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Humans’ interactions with each other or with socially competent machines exhibit
lawful coordination patterns at multiple levels of description. According to Coordination
Dynamics, such laws specify the flow of coordination states produced by functional
synergies of elements (e.g., cells, body parts, brain areas, people. . .) that are temporarily
organized as single, coherent units. These coordinative structures or synergies may
be mathematically characterized as informationally coupled self-organizing dynamical
systems (Coordination Dynamics). In this paper, we start from a simple foundation, an
elemental model system for social interactions, whose behavior has been captured in
the Haken-Kelso-Bunz (HKB) model. We follow a tried and tested scientific method that
tightly interweaves experimental neurobehavioral studies and mathematical models. We
use this method to further develop a body of empirical research that advances the theory
toward more generalized forms. In concordance with this interdisciplinary spirit, the
present paper is written both as an overview of relevant advances and as an introduction
to its mathematical underpinnings. We demonstrate HKB’s evolution in the context of
social coordination along several directions, with its applicability growing to increasingly
complex scenarios. In particular, we show that accommodating for symmetry breaking
in intrinsic dynamics and coupling, multiscale generalization and adaptation are principal
evolutions. We conclude that a general framework for social coordination dynamics is
on the horizon, in which models support experiments with hypothesis generation and
mechanistic insights.

Keywords: HMI, HRI, Coordination Dynamics, social interaction, metastability, multiscale, complex systems,
Human Dynamic Clamp

INTRODUCTION

Social systems nest very small structures, the molecular, genetic and cellular machinery of living
things, into progressively larger structures – all the way up to entire organisms engaged in
mutual interaction with the environment and with each other. Quite crucially and across all
levels, the parts (e.g., organelles, organs, organisms, organizations) coordinate dynamically with
other parts, engaging and disengaging within and between their respective coalitions and across
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levels (upward∼downward causation, e.g., genes or neurons
influencing social behavior, and vice-versa). A main goal of
our research program is to find general systems of equations –
expressing lawful regularities – that explain social systems’
coordination dynamics within and across levels, irrespective of
level-specific details (Oullier and Kelso, 2009; see also Kelso,
2009a; Kelso et al., 2013). We approach this goal by examining
dynamic coordination patterns empirically; embedding those
observations in mathematical models; and returning to empirical
data to verify newly arisen predictions, in a recursive manner. For
present purposes, a model is the recreation of a natural system’s
key behavior that facilitates its understanding. “Understanding”
is sought, not through some privileged scale of analysis, but
within the abstract level of the essential collective variables and
their coordination dynamics, regardless of scale or material
substrate (Kelso et al., 1987; Schöner and Kelso, 1988b).

Quite a few modeling frameworks have been applied to
social systems, including agent-based models (e.g., Axelrod,
1997; Gilbert and Terna, 2000; Bonabeau, 2002; Schweitzer,
2007), cellular automata (e.g., Hegselmann, 1998; Batty, 2007),
Lotka-Volterra (e.g., Matsuda et al., 1992; Castellano et al.,
2009), stochastic diffusion (e.g., Arató, 2003; López-Pintado,
2008; Kimura et al., 2010), Bayesian (e.g., Yang et al., 2011),
Markov (e.g., Singer and Spilerman, 1976; Gintis, 2013), signal
flow graphs and block diagrams (Liu and Ma, 2018), recurrent
networks (Irsoy and Cardie, 2014), and, central to this review, the
HKB model (after Haken et al., 1985; see also Schöner and Kelso,
1988b; Kelso, 1995; Tognoli et al., 2018a), itself based on the
concepts of synergetics (Haken, 1977) and the mathematical tools
of non-linearly coupled non-linear oscillators. One of the key
strengths of the HKB model (and its numerous extensions) is its
possession of intrinsic dynamics (Kelso, 1995, Ch 6). That is, the
system of equations is formalized from two sides: one supplying
the intrinsic dynamics of the unit (what it does when left alone
to itself), and the other – whose significance social scientists
will recognize – reflecting constraints imposed by relation(s)
with other units. Intrinsic dispositions and social influences are
complementary aspects of social interaction, without which an
agent would be carried along by the ebbs and flows of whatever
jolts it encounters (see also Friston, 2011 and Kostrubiec et al.,
2012 for related views).

Mathematical models, when combined with theoretical
concepts, have the power to accomplish an important aim
for research that aspires to characterize cross-scale relations:
they permit widely different phenomena to fall under common
scrutiny. Numerous examples in the history of science speak
to the colossal payoff that follows successful integration across
scales. Newton’s famous unification of the laws that govern the
fall of the apple and the motion of celestial bodies comes to mind.
Deterministic chaos and quantum mechanics contain many more
examples, although it must be said that “emergent phenomena”
exist as well, i.e., where the whole is not only greater than the
sum of its parts, but different too (Anderson, 1972; Haken, 1977;
Laughlin and Pines, 2000).

