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Recent statistics have shown that the main difficulty in detecting alcoholism is the

unreliability of the information presented by patients with alcoholism; this factor

confusing the early diagnosis and it can reduce the effectiveness of treatment. However,

electroencephalogram (EEG) exams can provide more reliable data for analysis of

this behavior. This paper proposes a new approach for the automatic diagnosis

of patients with alcoholism and introduces an analysis of the EEG signals from a

two-dimensional perspective according to changes in the neural activity, highlighting

the influence of high and low-frequency signals. This approach uses a two-dimensional

feature extraction method, as well as the application of recent Computer Vision (CV)

techniques, such as Transfer Learning with Convolutional Neural Networks (CNN).

The methodology to evaluate our proposal used 21 combinations of the traditional

classification methods and 84 combinations of recent CNN architectures used as

feature extractors combined with the following classical classifiers: Gaussian Naive

Bayes, K-Nearest Neighbor (k-NN), Multilayer Perceptron (MLP), Random Forest (RF)

and Support Vector Machine (SVM). CNN MobileNet combined with SVM achieved the

best results in Accuracy (95.33%), Precision (95.68%), F1-Score (95.24%), and Recall

(95.00%). This combination outperformed the traditional methods by up to 8%. Thus, this

approach is applicable as a classification stage for computer-aided diagnoses, useful for

the triage of patients, and clinical support for the early diagnosis of this disease.

Keywords: electroencephalogram, alcoholism, convolutional neural network, computer vision, transfer learning

1. INTRODUCTION

In 2016, there were around 3 million deaths worldwide due to alcohol abuse, 5.3% of all deaths
recorded that year. The number of deaths from alcohol is greater than from some other serious
diseases like tuberculosis, Acquired Immunodeficiency Syndrome (AIDS) and diabetes (World
Health Organization, 2019). Still in 2016, alcohol caused 132.6 million disability-adjusted life years
(DALYs) which represented 5.1% of all DALYs in that year. The World Health Organization
(WHO) estimates that 283 million people worldwide have alcohol use disorders (World Health
Organization, 2019).
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Moderate and frequent alcohol consumption (>30 g/day) can
bring benefits to the cardiovascular system (Foppa et al., 2001),
with increased High Density Lipoprotein (HDL) cholesterol and
the consumption of red wine has antioxidant action (da Luz
and Coimbra, 2004). However, abusive alcohol consumption
(>60 g/day) has direct consequences for the medium-long
term health of the individual, such as liver disease, cancer,
cardiovascular, and mental problems, as well as indirect
consequences in case of accidents, suicides, and homicides
due to short-term harm, such as cognitive and mobility
problems (da Luz and Coimbra, 2004; Jennison, 2004; World
Health Organization, 2019). Alcohol affects the Central Nervous
System (CNS) directly, causing changes in its function and
in brain functions. One way to check brain activity and the
changes caused by alcohol is through an EEG exam (Devor
and Cloninger, 1989) which can identify different types of
brain activities through electrodes placed on specific regions of
the head.

The EEG has multiple channels to collect electrical signals,
which are emitted through neuron synapses and are incredibly
complicated and non-linear. Specific techniques are required
to interpret the complexity of these exams. Computer Aided
Diagnostic (CAD) tools along with the use of Digital Signal
Processing (DSP) and Artificial Intelligence (AI) techniques,
with Machine Learning (ML) (Acharya et al., 2012; McBride
et al., 2015; Patidar et al., 2017; Bhattacharyya et al., 2018;
Bosl et al., 2018; Ibrahim et al., 2018; Amezquita-Sanchez
et al., 2019; Rodrigues et al., 2019) can be applied to interpret
these signals. Several studies have been performed using EEG
signals to identify different types of disturbances in brain
activity, such as the detection of patterns that characterize
Alzheimer’s disease (McBride et al., 2015; Amezquita-Sanchez
et al., 2019; Tzimourta et al., 2019), autism (Boutros et al.,
2015; Bosl et al., 2018; Ibrahim et al., 2018), sleep disorders
(Koley and Dey, 2012; D’Rozario et al., 2015; Rundo et al.,
2019), hyperactivity (Mohammadi et al., 2016; Muñoz-
Organero et al., 2018; Wang et al., 2019), and epilepsy
(Bhattacharyya et al., 2018; Ibrahim et al., 2018; Ren et al.,
2018).

