; V,
ventral; L, left; R, right. (C) The ventral and dorsal tegmental nuclei are delineated
by purple curves in the transverse sections of one representative subject. The
medial longitudinal fasciculus and central gray matter are delineated by white
curves. Z indicates the Z coordinate of the MNI space. (D) The whole thalamus
and anterior thalamus are delineated by yellow curves in the coronal section of
one representative subject. The body of fornix is delineated by a white curve.

FIGURE S2 | Differential functional connectivity maps. (A) Voxel-wise maps of
differential functional connectivity in the hippocampus (seed: the medial vs. lateral

mammillary body (MB)). The color scale indicates the Gaussian z of the differential
functional connectivity (hot: medial > lateral, winter: lateral > medial). Differential
functional connectivity maps were shown only within the hippocampus for display
purposes. (B) Voxel-wise maps of differential functional connectivity in the
hippocampus (seed: the medial vs. lateral MB). Differential functional connectivity
maps were shown only within the hippocampus for display purposes. (C)
Voxel-wise maps of differential functional connectivity in the midbrain (seed: the
medial vs. lateral MB). Differential functional connectivity maps were shown only
within the midbrain for display purposes. Z indicates the Z coordinate of the MNI
space. (D) Voxel-wise maps of differential functional connectivity in the midbrain
(seed: the medial vs. lateral MB). Differential functional connectivity maps were
shown only within the midbrain for display purposes. (E) Voxel-wise maps of
differential functional connectivity in the thalamus (seed: the medial vs. lateral MB).
Differential functional connectivity maps were shown only within the thalamus for
display purposes.

FIGURE S3 | Functional connectivity in the three subdivisions of the subiculum.
Gaussian z averaged across voxels in the three subdivisions (anterior, middle, and
posterior) of the subiculum (seed: medial/lateral MB). The three subdivisions are
delineated by colored curves in the sagittal section. *P < 0.05, **P < 0.01,
paired t-test.
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