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The human brain is tuned to recognize emotional facial expressions in faces having
a natural upright orientation. The relative contributions of featural, configural, and
holistic processing to decision-making are as yet poorly understood. This study used a
diffusion decision model (DDM) of decision-making to investigate the contribution of early
face-sensitive processes to emotion recognition from physiognomic features (the eyes,
nose, and mouth) by determining how experimental conditions tapping those processes
affect early face-sensitive neuroelectric reflections (P100, N170, and P250) of processes
determining evidence accumulation at the behavioral level. We first examined the effects
of both stimulus orientation (upright vs. inverted) and stimulus type (photographs vs.
sketches) on behavior and neuroelectric components (amplitude and latency). Then,
we explored the sources of variance common to the experimental effects on event-
related potentials (ERPs) and the DDM parameters. Several results suggest that the
N170 indicates core visual processing for emotion recognition decision-making: (a)
the additive effect of stimulus inversion and impoverishment on N170 latency; and
(b) multivariate analysis suggesting that N170 neuroelectric activity must be increased
to counteract the detrimental effects of face inversion on drift rate and of stimulus
impoverishment on the stimulus encoding component of non-decision times. Overall,
our results show that emotion recognition is still possible even with degraded stimulation,
but at a neurocognitive cost, reflecting the extent to which our brain struggles to
accumulate sensory evidence of a given emotion. Accordingly, we theorize that: (a)
the P100 neural generator would provide a holistic frame of reference to the face
percept through categorical encoding; (b) the N170 neural generator would maintain the
structural cohesiveness of the subtle configural variations in facial expressions across our
experimental manipulations through coordinate encoding of the facial features; and (c)
building on the previous configural processing, the neurons generating the P250 would
be responsible for a normalization process adapting to the facial features to match the
stimulus to internal representations of emotional expressions.
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INTRODUCTION

The ability to recognize and distinguish between emotions
conveyed by facial expressions is crucial for social cognition
(Adolphs, 2002; Smith et al., 2005). The human brain is able to
detect facial micro-expressions lasting about 500 ms (Yan et al.,
2013), and even from a brief subliminal sample visual input
(Vukusic et al., 2017). Within this time window, several visual
pathways based on featural, configural, or holistic information
cooperate to process faces (Tanaka and Gordon, 2011). Featural
processing refers to the extraction of individual parts of the
face, such as the eyes, nose, and mouth. These physiognomic
features are crucial for emotion recognition (Scheller et al., 2012;
Wegrzyn et al., 2017). Configural processing considers the spatial
distances and relative positioning of local facial features, whereas
holistic processing focuses on the integration of several features
into a ‘‘Gestalt’’ or ‘‘all-in-one-piece’’ representation (Tanaka
and Gordon, 2011; Piepers and Robbins, 2012). It is unclear
how and when these different processes contribute to emotional
face perception.

Investigating event-related potentials (ERPs) in
electroencephalographic (EEG) signals is one of the most
widely used methods for examining early face processing
(Eimer and Holmes, 2002; Tanaka et al., 2006; Rossion and
Caharel, 2011). Three major face-sensitive ERP components
have been identified in the literature: the P100, N170, and P250.
Although the P100 component is not always examined in face
perception studies, it is sensitive to both bottom-up low-level
features (e.g., color or contrast) and top-down attentional
processes (Schweinberger, 2011). The P100 emerges on occipital
channels at around 100 ms after face stimulus onset and exhibits
larger responses to faces than to buildings and scrambled faces
(Herrmann et al., 2005a), suggesting face sensitivity. Different
facial expressions of emotion can be separated visually within
100 ms after stimulus onset (Liu and Ioannides, 2010). The
face-sensitive N170 component, peaking at around 170 ms after
stimulus onset, is maximal in occipital–temporal channels and
is thought to reflect configural processing (Rossion et al., 1999;
Bentin and Deouell, 2000; Eimer, 2000; Itier and Taylor, 2004).
Although initially a matter of debate (Pessoa and Adolphs,
2010), there is growing evidence that subcortical regions like the
amygdala are involved in differential responses to neutral vs.
emotional facial expressions (especially threatening expressions)
in both the P100 (Rotshtein et al., 2009; Méndez-Bértolo et al.,
2016; Müller-Bardorff et al., 2018) and N170 (Conty et al., 2012).
These results are consistent with the reciprocal modulatory
effects between the amygdala and cortical regions involved in
face processing (Luo et al., 2007; Garvert et al., 2014; Meaux and
Vuilleumier, 2016; Sato et al., 2017). During face processing, the
P250 emerges after the N170 over parietal sites between 200 and
300 ms post-stimulus and responds to emotional expression
information (Eimer and Holmes, 2007; daSilva et al., 2016).

Studies have examined the modulation of the P100, N170,
and P250 by manipulations tapping featural, configural,
and holistic characteristics in order to understand the
contribution of the corresponding processes during emotional
facial recognition. While low-level features (e.g., color or

contrast) and the configural relationship between facial
features remain unchanged, turning faces upside down
disrupts configural processing. This so-called face inversion
effect (FIE) evokes larger and delayed P100 (Itier and Taylor,
2004) and N170 components (Itier and Taylor, 2004; Honda
et al., 2007; Jacques and Rossion, 2007) than do upright faces.
This modulation caused by the FIE suggests that both the
P100 and N170 index an early stage of configural processing
of facial features (Halit et al., 2000; Itier and Taylor, 2004;
Herrmann et al., 2005b). In contrast, distorting configural
information modulates the N170, but not the P100, suggesting
that the N170 is particularly sensitive to the spatial processing of
physiognomic features (Bentin and Deouell, 2000; Eimer, 2000).

Another way to investigate early face-sensitive processes is to
degrade stimulus quality as much as possible while providing
sufficient emotional information for the perceptual system to
activate face-specific processing. Some studies have used this
strategy to investigate brain response to sketched face stimuli.
Sagiv and Bentin (2001) found that N170 latency and amplitude
for upright schematic faces are similar to photographed faces,
suggesting that ‘‘a face specific visual mechanism is triggered
whenever a stimulus contains sufficient information to generate
the concept of a face’’ (p. 942). In their experiment 1, the authors
also investigated the N170 response to sketched faces. They
found reduced amplitude and delayed latency for the N170 in
response to faces sketched with richer details compared to simple
schematic ones, supposedly due to the nature of their sketched
face stimuli requiring more analytic visual processing. Indeed,
the combination of the basic physiognomic features of sketched
faces may be sufficient to evoke the formation of a face concept.
Zhao et al. (2016) used composite faces (their experiment 3) to
demonstrate that participants performed worse with misaligned
photographed face stimuli than with correspondingly sketched
rendered faces when they were instructed to judge whether the
top halves of two sequentially presented faces were the same
while ignoring the irrelevant bottom halves. These results suggest
that, although sketched faces contain sufficient information to
evoke the concept of a face, the removal of three-dimensional
shape information from faces (brought by texture, shading, etc.)
reduces holistic face processing.