How then is one to approach the daunting diversity of
dynamical behaviors that is encountered across scales of
observation? Our paradigm involves collective variables and

non-linear oscillators on the mathematical side, rhythmic finger
movements as basic observational units at the behavioral level
(Kelso, 1981, 1984; Haken et al., 1985), and of course, neural
oscillations at the neural level (see Schöner and Kelso, 1988b;
Glass, 2001; Tognoli and Kelso, 2014b). Oscillations might be
considered as the “ground zero” of open dynamical systems, their
most elemental form. First, temporal symmetries of limit cycles
(the mathematical structure for oscillations) allow for fruitful
mathematical simplifications. Second, oscillations are pervasive
in nature and obvious in their simplest form at the inception
of complex organisms: spontaneous oscillations are found in
neural and motor activity prenatally (Robertson, 1993; Khazipov
and Luhmann, 2006) and destined to endure, albeit in more
complex form, throughout the life of living systems (Turrigiano
et al., 1994; Gal et al., 2010; Marom, 2010). Evidence for the
primordial role of oscillations in human behavior also comes with
the occurrence (possibly unmasking) of repetitive movements in
several developmental and aging disorders (Brown, 2003; Abbott
et al., 2017). There are clear signs that oscillations are exploited
for subcortical control (Taga et al., 1991; Grillner et al., 1998;
Stewart, 1999; Righetti et al., 2005) and similar hypotheses have
been proposed for the cortical level (Edelman and Mountcastle,
1978; Kelso and Tuller, 1984; Yuste et al., 2005; Buzsáki, 2010;
Tognoli and Kelso, 2014b). The primacy of oscillations for the
regulation and control of living systems has been articulated
in the early works of Iberall, Yates, Morowitz, and others. For
example, Homeokinetic theory (e.g., Soodak and Iberall, 1978;
Yates, 1982) addresses the conditions for persistence, autonomy
and self-organization in biological systems from a physical
perspective (irreversible thermodynamics). A fundamental tenet
is that energy flow from a source to a sink will lead to at least
one cycle in the system (Morowitz, 1968). In the homeokinetic
view, control is effected by means of coupled ensembles of limit
cycle oscillatory processes. Limit cycle oscillations represent the
only temporal stability for non-conservative, non-linear systems,
that is, they are capable of making up for naturally occurring
dissipative losses. Loose coupling of limit-cycle processes exists
at all scales. Among their attractive features are their self-
sustaining properties, their ability to operate independently
of initial conditions, their stability in the face of moderate
perturbations, and, perhaps most important the properties
of mutual entrainment and synchronization (Minorsky, 1962;
Kelso et al., 1981; Winfree, 2001). Furthermore, elaboration
of arbitrarily more complex dynamics can be obtained from
oscillatory functions, as suggested by the work of pioneer
mathematicians like Joseph Fourier, showing some bridges
between oscillations and ordinarily irregular dynamics. On both
physical and mathematical grounds, therefore, it follows that
a path from simple oscillatory dynamics to more complex
dynamical behavior (typically observed across multiple scales in
biological systems) may be possible.

In the following, we will present briefly our protracted efforts
to build more complex dynamics from the paradigm initiated by
Kelso and colleagues (see also Avitabile et al., 2016). Before that,
we describe briefly the experimental paradigm, analysis strategy,
theory and models that constitute the mathematical building
blocks of our approach to understanding social coordination. The

Frontiers in Human Neuroscience | www.frontiersin.org 2 August 2020 | Volume 14 | Article 317

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00317 August 12, 2020 Time: 21:56 # 3

Tognoli et al. Coordination Dynamics of Social Behavior

idea is to show how we grow our modeling paradigm toward
increasingly more life-like situations and to identify where the
edges of future advances may lie.

EXPERIMENTAL PARADIGM

A minimal experimental paradigm for social coordination
dynamics has two people exchanging information by virtue
of their senses and effectors as shown in Figure 1, forming
a figure eight that has maximal symmetry. In our canonical
experiments (Tognoli et al., 2007; Oullier et al., 2008; Tognoli,
2008; Tognoli and Kelso, 2015), action is generated by the index
finger (often depicted by a phase angle of the finger relative to
the joint) and perception is mainly through vision (though both
details are certainly amenable to other arrangements within the
sensorimotor repertoire of our human subjects, see e.g., Schmidt
et al., 1990). This choice does not ignore the fact that plenty of
social behaviors (conversations, emotions, dance, jamming, etc.),
at first seem to carry much greater sociocultural significance. In
the pure tradition of physics, stripping away complications is a
strategy to draw out simple controllable pieces of the system and
set them in motion in ways that are tractable for mathematical
models and their experimental counterparts (see also Kelso,
1995; Stewart, 1999; Nowak, 2004). Our work seeks laws of
coordination (subject to proper empirical verifications whenever
feasible) that transcend the specific choice of effectors (sweat
gland, vocal tract, facial, limb muscles etc.) or sensory pathways
in order to draw general mathematical foundations. We start with
the simplest dynamics that can be experimentally manipulated
and understood theoretically.

With the simple paradigm of two people moving their fingers
back and forth in view of one another, we are able to obtain
continuous state variables describing the trajectory of each
participant’s effector at the behavioral level, their coordination
dynamics (viz. the relative phase between the two finger
movements, see “Order parameter” below; Tognoli et al., 2007;

Oullier et al., 2008; Tognoli, 2008; see also Schmidt et al., 1990,
2011; Richardson et al., 2007; Schmidt and Richardson, 2008;
Marsh et al., 2009; Janata et al., 2012; Reddish et al., 2013; Fine
and Amazeen, 2014; Fusaroli et al., 2014; Keller et al., 2014;
Tschacher et al., 2014; de Poel, 2016; Moreau et al., 2016; for
a variety of related approaches). Further, when expanding this
work, information can be gained about concomitant activities in
the brain (Tognoli et al., 2007; Jantzen et al., 2008; Naeem et al.,
2012; see also Hari and Kujala, 2009; Dumas et al., 2011; Sänger
et al., 2011; Konvalinka and Roepstorff, 2012; Pfeiffer et al., 2013;
Babiloni and Astolfi, 2014; Cacioppo et al., 2014; Hirata et al.,
2014; D’Ausilio et al., 2015; Koike et al., 2015; Zhou et al., 2016;
Kawasaki et al., 2018; Mu et al., 2018; Pezzulo et al., 2019), and in
emotional subsystems (e.g., Zhang et al., 2016; see also Anders
et al., 2011; Balconi and Vanutelli, 2017; Reindl et al., 2018).
Objective measures of brain and behavior offer tight systems
of constraint that connect experiments and experimentally
validated models; their continuous nature serves well a modeling
framework that uses collective variables/order parameters at the
coordinative level and coupled oscillators as components. Finally,
such collections of neurobehavioral oscillations aptly embed the
multiscale and reciprocal nature of self-organizing processes that
play out in social systems (Coey et al., 2012).