Besides the fact that EEG exams have previously presented
good results in identifying different diseases, we chose to use the
EEG exam because it provides an extensive mapping of brain
activity equal to other exams, such as Magnetoencephalography
(MEG), functional Magnetic Resonance Imaging (fMRI),
functional Near-Infrared Spectroscopy (fNIRS) and Positron
Emission Tomography (PET). However, recording EEG signals
is simpler than MEG signals, since the measurement of electrical
voltages is more easily performed than the measurement
of magnetic fields as they have a low amplitude (Stam,
2010). Hair artifacts can influence infrared-based fNIRS
measurements, and thus directly interfering with the
reliability of the exam (Lloyd-Fox et al., 2010). EEG does
not emit particles to obtain the result of the examination,
as in the case of PET (Chugani et al., 1987). Furthermore,
fMRI (Kozel et al., 2004) requires the use of high-cost magnetic
scanners unlike EEG, which in comparison is a low-cost
equivalent solution.

1.1. Contribution and Paper Organization
Among the main contributions of this work to diagnose a
predisposition to alcoholism, we highlight the use of a heat map
to represent the brain activity of each patient in order to provide
a visual analysis and the use of the Transfer Learning method, as
the extraction of deep attributes as a way to represent the healthy
and pathologic samples.

The paper is organized as follows: section 2 presents a
literature review concerning the topic. Section 3 discusses the
materials and methods that support the proposed technique.
Section 4 gives a description of the use of CNN as an attribute
extractor. The proposed methodology is described in section 5,
and finally, in section 6, we present the results obtained
and the discussion.

2. OVERVIEW OF THE ALCOHOLISM
PREDISPOSITION CLASSIFICATION

This section presents the state of the art of EEG analysis
to identify alcoholism considering the evolution of feature
extraction methods from the traditional statistical approach to
the current use of CNNs as feature extractors.

Acharya et al. (2012) developed an automatic technique for
CAD to identify healthy patients with a genetic predisposition
to alcoholism through EEG signal analyses. These authors
combined a non-linear feature extraction, such as Approximate
Entropy, Sample Entropy, Largest Lyapunov Exponent, and four
Higher-Order Spectra (HOS) functions with a SVM classifier,
varied the Polynomial and Radial Basis Function (RBF) kernals.
Their results indicated that non-linear measurements extracted
from EEG signals can achieve promising results.

Using the electrical impulses that represent the physiological
functions like eye blinking and heart beating, Rachman et al.
(2016) proposed an independent component analysis through
EEG signals. In their work, the features extracted by stationary
wavelet transformwith Daubechies decomposition at level 6 were
combined with a probabilistic neural network to classify samples
from 64 channels into two classes: healthy and alcoholism
patients. However, this work only used classical statistic features
like maximum, minimum, and average values, showing its
fragility when outlier samples were present in the dataset.

Mumtaz et al. (2016), on the other hand, analyzed 19
channels placed according to the international 10–20 system
to identify healthy and alcoholism patient. The dataset had
18 alcoholism and 15 healthy patients. They extracted features
through quantitative electroencephalography from EEG data.
The features were used as the input for classification models:
Linear Discriminant Analysis, SVM, MLP, and Logistic Model
Trees. This study suggests that EEG spectral analysis can help to
classify pathologic samples from the healthy ones. Nevertheless,
they used seven frequency bands in these analyses, indicating an
increase in the time to generate results.

Ehlers et al. (1998) proposed an approach to evaluate the
influence of alcohol consumed on brain activities. They analyzed
EEG signals through temporal series combined with the chaos
theory. In their study, the authors assessed two groups of patients,
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a control group, and an alcoholism group. Based on this, they
suggested that the EEG signal has non-linear structures that can
be modified when the patient is under the effect of alcohol.

Kannathal et al. (2005) analyzed EEG signals through non-
linear measurements, such as correlation dimension, largest
Lyapunov exponent, Hurst exponent, and entropy values. The
authors suggested that non-linear analysis could contribute to
distinguish between healthy and alcoholic patients.

Faust et al. (2013) also considered the non-linear
characteristics of EEG signals. These authors used the non-
linear feature of HOS to extract information about alcoholic
patients. This feature was used as the input to six different
classifications models: Decision Tree, Fuzzy Sugeno Classifier,
k-NN, Gaussian Mixture Model, Naive Bayes Classifier, and
Probabilistic Neural Network.

Although these recent works in the literature have presented
promising results, some of them omitted the number of
samples evaluated and which criteria was used to select the
channels of the EEG exam to be analyzed. Furthermore, most
of these works use feature extraction techniques specially
adjusted to assessed datasets, hindering the possibility to
generalize to signals with other characteristics. Finally, these
works did not evaluate new feature extractors, especially such
algorithms based on the recent technique of Deep Learning
(DL) using Transfer Learning; this is one of the innovations of
our approach.