Distorting the face stimulus also affects early face-sensitive
ERPs. Burkhardt et al. (2010) showed that peak amplitude
of the P250 decreased as the amount of perceived distortion
of a compressed or expanded face increased. However, if the
participants adapt to distorted faces, the P250 becomes increased
again because the face appears more normal. In contrast,
adaptation conditions that increase the perceived distortion of
faces decreased the P250 amplitude. However, these authors
only found small and inconsistent effects of adaptation on the
N170, theorizing that ‘‘assuming that the neural generator of
the P250 component lies downstream of the generator of the
N170 component, these data imply that the neurons generating
the P250 are adapting to facial features at the configural level’’
(p. 3755). The literature provides additional evidence suggesting
that the P250 may reflect a normalization process in order
to match the visual input to canonical (upright and typical)
stored representations of faces (Marzi and Viggiano, 2007).
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The purpose of this normalization process is to compensate
for transformations in the stimulus with respect to canonical
representations by adjusting the percept (scale, orientation, etc.)
in order to match it with stored representations (Ullman, 1989).
In short, the P100, N170, and P250 appear to be relevant
neuroelectric markers in order to investigate early-stage visual
processes involved in the encoding of the emotional content of
faces. Some authors even consider that they somehow assemble
together in a ‘‘positive-negative-positive (P100-N170-P250) ERP
complex’’ (Puce et al., 2013).

Using the high temporal resolution of EEG, we were also
able to investigate the chronometric characteristics of the
neural response, which could be predictive of psychophysical
performance. A growing literature links brain imaging with
behavioral data using mathematical models of decision-making
in forced-choice tasks (Philiastides et al., 2006; Ratcliff and
McKoon, 2008). Sequential sampling models assume that
decision-making is founded on samples of a stream of
information from sensory signals. In the present study, we used
the diffusion decision model (DDM; see Ratcliff and McKoon,
2008), illustrated in Figure 1. Two parameters were of particular
interest in this study: non-decision time (t0) and drift rate
(v). Non-decision time is an additive constant in the reaction
time (RT) that includes both a perceptual (the time it takes
to encode the stimulus) and a motor component (movement
preparation and execution). Drift rate (the slope of evidence
accumulation) reflects the quality of evidence accumulation from
the sensory information provided by the stimulus. Evidence
supposedly accumulates at a constant rate despite moment-by-
moment noise of external (at stimulus level) or internal (its
cognitive representation) origin. Easier-to-process stimuli lead
to faster initial encoding (i.e., shorter non-decision time, t0) and
faster evidence accumulation (i.e., greater drift rate). The study of
Bushmakin and James (2013) showed that large inversion effects
on faces were mediated by a slower rate of perceptual evidence
accumulation. Previous EEG studies of visual recognition
using single-trial analysis have demonstrated that both early
(N170) and later (arising around 220 ms post-stimulus onset)
components correlate with decision difficulty in a face vs. car
categorization task (Philiastides et al., 2006).

Purpose of the Study
The aim of the present study was to investigate the relationships
between early face-sensitive ERP components and sensory
evidence accumulation during emotion recognition. This
perceptual categorization activity requires quick but complex
analysis of local physiognomic features and of their spatial
configuration on a face. To achieve this, several experimental
factors were manipulated to impose constraints on perceptual
systems and to elicit specific sources of variance: (i) quality was
varied while providing sufficient emotional information with the
use of sketched vs. photographed face stimuli (Stimulus Type
factor); and (ii) configural processing was emphasized using the
classical face inversion paradigm (Orientation factor). Several
methodological choices characterize this study. First, unlike
photographed face stimuli, the sketched face stimuli are stylized
and appear under quite diverse forms across the literature, which

do not always allow for strict condition matching or replication
(e.g., Benson and Perrett, 1991; Leder, 1996; Meinhardt-Injac
et al., 2013; Zhao et al., 2016). Thus, in order to compare
conditions and to avoid potential confounding effects of stylized
stimuli, the sketched face stimuli were computer-generated from
validated photographed stimuli of the Radboud Faces Database
(RaFD; Langner et al., 2010) Second, both the amplitudes and
latencies of the P100-N170-P250 ERP complex were measured
in order to be introduced into the analyses of the DDM variables.

The main goals of the study were: (1) to test whether
both upright photographed and sketched faces provide similar
behavioral performance outcomes, demonstrating that both
stimulus sets are well matched and convey sufficient information
to make an emotion recognition decision; (2) to demonstrate
that photographs elicit the FIE as reflected in behavioral
and ERP measures (P100, N170, and P250); (3) to replicate
the findings by Sagiv and Bentin (2001) that the ERP FIE
differs between sketches and photographs; (4) to verify that
upright photographed faces match our internal representations
of emotional expressions by testing that these easier-to-process
stimuli lead to faster initial encoding (i.e., shorter non-decision
time) and faster sensory evidence accumulation (i.e., greater
drift rate); and (5) to study how P100-N170-P250 complex
characteristics are related to decision processes as measured by
DDM variables when specific sources of variance are induced by
manipulating either the Orientation or Stimulus Type.

EXPERIMENT

Materials and Methods
Participants
Twenty-five healthy volunteers (six females and 19 males, mean
age = 26.4 ± 6.5 years, range = 20–40 years) were recruited
through advertisements on campus and at the Sport Sciences
faculty of Université Paris-Saclay and reported normal or
corrected-to-normal vision. Twenty subjects were right-handed
according to a translated version of the Edinburgh Handedness
Inventory (Oldfield, 1971). The present study involving human
participants was reviewed and approved by EA 4532 institutional
review board at Université Paris-Sud/Saclay. The participants
provided written informed consent to participate in this study,
including for publication of the results.

Stimulus Presentation
Two sets of facial expression stimuli were used in the experiment:
sketched facial stimuli and their photographed face counterparts
chosen from the RaFD (Langner et al., 2010). We applied a
sketch filter in OpenCV to the photographed facial stimuli to
create a set of sketched stimuli retaining the eyes, eyebrows, nose,
and mouth (physiognomic features) and excluding insignificant
features such as hair, spots, et cetera (see Figure 2). These two
subsets were validated and selected from previous behavioral
and eye-tracking experiments on emotion recognition using
reaction times and unbiased hit rate as the criteria and fixation
measures (Yang, 2018). Each stimulus set contained five facial
expressions: fearful, angry, sad, happy, and neutral. Each emotion
category included five upright and five inverted facial stimuli,
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FIGURE 1 | An illustration of several parameters of the diffusion decision
model (DDM). Perceptual decision-making supposedly relies on the
accumulation of noisy sensory evidence from an initial state (z) to a response
threshold (a). A response is made when the level of sensory evidence
exceeds the threshold of the response corresponding to a given percept. The
initial evidence value at which accumulation starts is the starting point
parameter (z), which reflects participants’ (a priori) response bias toward a
given response. If the participant is unbiased, then z = a/2. The drift rate (v) at
which the evidence accumulates in the diffusion process corresponds to the
average distance traveled vertically per time unit according to a normal
distribution. Finally, the non-decision time t0 is an additive constant in the
reaction time (RT) that includes both stimulus encoding and the motor
components (response preparation and execution).

and gender identity was randomized and counterbalanced across
the emotions. All of the images were cropped and resized to
400 × 400 pixels. The facial stimuli subtended a 10◦ × 10◦

visual angle and were presented centrally on a 17-inch computer
monitor (resolution, 1,280 × 1,024 pixels) with a 60-Hz refresh
rate. The value of the visual angle conformed to the one observed
in normal face-to-face interaction (Henderson et al., 2005). We
used E-prime 2.0 software to conduct the experiment.