ORDER PARAMETER: CONNECTING
MODELS AND EXPERIMENTS

A key concept of Coordination Dynamics – following along
the lines of Synergetics (Haken, 1977) – is the collective
variable or order parameter which has been demonstrated to
cut across different kinds of parts and processes (and across
levels) thereby dissolving traditional (and somewhat arbitrary)
divisions (e.g., between “cognitive” and “motor”) and enabling
a novel, dynamic framework for understanding collective/social
behavior (Kelso, 1995, 2009a,b, 2012; Tognoli, 2008; Coey et al.,
2012; Richardson et al., 2014; Tognoli et al., 2018a; see also

FIGURE 1 | Schematic of the experimental paradigm of social coordination dynamics in which two participants simultaneously perceive and produce behavior in
view of each other. More specifically, in our canonical experiment, subjects move their fingers in continuous fashion while at the same time observing their partner
doing the same. The paradigm’s simultaneity of dyadic perception and action – bidirectional coupling – is geared toward observing self-organizing processes.

Frontiers in Human Neuroscience | www.frontiersin.org 3 August 2020 | Volume 14 | Article 317

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00317 August 12, 2020 Time: 21:56 # 4

Tognoli et al. Coordination Dynamics of Social Behavior

Macrae and Miles, 2012). In Coordination Dynamics, the order
parameter tracks the relation between parts of a system in time
(when they come to work together and when they go apart) – that
is, the dynamics of their coordination in contrast to the dynamics
of state variables characterizing the individual component parts.
We therefore resort to the relative phase (the difference φ

between the phase of each oscillator φ1 and φ2), as the collective
variable specified in the equations (Figure 2A) and empirically
scrutinized in experimental and modeling data (Fuchs and Kelso,
1994, 2009, 2018; Kelso, 1995, 2009a; Lagarde et al., 2006; Kelso
and Tognoli, 2007; Tognoli and Kelso, 2009; Fuchs, 2014). From
the standpoint of component rhythmic behavior, the HKB model
was built from phase-coupled oscillators and accordingly, the
theory indicates synchrony or synchronous tendencies as target
phenomena (Haken, 2013; see also Strogatz and Stewart, 1993;
Bennett et al., 2002; Pikovsky et al., 2002).

Starting in the limit case of strongly coupled systems
such as two entrained gears that are so perfectly fit to each
other that there isn’t room for either phase trajectory to
deviate from the other, the resulting relative phase is constant
(Figure 2B, yellow). It is obvious that such a strong and
immutable coupling cannot harbor the adaptation that is the
hallmark of intelligent living systems, including instabilities,
phase transitions and metastability (Kelso, 1995, 2001, 2010,
2012). Complex systems having the necessary propensity for
adaptation and reorganization especially entail the latter feature
(Figure 2B, magenta, green), that is, parts and coalitions of
parts alternate between cooperative tendencies (parts transiently
binding, manifested by transiently horizontal epochs, or dwells,
of the relative phase) and release from them (phase wrapping;
Kelso, 1991). In the other limit when coupling vanishes to zero,
the resulting uncoupled system typically manifests a flat diagonal
trajectory of its relative phase, reflecting the mere incidence
of their respective intrinsic phase dynamics (Figure 2B, blue).
Stable trajectories (Figure 2B, yellow) are found in regimes with
attractors (Figure 2A, for small values of δω, see right bracket);
metastable trajectories in regimes sans attractors (Figure 2A, for
larger values of δω past a critical threshold, see left bracket; and
weak coupling, not shown).

CLASSICAL EXPERIMENTAL FINDINGS
ON SOCIAL COORDINATION

Under the simple paradigm presented in section “Experimental
Paradigm” and with the analysis tools of section “Order
Parameter: Connecting Models and Experiments,” we review
a number of experimental results supporting the claim that
coordination dynamics at multiple scales is metastable, i.e.,
intermingled dwells and escape in the relative phase exist
(relative phase trajectories in Figure 3). We also found what
appears to be persistently stable relative phases (not shown,
see Tognoli et al., 2007; Kelso et al., 2009; Dumas et al.,
2014 for examples), which either pertain to genuine phase
locking (dynamical regime with attractors) or metastable dwells
(sans-attractor) whose characteristic time scale exceeds the
window size. Findings of metastability span dyadic social

coordination (Tognoli et al., 2007; Oullier et al., 2008; Tognoli,
2008; Figure 3A); experiments with a “Human Dynamic Clamp”
in which one member of the dyad is a computational model
of a surrogate social partner governed by the HKB equations
(Figure 3B, Kelso et al., 2009); multiagent social coordination
(Figure 3C; Zhang et al., 2018, 2020); and, outside our paradigm
but hinting at the phenomenon’s generality, the collective flashing
of fireflies (Figure 3D; Tognoli et al., 2018b) that we found not to
be fully synchronized stricto sensu (recalling that synchronization
requires attractors). As predicted from theory, when parts have
extensive symmetries in their intrinsic dynamics (small δω,
Figure 2A), the attracting tendencies (Figures 3A–C: histograms
of the relative phase) have concentrations at inphase (both
oscillator trajectories rise and then fall in step) and antiphase (one
oscillator rises when the other falls), befitting the extended HKB
model as a general model of behavioral and neural coordination
(Kelso, 1991; Kelso and Haken, 1995). These observations are
also consistent with HKB model predictions (Kelso et al., 1987;
Kelso, 2008). For instance, coordination can be weakened by
faster dynamics (Kelso et al., 2009), weaker coupling imposed
by one participant (as in the “parametrizable” human dynamic
clamp: Kelso et al., 2009), or greater diversity of prior dispositions
(Zhang et al., 2018, 2020).