Moreover, these works were performed using the
raw one-dimensional signals of the EEG, in addition
to selecting specific channels to solve the problem. In
our work, we proposed a two-dimensional heat-map
representations to represent the EEG channels, where
each value acquired from one channel corresponds to
the pixel value in the resulting image, so the junction
of all selected channels makes up the final image for
each patient.

The generated image corresponds to the heat map of the
brain activity of this patient, thus giving a visual analysis of the
problem, as well as the use of CV, DL, and ML methods. The
use of heat map imaging enables the application of structural and
textural analysis methods, such as pixel variance, morphological
gradient calculations, equalization, as well as enhancement
algorithms that can improve the distinction between alcoholic
and healthy samples; thus giving a more accurate diagnostic.

The two-dimensional approach also allows the use of feature
extraction methods, which describe different shapes, textures and
structures of each image, such as Gray-Level Co-Occurrence
Matrix (GLCM) (Haralick et al., 1973), Hu’s Moments (Hu,
1962), and Local Binary Patterns (LBP) (Ojala et al., 2002).
Furthermore, the application of the Transfer Learning technique
using CNNs enables the extraction of the most relevant
features from an image through extreme non-linear models. The
classification of these characteristics belonging to each patient is
obtained using ML algorithms. Through a Random Search for
the optimal parameters, we obtained the best configuration of
the following models: k-NN (Fukunaga and Narendra, 1975),
MLP (Haykin, 2008), RF (Breiman, 2001), and SVM (Vapnik,
1998).

3. MATERIALS

In this section, we present the digital image processing techniques
and the ML that supports the methodology proposed in
this work.

3.1. Dataset
The dataset used in this work is publicly available in Begleiter
(2019) from the University of California, Irvine, and is known as
Knowledge Discovery in Database (UCI KDD). This dataset was
initially developed to examine genetic predisposition, through
EEG signals, to alcoholism. Two subject groups made up the
dataset: an alcoholics group and a control group. The Alcoholic
group consists of the 77 male subjects with a mean age of 35.83
± 5.33. The control group consists of 48 male subjects with no
particular or family history of alcohol misuse or neurological
disorder or any history of psychiatric disease.

The signal acquisition is according to the 10–20 International
System with 64 electrodes placed on the scalps of the subjects,
with a sampling frequency of 256 samples per second. The Cz
electrode is taken as a reference. Each signal has a period of 190
ms of a pre-stimulation and 1,440 ms after each stimulus.

Each subject was exposed to three conditions, a single
stimulus (S1) was presented to each subject. A second stimulus
(S2) is a matching condition, here the same stimulus S1 was
repeated. Finally, the last stimulus (S3) presented in either
a matched condition where S1 was identical to S2. Each
stimulus corresponds to a picture of objects chosen from the
1980 Snodgrass and Vanderwart picture set (Snodgrass and
Vanderwart, 1980).

3.2. Tradictional Feature Extraction
Methods
In this study, three feature extraction methods were used to
improve the analysis of the proposed approach.

Haralick et al. (1973) proposed a statistical analysis
considering the co-occurrence of gray levels in the image.
This method is called Gray-Level Co-Occurrence Matrix
(GLCM) and identifies the spatial influences of pixels related to
their grayscale. GLCM has 14 features, and among which the
angular second moment and entropy are commonly used and
here they are presented in Equations (1) and (2), respectively,
where p is central pixel, i and j are indexes according to image
height and width.

∑

i

∑

j

p(i, j)2 (1)

−
∑

i

∑

j

p(i, j)log(p(i, j)) (2)

The Local Binary Patterns (LBP) proposed by Ojala et al. (1994),
was developed as an efficient and straightforward way to describe
the texture of an image. LBP extracts information from the local
gray scale levels of the image to define a pattern that represents
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P pixels of the near neighbors. This binary pattern follows a
pattern determined by neighbors analysis direction. Equation (3)
presents the neighborhood analysis, where gp is a neighbor pixel
P to the region of the radius R, and gc is the central pixel.

LBPP,R =

P−1
∑

p=0

f (gp − gc)
2P (3)

According to the threshold x, a binary pattern is assigned to each
operation (Equation 4).

f (x) =

{

1, if x ≥ 0
0 otherwise

(4)

Hu (1962) developed a model that uses central moments to
make the method invariant to scale and rotational changes. This
method, known as HU moments, describes a feature extraction
family composed of seven moments; each one is invariable to
size, rotation, and translation operations. Equation (5) shows the
relation between central moment and normalized moment. This
normalized moment can be obtained from the central moment,
µpq, divided by an exponential of the area, µ00, to obtain the
normalized central moment, ηpq.