Procedure
The task was forced-choice facial emotion recognition in which
the participants were required to select the emotion displayed
by a facial expression stimulus from five possible responses:
neutrality, anger, fear, happiness, and sadness. The experiment
consisted of two successive parts: (1) practice session (see
Appendix A in Supplementary Material for details); and
(2) experimental session.

The experimental session comprised two blocks (one for
sketched faces and the other for photographed faces) of 150 trials
each. The procedure was similar to the practice session, with
participants pressing the key corresponding to the displayed
emotion, except that no feedback on performance was provided.
There were 50 stimuli per block: 10 expressors (five upright

and five inverted) × five emotions, and each was repeated
randomly three times within the blocks. Each block was separated
by a pause, and the block order was counterbalanced across
all participants. Each trial began with a 600-ms fixation cross,
then a 300-ms blank screen (used as a baseline period for EEG
analysis), followed by the facial stimulus displayed against a
white background remaining on the screen until the participants
responded. Although the response time was self-paced with
no time limit, the participants were instructed to respond as
quickly and accurately as possible and to avoid blinking while the
stimulus was being displayed.

EEG Acquisition
EEG recordings were performed using the BrainAmp system
with active 32 Ag–AgCl electrodes (ActiCap; Brain Products,
Munich, Germany; map of all electrode positions: https://
www.brainprducts.com/files/public/downloads/actiCAP-64
-channel-Standard-2_1201.pdf). Electrode impedances were
below 20 k�. The FCz electrode was used as a reference and
AFz was used as a ground electrode. Vertical eye movements
such as blinks were derived from the differential signal between
Fp2 (on the EEG head cap) and Fp1, relabeled as vertical
electrooculography (VEOG), positioned on the right infraorbital
ridge, with both electrodes aligned vertically (see Sullivan, 1993).
EEG signals were measured continuously at a sampling rate
of 1,000 Hz and a 50-Hz notch filter was applied. BrainVision
Analyzer was used to process the EEG data offline. The data
were bandpass-filtered between 0.1 and 40 Hz (zero-phase
shift Butterworth filter, 24 dB/octave). Nonspecific electrical
artifacts were semi-automatically detected and then removed
with a 200-ms margin from all channels except Fp2 and VEOG
(criteria: differences between the maximal and minimal voltage
superior to 100 µV, voltage steps superior to 50 µV/ms,
and low electrical activity inferior to 0.5 µV in a 200-ms
interval). Ocular artifacts were then processed using ocular
correction with independent component analysis (ICA; Delorme
et al., 2007). Infomax restricted ICA was performed on the
whole data and channels except VEOG and Fp2. Between
one and two independent components (ICs, mean = 1.5)
were rejected (set to zero) across participants, on average.
One IC was rejected among 14 participants, two ICs among
10 participants, and three ICs for one participant. The data
were then segmented into 1,100-ms epochs, applying a baseline
correction (100 ms before stimulus onset and 1,000 ms
interval after stimulus onset). Those epochs were checked
again for nonspecific abnormalities potentially induced by
successive corrections (adding the following criterion to the
above-described criteria: absolute amplitudes above 200 µV
were rejected as artifacts). Last, they were averaged for each
condition and participant. Note that only correct response
trials were used to investigate the EEG signals concerning
behavioral performance.

Data Analysis
Behavior
Accuracy was calculated as an unbiased hit rate (Hu) for each
emotional state category to control for potential response biases
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FIGURE 2 | (A) Illustration of the image processing steps from the Radboud Faces Database (RaFD) photographed facial stimulus to sketched stimulus using the
sketch filter in OpenCV. (B) Upright and inverted photographed and sketched stimuli for a happy facial expression.

(Biehl et al., 1997; Goeleven et al., 2008; Langner et al., 2010).
Indeed, accuracy is usually estimated by the proportion of
correctly identified target face stimuli (i.e., simple hit rate) and
does not consider participant’s response biases (e.g., false alarms,
et cetera). The Hu for each emotion category was calculated on a
choice matrix with targeted and chosen expressions as rows and
columns, respectively. Then, the number of responses in each cell
were squared and divided by the product of the marginal values
of the corresponding row and column.Hu varies between 0 and 1
(1 = correctly identified target) and has to be arcsine transformed
before analysis (Wagner, 1993).

Instead of running statistical analysis on RTs per se, we
computed variables of interest resulting from a DDM analysis
of RTs, as described in ‘‘Introduction’’ section. These DDM
parameters were computed on RTs for correct and incorrect
answers using Fast-dm software (Voss et al., 2004; Voss and
Voss, 2007) after excluding RTs greater than mean + 3 SD on
an intra-individual basis for each condition separately, along
the same lines as other authors aiming to investigate the
electrophysiological correlates of decision-making with diffusion
models (e.g., Mueller et al., 2017). DDM is typically applied to
two alternative decision tasks, whereas in our case we used a five
(emotional expressions) forced-choice task. However, DDM can
be used on multiple-choice data if no decision bias criterion is
met (Voss et al., 2013). Fast-dm estimates z with zr = z/a (relative
starting point) scaled from 0 to 1, with zr = a/2 = 0.5 indicating
the absence of a decisional bias. Therefore, we let ‘‘zr’’ be a
free parameter (Voss and Voss, 2007) in order to verify that
our data complied with the no decision bias requirement in the
Stimulus Type (photographs vs. sketches)×Orientation (upright
vs. inverted) conditions. Statistical analysis of the DDM variable
zr showed that diffusion modeling could be applied to our data
since none of our four conditions of interest differed significantly
from 0.5 (see ‘‘Behavioral Data’’ section). Finally, the diffusion
model fitting of our data was excellent, with all ps > 0.95, across
the four conditions (N.B.: significant p-values are indicative of
model misfit; see Voss and Voss, 2007). Further analysis of the
quality of individual DDM fits is available in Supplementary
Material, Appendix B.

Hu, RTs, and diffusion model variables were then compared
across Stimulus Type and Orientation as within-subject factors
using repeated-measures ANOVAs. Bonferroni correction post
hoc comparisons were used to examine significant effects of
interest involving more than two means. However, unless
otherwise stated, if the Stimulus Type × Orientation interaction
was significant, we only report the impoverishment effect for
each level of the Orientation factor as well as the inversion effect
for each level of Stimulus Type. We also provide 95% confidence
intervals and Cohen’s d values as measures of effect size.