In a parallel body of work, we examined the coordination
dynamics of brain activity upon which social behavior is
predicated, in particular in the domain of electrophysiology. Here
again and at several scales, we found evidence of synchronization
tendencies or metastability (Tognoli and Kelso, 2009, 2014b).
The hypothesis that synchrony (as distinct from synchronization
tendencies, see below) underlies the binding of local oscillatory
processes has taken root in neuroscience (e.g., Gray, 1994; von
der Malsburg, 1995; Singer, 1999; Bressler and Kelso, 2001;
Varela et al., 2001; Bressler and Tognoli, 2006; Uhlhaas et al.,
2009; Buzsáki, 2010; van Wijk et al., 2012; Harris and Gordon,
2015), with the caveat that due to the inherently dipolar nature
of electromagnetic fields, electrophysiological data at all scales
are replete with spurious inphase and antiphase coordination
(Freeman, 1980; Nunez et al., 1997; Nolte et al., 2004; Pascual-
Marqui, 2007; Tognoli and Kelso, 2009; Van de Steen et al.,
2019). Therefore, empirical evidence needs to be heeded carefully
before rendering definitive interpretations of remote synchrony
between neural ensembles. Initially setting aside inphase and
antiphase (due to the fact that they contain both true and
spurious synchronization), we were able to discover transient
synchronization patterns (see, e.g., Figure 4 from Tognoli and
Kelso, 2009). In the context of our empirical quest to discriminate
stability from metastability, synchrony was suggestive of stable
states and state transitions–thereby seeming to point to attractors
and bifurcations as governing brain dynamics. We however
found that a discontinuous spatiotemporal organization was
not definitive proof of attractor-based states and transitions in
brain dynamics. It is also entirely compatible with the alignment
and misalignment of phases across scales that is the hallmark
of metastability (e.g., see Figure 5 from Tognoli and Kelso,
2014b). Moreover, relative phase trajectories, with faint dwells
and limited periods of common frequencies, point toward weak
coupling. The latter is consistent with the idea that human
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FIGURE 2 | Two representations of the relative phase as an order parameter connecting models and experiments. (A) shows the phase portrait of φ in the
“extended” HKB model (Kelso et al., 1990) for various values of a diversity parameter δω. This graph carries regimes of coordination with attractors in the front of the
figure (for modest diversity δω, shown; also when coupling is strong, not shown) and those without attractors (large diversity of the parts, shown in the back of the
figure; and/or weak coupling, not shown). Attractors exist when the phase portrait (a function describing the rate of change of the relative phase as a function of
itself) has values at dφ

dt = 0 (i.e., the coordination does not change over time) and a converging flow (filled black dots attracting the flow as indicated by the arrows).
Stable regimes reflect a sustained cooperation among the system’s parts, but this stability also leads to inflexibility (see Kelso and Tognoli, 2007 for more details). In
(B), four sample (unwrapped) relative phase evolutions over time illustrate stable coordination (yellow) where the order parameter φ persists at the same value (ad
infinitum in models); metastability (magenta, green) with their characteristic dwells (quasi horizontal epochs, attracting tendencies near inphase, i.e., 0 rad. and
antiphase, i.e., π rad. modulo 2π) and escape (wrapping); and uncoupled behavior (blue), whose relative phase grows continually with time (it approaches a linear
function when the probability distribution of individual phases lacks remarkable joint phase ratios).

brains are subject to the coordinative demands of many local
populations that trade among each other due to ubiquitous
weak coupling. Definitive evidence in favor of either dynamics
with or sans attractors remains tentative, and its resolution
likely resides in perturbation approaches to brain dynamics.
Furthermore, because of the pervasive ambiguity of spurious
inphase and antiphase in the EEG and the evasiveness of non-
inphase dwells from lower scales (Tognoli and Kelso, 2009), it
remains difficult to offer definitive evidence of bistable tendencies
in brain electrophysiological patterns, and test this specific
prediction from the HKB model. Phase transitions, however, have
been established and have suggested bistable tendencies in MEG
(Kelso et al., 1991, 1992; Fuchs et al., 1992, 2000b) and fMRI

dynamics, starting with Meyer-Lindenberg et al. (2002) (see also
Fox et al., 2005; Tognoli and Kelso, 2014b).

A CHRONOLOGY OF THE HKB MODEL’S
AUGMENTATIONS

The HKB system of equations was initially developed to
model a non-linear, self-organizing phenomenon discovered
in human movement coordination (Kelso, 1981, 1984). When
simultaneously set in motion, two homologous body parts, for
instance left and right hand, may be stabilized in either of
two patterns, inphase or antiphase (suggestive of attractors).
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FIGURE 3 | Behavioral coordination in human dyads (A), human interaction with a Human Dynamic Clamp (B), ensemble of people (C) and to hint at generality, in
fireflies flashing [white circles, (D) the thick brown trace indicates the collective behavior of their large colony]. Relative phase trajectories from (A–C) are chosen to
illustrate an alternation of dwells and escapes that is typical of metastability. Attracting tendencies are found toward inphase and antiphase [see histograms in (A–C),
with count identified with the symbol #, showing relative phase distribution for the most strongly coupled conditions in their respective paradigms, see original
references for details and for examples of weaker organization].