Electrophysiology
As pre-processing, we first excluded trials with RTs >3,357 ms
from the ERP analysis. This value corresponded to 3 SD
(3 × 1,119 ms) of the entire RT dataset, i.e., approximately
mean RT (1,171 ms) + 1.6 SD, leading to the exclusion of 5.3%
of the correctly answered trials. With the incorrectly answered
trials also excluded from the ERP analysis, this yielded an
average of 63 out of 75 trials per condition (range = 53–67)
across 25 participants. The epochs were averaged separately for
each Stimulus Type (photographs and sketches) and Orientation
(upright and inverted). Three clear visual ERP components
were identified and analyzed: the P100, N170, and P250. Peak
latencies of the P100, N170, and P250 were extracted at their
maximum absolute amplitudes within different time windows:
100–180 ms for the P100, 163–240 ms for the N170, and
217–280 ms for the P250. The peak amplitudes of P100, N170,
and P250 were quantified as the maximum absolute voltage
amplitude whether in terms of positive values at the P100 and
P250 or negative values at the N170 time window. Different
pairs of electrodes were analyzed depending on the ERP of
interest: the P100 at occipital electrodes (O1 and O2), the
N170 at occipito-temporal electrodes (P7 and P8), and the
P250 at parietal electrodes (P3 and P4). These electrode sites
have been used previously in the face perception literature
for the P100 (Herrmann et al., 2005a,b), the N170 (Itier
et al., 2006; Eimer, 2011; Rossion and Caharel, 2011), and
the P250 (Feng et al., 2009). Along the lines of Sagiv and
Bentin (2001), who used experimental manipulations similar to
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ours, we examined the N170 only at P7/P8 channels. The peak
amplitude and latency of the P100, N170, and P250 were analyzed
separately using repeated-measures ANOVAs with Stimulus
Type (photographs and sketches), Orientation (upright and
inverted), and Hemisphere (left and right) as the within-subject
factors. Bonferroni-corrected post hoc pairwise comparisons
were followed up for significant effects involving more than
two means and Cohen’s d estimated the effect sizes. The data
were analyzed using Brain Analyzer (Brain Products, Munich,
Germany) and JASP software (version 0.11.1). We set the
reference significance threshold at 0.05 for both the behavioral
and EEG data analyses.

Multivariate Analyses
Of the different more or less sophisticated methods employed to
link EEG with behavioral data in decision-making (O’Connell
et al., 2012; Kelly and O’Connell, 2013; Bridwell et al., 2018),
we chose to adopt a multivariate approach to investigate the
common sources of variance shared by those variables (e.g.,
Schubert et al., 2015). We first computed the inversion effect
(mean values for the inverted faces minus mean values for the
upright faces) and the Stimulus Type effect (mean values for the
sketch faces minus mean values for the photo faces) for each
participant and each variable of interest. Then, we conducted a
correlation analysis followed by a principal component analysis
(PCA) if the Kaiser–Meyer–Olkin (KMO) measure of sampling
adequacy was greater than 0.50 and Bartlett’s test for sphericity
was significant. Correlation matrices were computed using both
Pearson’s r coefficient and Spearman’s ρ coefficient (the r value
of the rank-transformed data). Reporting Spearman’s correlation
coefficients has two advantages, namely: ρ is less affected by
outliers and it does not make the assumption (contrary to
the Pearson’s r) that intervals on the different variable scales
measure the same psychological/neurocognitive unit (see Howitt
and Cramer, 2017, p. 102). Indeed, we cannot assume that
a change in one unit of drift rate (v scale) is equivalent
to a change in one unit of an ERP variable. For the sake
of simplicity, the correlation matrices (together with bilateral
significance) are provided in the Supplementary Material,
so here, we will focus on the PCA results when the above-
mentioned criteria were met. PCAs were performed on the
Pearson’s r correlation matrix, followed by a varimax rotation.
Each PCA included five variables of interest: v, t0, P100, N170,
and P250. The observations were the mean values of each of
the 25 participants for the inversion effect in each stimulus
type condition (resulting in 50 values per variable of interest)
and for the impoverishment effect in each stimulus orientation
condition (idem). Due to the small number of observations,
we ran separate PCAs to examine the link between ERPs
and DDM variables, depending on the effect under study and
whether it concerned ERPs peak amplitude or peak latency.
Along the lines of Jolliffe (2002), we retained factorial solutions
that accounted for at least 70% of cumulative variance, with
an eigenvalue cut-off at 0.80 rather than 1 (Jolliffe, 2002,
pp. 113–115). Loadings greater than 0.50 (i.e., when a factor
accounts for more than 25% of the variable variance) will
be highlighted.

Results
Behavioral Data
Although the Hu values were arcsine transformed before
running the ANOVA as required (Wagner, 1993), we provide
untransformed mean values in the text and figures for the sake
of readability (because when Hu > 0.85, arcsine-transformed
values will exceed 1). The ANOVA revealed significantly greater
accuracy (Hu) for the photographed facial stimuli than for
the sketched faces (F(1,24) = 75.24, p < 0.001, η2p = 0.76). Hu
deteriorated with stimulus inversion (F(1,24) = 80.85, p < 0.001,
η2p = 0.77). Stimulus Type × Orientation interaction was
significant (F(1,24) = 28.82, p< 0.001, η2p = 0.55). Post hoc analysis
indicated that the accuracy for upright faces did not differ
significantly (p = 1). The stimulus inversion effect was found
for both the photographed (p < 0.001, Cohen’s d = 0.88) and
sketched faces (p< 0.001, d = 2.09), although the inversion effect
affected more sketched faces (Meffect = 0.28) than photographs
(Meffect = 0.10; see Figure 3A).

The ANOVA showed significantly greater RTs in response to
the inverted facial stimuli than for upright faces (F(1,24) = 67.22,
p < 0.001, η2p = 0.74). However, the mean RTs did not differ
between the photographed and sketched stimuli (F(1,24) < 1,
n.s.), nor did the Stimulus Type × Orientation interaction reach
significance (F(1,24) = 3.00, p> 0.09, η2p = 0.11; see Figure 3B).

As a prerequisite for DDM analysis, we examined the zr
(relative starting point) parameter in order to verify that our data
complied with the no decision bias requirement corresponding to
zr = a/2 = 0.5 (see ‘‘Behavior’’ section) in each cell of the Stimulus
Type (photographs vs. sketches) × Orientation (upright vs.
inverted) conditions. The ANOVA on zr showed no significant
main effect or any interaction for the two factors (all ps > 0.05).
Moreover, Bonferroni-corrected post hoc tests (ps > 0.05/4)
showed that diffusion modeling could be applied to our data
since none of our four conditions of interest significantly differed
from 0.5 (see Figure 3C).

The ANOVA on drift (v) showed better performance for
the photographed than for the sketched faces (F(1,24) = 24.97,
p < 0.001, η2p = 0.51) and for the upright than for the
inverted stimuli (F(1,24) = 50.71, p < 0.001, η2p = 0.68). In
addition, there was a significant Stimulus Type × Orientation
interaction (F(1,24) = 9.29, p = 0.006, η2p = 0.28). Post hoc
analysis indicated a decrease in v with the inversion effect for
both photographed (p = 0.02, d = 0.61) and sketched faces
(p< 0.001, d = 1.45), together with a greater decrease for inverted
sketched as compared to inverted photographed faces (p< 0.001,
d = 1.10). Interestingly, this interaction is very consistent with the
interaction pattern on Hu (see Figures 3A,D).

The ANOVA on the threshold separation showed that more
information is processed for photo faces compared to sketched
faces (F(1,24) = 5.28, p = 0.03, η2p = 0.18) and for upright
faces with respect to inverted faces (F(1,24) = 7.21, p = 0.01,
η2p = 0.23). A significant Stimulus Type×Orientation interaction
was observed (F(1,24) = 4.42, p < 0.05, η2p = 0.16). Subsequent
post hoc analysis revealed that a significantly smaller amount of
information was processed for inverted sketches compared to
each other condition (all ps< 0.02; see Figure 3E).
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FIGURE 3 | Stimulus Type × Orientation interaction on unbiased response accuracy Hu (A), mean correct answer reaction times (RTs; B), as well as on the diffusion
decision model (DDM) variables such as relative starting point (zr) with non-decision bias at 0.5 (C), drift (v) (D), threshold separation (a; E), and the non-decision time
(t0, in seconds; F). Stars indicate Bonferroni-corrected p < 0.05. Error bars indicate the standard error of the mean.

The ANOVA on non-decision time (t0) indicated that
t0 did not significantly differ between photos and sketches
(F(1,24) = 2.67, p = 0.12, η2p = 0.1). However, non-decision times
were significantly longer for inverted faces than for upright
faces (F(1,24) = 5.26, p = 0.03, η2p = 0.18). Furthermore, there
was a significant Stimulus Type × Orientation interaction
(F(1,24) = 16.60, p < 0.001, η2p = 0.41). Post hoc analysis revealed
that t0 was significantly greater (by about 120 ms) for inverted
sketched faces compared to upright sketched faces (p < 0.001)
and to inverted photo faces (p = 0.007) and more marginally
compared to upright photos (p = 0.057; see Figure 3F).

ERP Results
P100 Component
As illustrated in Figures 4A,B, the amplitudes of P100 were
larger for the photographed face stimuli (in gray) than for
the sketched face stimuli (in black) over occipital channels.
The ANOVA showed greater P100 amplitude in response
to the photographed faces compared to the sketched faces
(F(1,24) = 73.81, p < 0.001, η2p = 0.76) and in response to the
inverted stimuli compared to the upright stimuli (F(1,24) = 11.05,
p = 0.003, η2p = 0.32; see Figure 5B). There was a non-significant
Stimulus Type×Orientation interaction (F(1,24) = 2.35, p = 0.14,
η2p = 0.09), with a parallelism pattern suggestive of an additive
effect of Stimulus Type and Orientation on the P100 amplitude
(see Figure 5A). It is interesting to note that the size of the
impoverishment effect (95% CI = 3.84–6.26 µV, d = 1.72)

was much greater (in terms of mean effect) and robust (as
measured by Cohen’s d) than the moderate inversion effect (95%
CI = 0.46–1.96 µV, d = 0.66). Finally, there was no effect of
Hemisphere on the P100 amplitude, nor any other significant
interaction between factors (all p> 0.21).

The ANOVA on P100 peak latency showed no main effects
(all ps > 0.45), nor any significant interaction between the
experimental factors (all ps> 0.065; see Figure 5B).

N170 Component
Visual examination of the grand average ERP waveforms
indicates larger N170 components for the sketched faces in
the upright condition (see Figure 4C) over occipito-temporal
electrodes. The ANOVA showed greater N170 amplitude
in response to inverted faces than for the upright stimuli
(F(1,24) = 9.08, p < 0.01, η2p = 0.27). The only other significant
effect was the Stimulus Type × Orientation interaction
(F(1,24) = 67.73, p < 0.001, η2p = 0.74; see Figure 5C). Post hoc
analyses of the sketched stimuli revealed greater amplitude for
the upright stimuli compared to the inverted stimuli (p = 0.019).
In contrast, for the photographed stimuli, the amplitude was
greater for the inverted than for the upright stimuli (p < 0.001;
see Figure 5D). The effect size of the absolute inversion effect
for the sketched faces (95% CI = 0.15–2.49 µV, d = 0.62)
was moderate compared to the photographed faces (95%
CI = 2.09–4.42 µV, d = 1.53), for which the inversion effect was
greater and more robust. Finally, post hoc comparisons showed
smaller negativity for the upright photographed faces compared
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FIGURE 4 | Grand average event-related potential (ERP) waveforms elicited by photographed and sketched faces in the upright (left column) and inverted (right
column) orientations at the left and right occipital electrodes (O1 and O2, respectively) for the P100 component (A,B), the left and right occipito-temporal electrode
sites (P7 and P8) for the N170 component (C,D), and the left and right parietal electrode sites (P3 and P4) and the left and right at parietal electrodes (P3 and P4) for
P250 component (E,F).

to the upright sketched and inverted photographed faces
(all ps< 0.04).

The ANOVA showed greater N170 peak latency for the
sketches than for the photographs (F(1,24) = 19.32, p < 0.001,
η2p = 0.45) and for the inverted stimuli than for the upright
stimuli (F(1,24) = 42.85, p< 0.001, η2p = 0.65). The non-significant
Stimulus Type × Orientation interaction (F(1,24) < 1, n.s.)
suggests an additive effect of Stimulus Type (8 ms increase for the
sketched faces) and Orientation (7 ms increase for the inverted
facial stimuli) on the N170 peak latency (see Figure 5D). The
effect sizes of the inversion effect (95% CI = 5–10 ms, d = 1.31)
and of the Stimulus Type effect (95%CI = 5–12ms, d = 0.89) were
of comparable magnitude. Finally, there was no main effect of
Hemisphere, nor did Hemisphere interact with the other factors
(all ps> 0.09).

P250 Component
As illustrated in Figures 5E,F, the P250 waveforms were greater
over the parieto-occipital region for the photographed face
stimuli than for the sketched face stimuli in both the upright
and inverted conditions. Likewise, the ANOVA showed only
significantly greater P250 amplitude in response to the photos
compared to the sketched faces (F(1,24) = 79.63, p < 0.001,
η2p = 0.77). No other main effect or interaction was observed
(all ps> 0.11).

The ANOVA on the P250 peak latency showed a significant
increase for the inverted faces compared to the upright faces
(F(1,24) = 6.4, p = 0.02, η2p = 0.21). There was no other significant

main effect (all ps > 0.65). However, the effect of Orientation
varied significantly with Stimulus Type (F(1,24) = 4.51, p = 0.04,
η2p = 0.16), providing additional information. Post hoc analyses
showed a significant inversion effect for the photos (p = 0.01,
d = 0.66), but not for the sketched faces (p = 1). The only other
significant effect was an interaction between Hemisphere and
Stimulus Type (F(1,24) = 5.85, p = 0.02, η2p = 0.20). However,
post hoc analysis revealed no significant pairwise comparisons
(all ps> 0.74).