As movement frequency was increased, however, there was an
abrupt switch wherein one pattern lost stability and gave way
to the other (here antiphase to inphase). In dynamical system
parlance, this switching behavior can be described as an order-
to-order phase transition, corresponding mathematically to a
bifurcation. The HKB model was built to capture bistability,
bifurcation and hysteresis (the finding of different critical
frequencies when approaching the bifurcation with decreasing
or increasing movement frequencies). Those three elements are
characteristic of many complex non-linear systems. Within a
multiscale paradigm, it is natural to ask whether governing laws
retain their validity at proximal scales (Gell-Mann, 1988; Jirsa and
Haken, 1997; Kelso et al., 1999). Our group started to ask whether
the HKB equations governing the coordination between two
hands of the same person applied when we scale up one level: two
hands, one each from two different individuals. Thus, we forayed
into social coordination dynamics (Tognoli et al., 2007, 2018a,b;
Oullier et al., 2008; Tognoli, 2008; Kelso et al., 2009, 2013;
Kelso, 2012; Dumas et al., 2014, 2018; Kostrubiec et al., 2015;
Tognoli and Kelso, 2015; Nordham et al., 2018; Zhang et al., 2018,
2019). Social coordination dynamics complemented the same
question previously asked at the level of the individual: the hand-
owners’ neuro-muscular system studied with neurophysiological
tools, MEG, fMRI, and EEG (e.g., Tuller and Kelso, 1989; Kelso
et al., 1992, 1998; Wallenstein et al., 1995; Jirsa et al., 1998;
Mayville et al., 1999, 2002; Fuchs et al., 2000a,b; Jantzen et al.,
2004, 2009; Oullier et al., 2004; Jantzen and Kelso, 2007; Kelso and

Tognoli, 2007; Tognoli and Kelso, 2009, 2014b, 2015; De Luca
et al., 2010; Banerjee et al., 2012; and many others). Since a sizable
body of experimental work had supported HKB’s relevance
both in theoretically predicted and de novo phenomena (section
“Classical Experimental Findings on Social Coordination”), we
have adopted HKB as the root model in our social neuroscience
research program.

Above, we justified the use of simple behavioral paradigms
that were the key to HKB’s initial development. In the following,
we demonstrate several advances toward further generalization
in the context of social coordination dynamics. Though by
no means inclusive1, Figure 4 presents six stages of the HKB
framework. The original equations (Figure 4, eq. 1; Haken et al.,
1985) describe (at the oscillator level on the left and collective
level on the right) two non-linearly coupled non-linear oscillators
x and y with intrinsic frequency � (eigenfrequency), that are
bound by a coupling function with notable coupling strength
constants a and b. The existence of both coupling terms, one
with period φ and the second with period 2φ, are responsible
for the bistability of both inphase and antiphase, and the b/a

1For example, other developments not considered here include learning,
recruitment of new degrees of freedom, parametric stabilization, multifrequency
coordination, trajectory formation, stabilization of unstable systems, intentional
switching, etc. Most of these aspects have been developed within single subject
situations and have yet to be systematically explored in social contexts, our focus
here. They do, quite obviously, provide a reservoir for future work in social
coordination dynamics.
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FIGURE 4 | Augmentations of the HKB model toward increasing life-like relevance. (1) The first equation is spelled out at the oscillator level on the left (specifying the
position, velocity and acceleration of oscillators x and y, with notable parameter � carrying the intrinsic frequency, see “Introduction” for motivation); and at a
collective level on the right (specifying the rate of change of x and y’s relative phase φ. The coupling strength parameters a and b are responsible for the bistability of
inphase and antiphase. (2) A symmetry breaking term δω (Kelso et al., 1990) gives rise to metastability. (3) A modification to the oscillators’ dynamics supplies
regimes with discrete behavior -excursion from rest- and continuous cyclical behavior in a single formalism (Jirsa and Kelso, 2005), whose topology is controlled by
three parameters ρ, θ, and τ. Transitions between regimes are autonomously followed in a human-machine interaction (Dumas et al., 2014). (4) The intrinsic
dynamics of the oscillators � is coupled with adaptation rate ε for partners to adapt their more stable behavioral dispositions as they interact (Nordham et al., 2018).
(5) A bias parameter 9 is introduced to direct the coordination to pull human-machine dyads away from their spontaneous attractors with strength c (Dumas et al.,
2014). (6) A scalable multiagent system of equations is built upon empirical data (Zhang et al., 2019) that carries the first and second order coupling term just like the
original HKB model from eq. 1, under coupling matrices a and b. See references in text.

ratio controls the “depth” of each attractor basin. In the case
of eq. 1, �x = �y: the two oscillators have identical intrinsic
dynamics, a sensible approximation given the model’s origin with
two homologous body parts.

In nature and especially in complex biological and social
systems, it is seldom the case that coordination exclusively
concerns perfectly matching pieces of machinery: many
components ought to work across the divide of different intrinsic
dispositions (a child and a father pacing together on a beach;
brain areas generating beta and mu oscillations. . .). The second

equation from Figure 4, eq. 2; Kelso et al. (1990) breaks symmetry
in the intrinsic behavior of the oscillators, letting �x differ from
�y. At the collective level (Kelso et al., 1990; for equations at
the component level see Fuchs et al., 1996), this extended HKB
model results in a new term δω whose existence has two main
effects: it shifts the attractors away from inphase and antiphase
coordination and it shrinks the basin of attraction until the
weaker antiphase, followed by the stronger inphase, eventually
vanish, thereby unlocking a metastable regime that retains
attracting tendencies (effective pooling of collective effort), but
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has lost its fixed points stricto sensu (see also Figure 2A). Such
metastable regimes are important for their enhanced agility to
continually disband coordination patterns and create new ones
(Kelso, 1991, 1995; Kelso and Tognoli, 2007).