Multivariate Analyses Results
A first analysis was conducted on the inversion effect with
the DDM and ERP amplitude variables on the data for the
photographed (n = 25) and sketched (n = 25) stimuli together.
The characteristics of the Pearson’s r matrix (KMO = 0.52,
Bartlett’s test p = 0.02) were used to conduct a PCA, summarized
in Table 1, after varimax rotation. Factor 1 accounted mainly
for the inversion effect on t0 and N170 amplitude, sharing
respectively 76% (t0) and 50% (N170) of their variance with
factor 1. The positive correlation between both variables
(Pearson’s r = 0.33, p = 0.018; Spearman’s ρ = 0.37, p = 0.009)
reflects the fact that the FIE on t0 decreases with increasing
N170 deflection in response to FIE (see Supplementary Figure
S4). In contrast, the additional variance explained by factor
2 accounted mainly for the inversion effect on the P100 and
P250. In addition, the inversion effect on the P100 amplitude
was shared between factors 2 and 3, the latter reflecting a
common source of variance of the inversion effect with v. This
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FIGURE 5 | Mean event-related potential (ERP) peak latency and amplitude for the Stimulus Type × Orientation interaction for the P100 (A,B), N170 (C,D), and
P250 (E,F). Error bars indicate standard error of the mean. Stars indicate Bonferroni-corrected p < 0.05.

is consistent with the positive (although marginal) correlation
(see Supplementary Table S2) between both variables, whereby
the greater the face inversion on the P100 amplitude the less the
evidence accumulation (v) will be impaired (see Supplementary
Figure S5).

The following analysis was conducted on the inversion
effect on both the DDM and ERP latency variables. The
characteristics of the correlationmatrices (KMO= 0.48, Bartlett’s
test p = 0.43) precluded further investigation using PCA. Apart
from a significant negative correlation between the inversion
effects on v and t0 (Spearman’s ρ =−0.287, p = 0.044; illustrated
in Supplementary Figure S6), there was a significant positive
correlation between the inversion effects on the N170 and
P250 latencies (Pearson’s r = 0.298, p = 0.036; Spearman’s
ρ = 0.290, p = 0.041; see Supplementary Table S3). The
former effect reflects the fact that the more the inversion effect
degrades drift (the ‘‘v for inverted faces’’ minus ‘‘v for upright
faces’’ difference becomes more negative), the more it will
increase t0 (the ‘‘t0 for inverted faces’’ minus ‘‘t0 for upright
faces’’ difference becomes more positive). Similarly, the positive
correlation between the inversion effects on ERPs suggests
that the greater the inversion effect on the N170 latency, the
greater the inversion effect on the P250 latency. According to
Vovk–Sellke maximum p ratio (VS-MPR; see Sellke et al., 2001),
the odds in favor of these correlations over H0 were greater
than 2.68.

Another analysis was conducted on the impoverishment effect
on the DDM and ERP amplitude variables on the data for the
upright (n = 25) and inverted (n = 25) stimuli together. The
characteristics of Pearson’s r matrix (KMO = 0.53, Bartlett’s
test p = 0.04) were used to conduct a PCA, summarized in
Table 2. Factor 1 accounted mainly for the Stimulus Type
effect on P100 and P250, sharing 69% (P100) and 64% (P250),
respectively, with factor 1. Factor 2 reflected a common source
of variance for the Stimulus Type effect on v and on the
N170 amplitude. This is consistent with the negative correlation
(about −0.27, VS-MPR > 2.19; see Supplementary Table S4)
between both variables, whereby stimulus impoverishment tends
to increase the N170 negative deflection and degrade evidence
accumulation. Finally, factor 3 reflected the Stimulus Type
effect on t0 amplitude including a slightly shared variance
with v.

The next analysis was conducted on the impoverishment effect
on the DDM and ERP latency variables. The characteristics of
the Pearson’s r matrix (KMO = 0.51, Bartlett’s test p = 0.003)
were used to conduct a PCA, summarized in Table 3. Factor
1 accounted mainly for the Stimulus Type effect on the N170 and
P250 latencies. In addition, the effect of Stimulus Type on the
DDM variables fell under factor 2, with which none of the ERP
latencies shared noticeable variance. Moreover, the effect on the
P100 latency was explained by a separate source of variance
(factor 3).
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TABLE 1 | Principal component analysis (PCA) solution on the inversion effects
after a varimax rotation.

Factor number Communalities

1 2 3 h2

v −0.24 −0.01 0.85 0.77
t0 0.87 −0.21 0.02 0.80
P100 peak amplitude 0.16 0.61 0.59 0.75
N170 peak amplitude 0.71 0.19 −0.30 0.63
P250 peak amplitude −0.10 0.92 −0.03 0.85

Factor 1 reflected the fact that the FIE on t0 decreased with increasing N170 deflection in
response to FIE (see also Supplementary Figure S4). Factor2 accounted mainly for
the inversion effect on the P100 and P250. In addition, the FIE on the P100 amplitude
was shared between factors 2 and 3. Factor 3 reflected the fact that the greater the FIE
on the P100 amplitude the less the evidence accumulation (v) was impaired (see also
Supplementary Table S2).

TABLE 2 | PCA solution on the impoverishment effects after a varimax rotation.

Factor number Communalities

1 2 3 h2

v 0.07 −0.60 −0.47 0.58
t0 0.05 0.06 0.94 0.89
P100 peak amplitude 0.83 −0.28 −0.06 0.78
N170 peak amplitude 0.04 0.87 −0.01 0.76
P250 peak amplitude 0.80 0.31 0.10 0.75

Factor 1 accounted mainly for the Stimulus Type effect on both P100 and P250 peak
amplitude. Factor 2 reflected the fact that stimulus impoverishment tends to increase
the N170 deflection and to degrade evidence accumulation (see also Supplementary
Table S4). Finally, factor 3 reflected mainly the Stimulus Type effect on t0.

TABLE 3 | PCA solution on the impoverishment effects after a varimax rotation.

Factor number Communalities

1 2 3 h2

v −0.01 0.74 0.29 0.63
t0 −0.11 −0.83 0.15 0.73
P100 peak latency 0.05 0.06 0.96 0.93
N170 peak latency 0.90 −0.08 −0.01 0.82
P250 peak latency 0.86 0.21 0.08 0.80

Factor 1 accounted mainly for the Stimulus Type effect on the N170 and P250 latencies.
In addition, the effect of Stimulus Type on the diffusion decision model (DDM) variables
fell under factor 2, with which none of the event-related potential (ERP) latencies shared
noticeable variance. Finally, factor 3 accounted for the impoversihment effect on the P100
latency in a separate source of variance.