Obviously from common experience, at some level,
functionally adapted systems do not continuously spin the
wheel of their dynamics ceaselessly. Numerous processes retain
cyclical characteristics under entrainment with the environment
or even intrinsically (Glass and MacKey, 1988; Strogatz and
Stewart, 1993; Winfree, 2001; Tognoli and Kelso, 2014b; and
references in Introduction). But rest is also a characteristic
biological behavior; and goal-directed agents, for instance
people or brain networks (Attwell and Laughlin, 2001; Kramer
and McLaughlin, 2001), tend to set in motion only briefly
under intent, perhaps to manage energy constraints (Attwell and
Laughlin, 2001). This propensity to switch from cyclical to resting
behavior was built into the Excitator model (Figure 4, eq. 3, from
Dumas et al., 2014, modified after Jirsa and Kelso, 2005), inspired
from the explicitly discrete nature of neuronal excitability
(and human movement coordination, Kelso et al., 1979). Its
right-hand side (the coupling term) is identical to eqs. 1–2
but its left-hand side has terms that, under parametric control
of a separatrix, part the flows of the coordination dynamics
into discrete and continuous domains. HKB’s augmentation
to discrete dynamics is a building block for many diachronic
social behaviors such as turn-taking in talks or mere conspecific
observation (e.g., Dumas et al., 2010, 2014; Kawasaki et al., 2013;
Tognoli and Kelso, 2015; Pérez et al., 2017) and is intimately
linked to delayed coordination and the emergence of roles
amongst social participants (Dumas et al., 2014).

Thus far, individual characteristic behavior in isolation has
been left unchanged by interaction with others. Now, it is well-
recognized in sociology and neuroscience that parts (e.g., people,
brain areas) do in fact change (see also Newell et al., 2008), and
specifically according to their history of interaction with other
parts. This is a truism of adaptation. Taking inspiration from
Righetti et al. (2006)’s work on frequency learning in oscillators,
Dumas et al. (2014) created an adaptive “Human Dynamic
Clamp” based on earlier research on Virtual Partner Interaction
(Kelso et al., 2009). In this work, Dumas et al. (2014) used a
human to broaden the HKB model’s behavioral repertoire: by
making its intrinsic frequency adapt to a human partner’s input, a
virtual partner was conditioned to track a slowly evolving range of
movements that a human would produce in its “view.” This work
opened the way to social adaptation in our mathematical models.
It was the first incursion into broader behavioral repertoires for
HKB-based surrogate social partners, who grew new capabilities
by virtue of their interaction with humans.

In the Dumas et al. (2014) work, however, a relaxation term
returns the oscillator to its characteristic frequency preference.
Adaptation has one more sweeping phenomenology to hand over
to the model and it concerns what happens after, not during
the interaction. In the paradigm of dyadic social coordination,
Oullier et al. (2008) discerned an increased spectral overlap after
episodes of social coordination (“social memory”). Additionally,
Tognoli (2008) found the persistence of stable relative phase past
the period when visual information exchange secures the binding

of both oscillatory trajectories. This aftereffect was further studied
by Nordham et al. (2018), who teased apart three factors
modulating the strength of social memory: coordinative stability,
coupling strength (stronger aftereffects for more stable and more
strongly coupled trials) and initial frequency differences (stronger
aftereffects in trials with smaller initial differences). It turned out
that all three factors arise from a common source. In the modeling
section of the same paper, Nordham et al. (2018) showed that a
universe of experimental observations in interactional behavior
(e.g., strong aftereffect in both partners, in one or in none;
multiple precursor conditions before and during interaction that
influenced behavior post-interaction) could be accommodated
by a single modification of the model. Each oscillator’s intrinsic
frequency ceased to be a constant. Instead, it became an
equation that conjugated self ’s and partner’s dynamics, weighted
by an idiosyncratic parameter ε – the individual propensity
to let one’s self be attracted (or sometimes repelled) by the
other (Figure 4, eq. 4). In this adaptive HKB model, social
memory deploys all of its forms out of a combination of three
parameters: frequency adaptation, coupling strength and initial
frequency difference.

Now let’s consider the phase pattern at which social
coordination happens. While experimental data demonstrate that
effortless coordination between two people occurs at or near
inphase and antiphase (Section “Classical Experimental Findings
on Social Coordination” and Schmidt et al., 1990; Richardson
et al., 2007; Marsh et al., 2009; Fine et al., 2015; though see
Avitabile et al., 2016 for nuanced theoretical and empirical
insights), there is plenty of skillful interpersonal coordination
that ought to happen against the grain of “natural” tendencies,
e.g., in orchestra playing (Walton et al., 2015) or in the
performance of skillful joint actions (Duarte et al., 2012; Issartel
et al., 2017). An experimental line of research on learning had
shown the remodeling of attractive states/tendencies as they are
subjected to practice (Schöner and Kelso, 1988b; Zanone and
Kelso, 1992, 1997; Kelso and Zanone, 2002; Kostrubiec et al.,
2012, 2015). Change in the attractor landscape was modeled by
Schöner and Kelso (1988a) as a task requirement (“informational
forcing”) that tuned the locus of the attractors. Considering that
conspecifics are a crucial part of the environment (MacMahon
et al., 1978; Dunbar and Shultz, 2007; Barsalou, 2008; Adolphs,
2009), Dumas et al. (2014) expanded the additional forcing
term from Schöner and Kelso (1988a) into a Virtual Partner
parameter to lure humans into collective behaviors that would
a priori be unstable for human dyads to perform. To do so,
the Virtual Partner’s mathematical model was augmented with
a biasing term that attracted the collective dynamics to a target
phase 9 with strength C (Figure 4, eq. 5). Incorporating this
feature into the Human Dynamic Clamp, Kostrubiec et al. (2015)
demonstrated that spontaneously unstable patterns of phase
coordination (e.g., at 90◦) could be coproduced by a human
and a Virtual Partner, the latter set with a strong bias to teach
that pattern to the human. Some degree of learning was also
corroborated, and the system was nicknamed “Virtual Teacher.”
This model augmentation ventures into social contexts where
the participants’ roles are markedly different: a computationally
forged bias (representing the timescale of attracting structures)
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allows transfer of coordinative patterns between participants,
characteristic of social learning.