DISCUSSION

We studied how neural responses (particularly the P100,
N170, and P250 neurocognitive markers) and decision-making
parameters (from DDM) varied when local and configural
information of the faces was manipulated by means of
the stimulus type (photographs vs. sketches) and orientation
(upright vs. inverted) during an emotion recognition task.
Despite the established importance of physiognomic features
in the processing of upright and inverted faces, the essential
relationship between the neural correlates of early visual
processing and behavioral performance during emotional face
recognition remains relatively unexplored. Therefore, we used a
multivariate approach (correlation analyses possibly followed by
PCA) to further explore the common sources of variance between
the experimental effects on ERPs and the DDM parameters.

Upright photographs induced close-to-optimal performance,
as reflected by a high level of accuracy (Hu) and fast drift rate
(v) with short non-decision time (t0), together with shorter
N170 latency and decreased N170 amplitude, compared to the
other conditions. Modifying stimulus quality by a change in
orientation (FIE) or with sketched faces (impoverishment effect)
had different neurocognitive consequences. Face inversion
undoubtedly degraded the performance at the behavioral level,
although emotion recognition remained well above the chance
level. Moreover, the impact of the FIE on performance
was even greater for impoverished stimuli (sketched faces).
More precisely, not only was the drift rate degraded but
non-decision times also increased in parallel, as documented
by the effect of our experimental manipulations, both in
terms of mean values and multivariate analysis. Assuming
that the motor component of t0 (i.e., response preparation
and motor response) was constant across conditions, we
may reasonably interpret that the detrimental effect on t0 of
combining stimulus inversion and impoverishment reflects an
increase in the stimulus encoding component of t0 in RTs.
Interestingly, our experimental manipulations, which aimed to
challenge configural processing of emotional faces, had different
consequences on the ERP and DDM parameters, suggesting
distinct functional roles for each component of the P100-N170-
P250 complex.

Face processing literature suggests that the P100 reflects
an initial holistic gist of a face (Tanaka and Xu, 2018),
supposedly providing a rough initial frame of reference
(i.e., eyes-above-nose-above-mouth) to interpret the stimulus.
It facilitates the identification of the physiognomic features
that are processed subsequently at the configural level (as
indexed by the N170). The much greater P100 amplitude
in response to photographed faces (as compared to sketched
faces) reflects the default adaptive tuning of its underlying
neural generator to close-to-natural stimuli. Accordingly,
the increased P100 amplitude due to face inversion may
reflect a bottom-up attentional effect triggered by subcortical
regions such as the pulvinar (Ward et al., 2007; Nguyen
et al., 2013) in response to a natural face in an atypical
orientation. The fact that the FIE on drift rate (v) and
on the P100 amplitude share common variance (the greater
the P100 amplitude, the less evidence accumulation will be
impaired; see Supplementary Figure S5) suggests that the
P100 neural generator provides a crucial support to the decision-
making process in order to overcome the challenge posed
by face inversion. This support may correspond to a holistic
frame of reference specifying the natural eyes-above-nose-above-
mouth face structure, whereas configural processing analyses
in greater detail the relational and distance metrics between
the physiognomic features. This distinction would correspond
to the difference between the categorical (first-order relations)
and coordinate (second-order relations) encoding of spatial
relations in visual cognition (Kosslyn et al., 1992; Maurer et al.,
2002), respectively.

N170 is a neuroelectric component indexing facial structure
encoding at the crossroads of our experimental manipulations
tapping configural processing of facial expressions. Indeed,
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the mean additive effects of stimulus inversion and stimulus
impoverishment on the N170 latency, together with the
fact that each condition except upright faces increased the
N170 amplitude, are key findings along those lines. Furthermore,
the FIE on non-decision times decreased with FIE increasing
N170 amplitude (see Supplementary Figure S4). Assuming
that the variation in non-decision times reflects the variation
in stimulus encoding times, this suggests that the activity
of the neural generator of the N170 must be increased in
order to counteract the FIE. This is consistent with Sagiv
and Bentin (2001), suggesting difficulty in encoding face
structural content during emotion recognition. Since upright
and inverted emotional photographed faces essentially share
the same physical signals, the inversion effect is more likely
to reflect a modulation of both the holistic (Itier and Taylor,
2002; Herrmann et al., 2005a; Joyce and Rossion, 2005) and
configural processes (Piepers and Robbins, 2012), as indexed
by the P100 and N170, respectively. Here, we theorize that
the purpose of the underlying neural activity would be to
maintain the structural cohesiveness of the facial expression
(N170 neural generator), building on the initial holistic frame
of reference of the face (P100 neural generator). Conjointly, this
structural binding process may contribute to extract information
on the subtle configural changes associated with different
facial emotions. However, if key elements are missing, such
as the head contour in our sketch stimuli, encoding the face
within a holistic frame of reference will be hampered, thereby
dramatically increasing t0 and reducing the rate of accumulation
of evidence. Indeed, external features such as the hair and
chin are represented holistically (Andrews et al., 2010) and
thereby facilitate the localization of internal features such as
the eyes and mouth. Furthermore, face inversion disrupts the
categorical relations of the facial features (e.g., the mouth
situated above eyes) within a viewer-centered frame of reference,
while the coordinate relations remain unchanged (Niebauer,
2001). Consequently, as coordinate encoding relies on categorical
information, fine-grained configural processing would equally be
impaired (Maurer et al., 2002).

In order to decide which emotional expression is displayed
despite our experimental manipulations, a normalization process
is needed to match the visual input to typical upright
representations of faces stored in long-term memory. Several
findings are consistent with the hypothesis that the neurons
generating the P250 adapt to the facial features processed
at the configural level by the neural generator of the N170
(Burkhardt et al., 2010). On the one hand, FIE on the N170 and
P250 latencies shared common variance (about 9%) that was
even much greater (>25%) regarding the effect of stimulus
impoverishment on these ERP latencies. Assuming that mental
representations of facial expressions are stored in close-to-
natural format, these results suggest that the matching process
indexed by the P250 was much more challenging when applied
to stimuli such as sketches (atypical faces) than when applying
the normalization process to inverted stimuli (to match them
to our upright mental representations of typical faces). On
the other hand, FIE on the P250 dramatically increased the
mean peak latency in response to photographed faces, whereas

FIE had no effect on the P250 latency to sketched faces that
remained at an intermediate level. The latter result suggests
a more feature-based matching process for sketched faces.
Furthermore, our data provide evidence of a shared variance
between the P100 and P250 amplitudes regarding face inversion
and stimulus impoverishment effects, which may suggest that the
holistic frame of reference supported by the neural generator of
the P100 contributes to the normalization process indexed by
the P250.

Regarding the effect of stimulus impoverishment, the
different behavioral parameters (whether from Hu or the DDM
analysis of RT) showed no performance difference between
upright face stimuli. This suggests that the physiognomic features
of our sketched faces supplied sufficient expressive information
for emotion recognition and that additional visual information
provided by photographed faces (e.g., hair, face contour,
wrinkles, etc.) may be less crucial for the task. However, this
equivalent level of performance came at a neurocognitive cost.
For example, neuroelectric correlates showed delayed latency
and increased N170 amplitude for the upright sketched faces
in comparison to the upright photographed faces, suggesting
an increased difficulty in decoding the structural aspect of
configural information from sketched faces. A recent behavioral
study showed that participants do not perform as well for
photographed faces compared to sketched faces in a face
identification task when the top and bottom halves of a face
were not aligned (i.e., a gap between them, known as the
composite effect; Zhao et al., 2016). These results support the
importance of configural processing of the structural integrity
of the face as in upright photographed faces. This integrity is
disrupted in sketched faces, leading to enhanced processing of
featural information (i.e., eyes, nose, and mouth), which can be
advantageous when the presentation is distorted, for example by
misaligning facial parts. In the present study, this processing of
physiognomic features for sketched faces was realized through
the prism of configural processing, as indexed by the additive
effect of our experimental manipulations on the N170 latency
as well as by the increased encoding subcomponent of the
non-decision times for inverted sketches. When compared to the
results for upright faces, our upright sketch data seem consistent
with the fact that the rate of sensory evidence accumulation is
positively associated with the efficacy of information processing,
which depends on the strength of the sensory information
(Ratcliff, 1978). Similarly, in a face vs. car categorization task
using single-trial EEG analysis of stimuli varying in visual noise,
Philiastides et al. (2006) showed that the drift rate is greater for
face images containing more sensory information than for the
degraded face stimuli.

One interpretation of these findings is that the poorer the
bottom-up feed-forward stimulus information is, the more the
brain needs to exert top-down recurrent feedback in order
to interpret the sensory input. Depending on the stimulus
quality (whether in terms of details or orientation difference
with respect to the canonical upright orientation), the brain
would engage different face representations (either stored face
templates or rule-based information) of given emotions that
compete for the final decision (Palmeri and Cottrell, 2010;
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Palmeri et al., 2015). Both featural and holistic processing would
run in parallel in response to the visual input. The P100 would
reflect initial bottom-up holistic processing to activate relevant
representations in order to understand the stimulus content
(either a photographed or sketched face). In our experiment,
prototypes of facial expressions close to the depicted facial
expressions (e.g., anger and disgust) would be instantiated.
However, when the stimulus quality is rich and sufficiently
close to the representation characteristics (e.g., upright close-
to-natural faces), sensory evidence quickly accumulates in favor
of a given emotion. In contrast, if the stimulus is degraded
(e.g., sketched faces with no head contour), additional recurrent
processing is required to support the configural processing of
the emotional content (conveyed by physiognomic features)
of the face (via the N170 neural generator) and match
the stimulus to stored representations (via the P250 neural
generator). If necessary, rule-based processing of face content
(e.g., in order to check emotional compatibility between the
upper and lower face content) would assist the processing
of the physiognomic content and facilitate decision-making.
This additional processing is supposedly subsequent to the
activity underlying the P100-N170-P250 complex. Certainly, the
latter ERP complex is but a small piece of the big picture.
Although it corresponds to just 25% of the neurocognitive
processing time ending with the observable response from
overt behavior, its contribution to the decision-making process
is crucial, as supported by our findings. Still, in view of
the remaining 75% of neurocognitive processing time that
remains to be explored, the amount of variance in the
decision-making process explained by this ERP complex is
certainly appreciable.

The present study suffers from several limitations. First, our
DDM analysis assumed that our experimental effects of interest
(FIE and stimulus impoverishment) would not vary with the
emotion displayed in the face stimuli. This was not completely
the case, as detailed in Supplementary Material, Appendix D.
However, although the response times and accuracy varied
with the different facial expressions, the proportion of variance
for the Stimulus Type × Orientation interaction was two to
three times greater than for the higher-order interaction after
including the Emotion factor. The fact remains that our trial
number per facial emotion per participant and per condition
was not high enough to properly study the relation between
ERPs and the DDM variables for each emotion separately.
Another related shortcoming is our participant sample size that
limited our multivariate analysis. The PCA factorial solutions,
retained on the basis of standard criteria (in terms of accounted
cumulative variance and eigenvalue cutoff; see Jolliffe, 2002),
indicated a link between several ERPs (P100 and N170) and two
DDM variables (t0 and v). However, the underlying correlations
mainly supported a link between N170 and the DDM variables.
Nevertheless, a much larger sample size would be necessary to
achieve stable estimates for the correlations that we evidenced
(Schönbrodt and Perugini, 2013). Despite this, we were able
to provide consistent and complementary findings across our
different statistical approaches, which only future replication will
be able to confirm or refute.

The aim of our study was to understand better the
contribution of the P100-N170-P250 complex to decision-
making when recognizing the emotional content of facial
expressions. This ERP complex supposedly indexes early-
stage visual processes involved in the encoding of the
emotional content of faces. The mean duration of the
non-decision times corresponding to our upright stimuli (about
525 ms) leading to the greatest recognition accuracy clearly
supported this hypothesis. We may reasonably consider that
the motor component of non-decision times did not vary
across conditions and was constant at about 300 ms (minimum
intercept value of choice RTs as a function set size (see
Teichner and Krebs, 1974; Luce, 1991). Accordingly, the
duration of the P100-N170-P250 complex fits well within
the duration of the stimulus encoding component of the
non-decision times. The fact that our experimental effects on
the N170, non-decision time, and drift rate shared common
variance points to the crucial role of this ERP complex for
emotion recognition decision-making. In short, our study is
original because it investigated the effect of experimental
manipulations challenging these processes within the framework
of DDM. Twenty years after the publication of the seminal
article by Perrett et al. (1998) demonstrating that the rate
of accumulation of neuronal activity increases with the
departure of the faces from the canonical upright orientation,
‘‘accumulation of evidence’’ appears to be a relevant concept to
understand the functional links between neuroelectric activity
and decision-making.

CONCLUSION AND PERSPECTIVES

To our knowledge, our findings are the first to suggest
that physiognomic features provided by sketched faces may
convey sufficient information for emotion recognition, but at
the expense of a neurocognitive adaptation during which the
brain struggles to accumulate sensory evidence in favor of a
given emotion. Although this conclusion holds because our
stimuli were selected to be as unambiguous as possible, even
upright photographed faces of so-called basic emotions (Ekman
and Friesen, 1976) can be ambiguous [e.g., disgust may be
confused with anger, fear with surprise; see Susskind et al.
(2007)]. Therefore, the context in which the facial expression
is incorporated (such as body posture; see Aviezer et al.,
2008) proves crucial for interpreting the physiognomic features.
Interestingly, the ERP components later than the ones we
examined are sensitive to the compatibility between the facial
expression and a situational context, such as the late positive
potential (LPP; see Dozolme et al., 2018 for the effect of
sentences preceding the faces) and the N400 (see Calbi et al.,
2017 for the effect of body posture on the facial emotion).
The role of these components in emotion recognition decision-
making should be investigated further in order to test and
extend the model we have proposed. This opens exciting
avenues for future research investigating the neurofunctional
reorganization of both early and late processes in populations
suffering from a social cognition deficit, such as schizophrenia
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or autism, known for their atypical face processing (see
Watson, 2013).
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