All the models exposed above pertain to dyadic situations.
Early on in Coordination Dynamics, the question of multiagent
models had been addressed by Schöner et al. (1990) and Jeka
et al. (1993) in the context of “quadrupedal” coordination
patterns of people’s upper and lower limbs in which the
(collective) state variables of the system constitute 3 relative
phases. But proposals to scalable n-dimensional HKB systems
remained to be achieved. Zhang et al. (2018) reasoned that useful
foundations rested with empirical data at the intermediate scale
(somewhat bigger than two to make room for groupings within
groupings, but smaller than the experimentally unattainable
infinity; and importantly, tractable for a detailed analysis of phase
coordination patterns). To constrain the model with empirical
data (and with the underlying goal of integrating across levels,
see “Introduction”), Zhang et al. (2018) set up the perceptual-
motor coupling of eight people whose movements caused taps
on a touchpad and who saw everyone’s taps as flickering patterns
on spatially situated LED arrays (Figure 3C). The subsequent
model development explored a variety of frameworks before
settling on a hybrid system of HKB and Kuramoto equations
(Zhang et al., 2019; Figure 4, eq. 6; including a coupling term
with connectivity matrix aij fully equivalent to the Kuramoto
model and another term with connectivity matrix bij resembling
the second order coupling term from HKB, see eqs. 1,2,5).
Development of the model built on useful functional symmetries
carefully crafted in the experimental setup. The combination
of extended HKB and Kuramoto fulfilled all the empirical
constraints provided by Zhang et al. (2018) across multiple
levels of description. Importantly, the Kuramoto model alone
was insufficient because it did not uphold co-expressed inphase
and antiphase patterns that are central features of HKB and
that the eight agent experiment had uncovered. With this
scalable system now made relevant by experimental data on
human multiagent coordination, an opportunity exists to relate
coordination dynamics across multiple scales, and especially
across levels of description spanning the neural, behavioral
and social [for an interesting related approach that also uses
HKB coupling, see the ‘sheep herding’ paradigm of Nalepka and
colleagues (Nalepka et al., 2017, 2019)].

CONCLUSION AND OUTLOOK

To complement many approaches that focus on a unique
level of description of social behavior and to gain insight
into the relationship between scales, we asked whether the
multitudinous processes associated with social behavior abide to
general principles. In section “Classical Experimental Findings
on Social Coordination” of this review, we presented a series
of experimental snapshots taken from two levels (brain and
behavior), all pointing to spatiotemporal metastability as a
common organizing principle. Metastability arises from weak
coupling (permissive of flexible binding) and diversity (tendency
of the parts to unbind and act independently) – the tension
between the two opens up a universe of complex coordinative

patterns besides phase-locking. Metastability is especially well
understood in its simpler forms near the border of the bifurcation
from stable phase-locking (Kelso, 1991, 2012; Zhang et al.,
2018). Furthermore, metastability probably remains in effect
throughout more complex coordination patterns, even as we
may fail to identify and quantify its more elusive forms (Tognoli
and Kelso, 2014a; see also Zhang et al., 2020 for methodological
advances using computational algebraic topology).

Recognizing that evolutionarily speaking, rhythm is a
powerful way to put people in tune with one another (whether
it be to dance, to compete, to make war, or to worship),
we have taken oscillatory dynamics as the workhorse of
our research paradigm. Yet, oscillatory behavior is all but
its terminal end game. In section “A Chronology of the
HKB Model’s Augmentations,” we laid out the state of our
progress to bring the above experimental insights of social
coordination into an evolving modeling framework: starting
from a pair of symmetrical non-linearly coupled non-linear
oscillators (Figure 4, eq. 1), crossing the crucial step of
broken symmetry that unleashes metastability (eq. 2), and
augmenting for discreteness (eq. 3), frequency adaptation (eq.
4), intentionally directed phase patterning (eq. 5), and finally
scaling for multiple interacting agents (eq. 6) as a leap into a
multiscale framework. These augmentations progressively evolve
a repertoire of coordinative behaviors with increasing realism:
elaborating on the intrinsic dynamics, coupling and within- and
across-scale composition in a self-consistent manner. They echo
numerous calls for models that reach beyond the original HKB
model (Jirsa et al., 1998; Beek et al., 2002; Newell et al., 2008; Kelso
et al., 2013; Avitabile et al., 2016; de Poel, 2016; Słowiński et al.,
2018, 2020) and lay some foundation for generative approaches
to the complexity of intrinsic and social dynamics that our
interdisciplinary group continues to pursue.

Grounded in the dynamics of sensorimotor loops that
couple perception and action between two or more individuals
(Figure 1), more profound sociocognitive concepts quickly
emerge. As posited in the introduction, an essential characteristic
of the present modeling framework is that it approaches social
behavioral dynamics from two standpoints: one for the intrinsic
dynamics of the self and one for the coupling to the partners,
their socialness. The equations governing the evolution of self-
behavior (Figure 4, left hand-side of leftmost column) are
dynamical mechanisms that intertwine self and others via the
interaction (right hand-side of same). However, for the self to
remain distinct from, yet informed by social partners, there
needs to be a separation of time scales at which self-disposition
and input from others influence individual behavior. Our model
of social memory (Figure 4, eq. 4), contains distinct time
scales and coupling for the moment-to-moment coordination
of behavior (Figure 4, eq. 4, parameters a and 2b, purple
color), and for the influence that the other(s) exert(s) more
permanently on self-dispositions (Figure 4, eq. 4, parameter
epsilon, red). If it is a key asset of biological adaptation to
modify one’s internal state (Maturana, 1970), then our work
highlights how neurobehavioral symmetries at play in social
interaction contribute to shaping human behavior (see also
Dumas et al., 2012), a well-recognized concept in sociology,
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developmental psychology and learning science (Thelen and
Smith, 1994; Mercer, 2011; Sheets-Johnstone, 2017).

From the intricacies of self and others (above) immediately
follows the question of agency (Kelso, 2000, 2016; De Jaegher
and Froese, 2009; Buhrmann and Di Paolo, 2017; Solfo et al.,
2019). In a line of the model, we demonstrated how to stabilize
initially unstable phase patterns using the equations for directed
coordination (Figure 4, eq. 5; Dumas et al., 2014; Kostrubiec
et al., 2015), which was transformed into an agentic learning
tool in human machine interaction. On the subjective side, Kelso
(2016) has theorized that a developmental phase transition to
agency occurs when infants realize the impact of their action on
the world. Kelso and Fuchs (2016) have developed a model of
this phase transition. The question of agency reaches an apex
of complexity when multiple intentionalities are conflated into
a collective outcome. In our study of the Human Dynamic
Clamp, we have shown that the model is able to tune various
aspects of its coupling strength to modify the rate at which it
converges to its “intention” and therefore gain or lose agency
to a competitive human partner whose temporal dynamics is
probably more constrained than the model’s (Kelso et al., 2009;
Dumas et al., 2014). A study of human brain (Dumas et al.,
2020) suggests that the subjective sense of agency arising within
such human-machine interactions has its root in the neural
dynamics entrained by the movements from self and other,
whose convergence occurs in the right parietal cortex. This
set of results not only highlights the key role of right parietal
areas in social coordination, but also points toward a link
between sensorimotor neuromarkers and affective dimensions
of human social cognition (see also Zhang et al., 2016), in
agreement with paleocognitive accounts of the right hemisphere
as an evolutionary neuroanatomical basis from predatory threat
avoidance to social processing (Forrester and Todd, 2018). It is
hoped that the present work may eventually speak to higher level
processes such as the mentalizing versus simulation debate in
social cognition (Gallagher, 2008; Frith and Frith, 2012; Sperduti
et al., 2014; Alcalá-López et al., 2019).

A multiscale framework sufficiently mature to encompass
sensory, cognitive and motor abilities will further allow one
to explore the effect of traits and pathologies on coordinative
competencies. We showed that the model cross-validates with
experimental studies when parametric manipulations predictably
induce phase transitions (i.e., a logic distinct from curve-fitting).
The social coordination dynamics framework may overcome the
curse (for the scientist, since functionally, it is a blessing) of
behavioral “degeneracy” [equivalence of behavioral coordinative
(dis)abilities arising under distinct individual sensorimotor
organizations] by dissecting neurobehavioral roots of social

behavior in conditions such as autism or Parkinson’s Disease (see
also Lagarde, 2013; Dodel et al., 2020 for related views). Specific
experiments across traits and conditions, guided by modeling
insights, also power neurobehavioral diagnostic tools with great
specificity (e.g., Baillin et al., 2019).

Our most recent innovation with multiple agents
complementing the prior dyadic formalism (Figure 4, eq. 6;
Zhang et al., 2019) has provided a decisive stepping-stone for the
multiscale framework that has long been envisioned. By marrying
models of coordination based on statistical mechanics (the
Kuramoto model, Kuramoto, 1984) and non-linear dynamics
(extended HKB, Kelso et al., 1990), the Zhang et al. (2019) model
from eq. 6 provides an experimentally validated framework
where coordinative structures can exist within other coordinative
structures – the ground zero for vertical integration across scales.
From a complex systems perspective, this is a much-needed
innovation because external control elements (the parameters
that scientists tune and set) can now be incorporated by layering
systems within systems, with the immediate consequence that
the loose ends previously left in the hands of scientists can be
returned to self-organizing principles and advance increasingly
autonomous architectures recapitulating social behavior across
scales. A neurocomputational model of social behavior (Dumas
et al., 2012; Tognoli et al., 2018a) is but one of them. The
development of this scalable, empirically validated framework
also allows one to examine multiscale coordinative structures
and study how they arise from simple (but no simpler)
interaction between individuals. In particular, by introducing
more “space” (degrees of freedom), this framework generalizes
the impact of metastability, a mechanism originally discovered
in dyadic interaction, to a system level: it creates spatiotemporal
metastability, allowing a large-scale system to adopt very many
different configurations in a sequential, recurrent manner. In
other words, metastable coordination dynamics endows a system
with an ability to generate complex, yet organized, spatiotemporal
patterns – the sign of a true complex system.
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