ηpq =
µpq

µ
α

00

(5)

where

α =
p+ q

2
; ∀p+ q ≥ 2 (6)

3.3. Classifiers
This section describes the ML techniques used to classify
the features extracted by the traditional methods and the
CNN architectures.

3.3.1. Naive Bayes
Bayesian Classifier is based on statistical analysis of input data.
The classifications are based on the probability distribution of
each sample to a specific class, considering that this class has the
highest probability to be associated with the sample (Theodoridis
and Koutroumbas, 2008). The Bayes Theory inspires this model,
and it assumes that there are no dependencies among the
features, according to the value of posterior probability and
conditional probability.

3.3.2. K-Nearest Neighbor
K-Nearest Neighbor (k-NN) is a machine learning method
proposed by Fukunaga and Narendra (1975) that falls into the
supervised category. It determines the class to which a sample
belongs by comparing the features of the k nearest neighbors
that were acquired in a previous training step. The variable
k represents the number of samples of the training set that
possess the closest features to the sample being classified. Still
regarding the variable k, there is not a standard value for it, but in

general, even numbers are avoided to prevent a drawn situation
in which the sample could be classified into two classes at the
same time.

3.3.3. Multilayer Perceptron—MLP
Multilayer Perceptron (MLP) is a neural network architecture
formed by multiple layers with perceptron neurons. The input
data vector is introduced to the first layer where each feature
is computed and each neuron contributes to transform the
input space into a linearly separable space and thus to classify
the object in its specific class (Haykin, 2008). The learning
technique is supervised through a backpropagation algorithm
where the errors calculated at the last layer are retro propagated
to adjust the hidden layers (Haykin, 2008). Therefore, throughout
this procedure, the solution to samples in the input vector is
presented in the output layer.

3.3.4. Random Forest
Random Forest (RF) is based on decision trees, proposed by
Breiman (2001). It aims to make a decision tree using a set of
features selected from the initial set. The training is achieved by
using a meta-algorithm called bagging, which uses the stability
and accuracy of the results to improve the classification. Bagging
is used to reduce the variance and over-fitting. After the tree sets
are created, it is possible to determine which set contains the best
configuration to solve a problem.

3.3.5. Support Vector Machine—SVM
A Support Vector Machine (SVM) is based on the statistic
distribution of the samples in the input vector proposed by
Suykens and Vandewalle (1999). SVMs aim to identify samples
that are most difficult to classify because they are close to the
decision boundary. This method uses the optimization theory
to adjust the optimal decision boundary for the minimization
of the cost function with restriction parameters. Originally
developed for binary classification, this classifier can be extended
to multiclass problems through the one-against-all and one-
against-one approaches, in addition these are techniques based
on the graph theory (Vapnik, 1998). SVMs can be applied to both
linear and non-linear problems, this latter method can use an
RBF type kernel.

4. CONVOLUTIONAL NEURAL NETWORKS

In this paper, we evaluated the following CNNs: DenseNet
(Huang et al., 2017), Inception-ResNet (Längkvist et al., 2014),
Inception (Szegedy et al., 2015), MobileNet (Howard et al., 2017),
NasNet (Zoph and Le, 2016), ResNet (Wu et al., 2018), VGG
(Simonyan and Zisserman, 2014), and Xception (Chollet, 2017).

4.1. Convolutional Neural Networks as
Feature Extractor
In this paper, CNNs used the transfer learning concept, which
relates the descriptive power of a pre-trained CNN on samples of
a problem not yet known by the model. The first fully connected
layer is removed, and then, a resizing of its input is transformed
into a one-dimensional array. After this process, a pre-trained
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model does not behave as a classifier, so it is used as a feature
extractor. The transfer learning technique is detailed in the work
of da Nóbrega et al. (2018), who applied transfer learning to lung
nodule classification.

4.1.1. Architecture Construction and Initialization
Many architectures have been proposed in the last few years,
especially since 2010, with the advent of object recognition
challenges in large scale image datasets (Deng et al., 2009).
However, it is not viable to evaluate all of the architectures
proposed by the scientific community; therefore, 12 well-known

architectures were selected for the experiments of this work. The
configurations of the models described in their respective paper
were used during implementation.

4.1.2. Architecture Training
The twelve architectures were trained from the ImageNet
dataset (Deng et al., 2009), which consists of 1.2 million non-
medical images, and grouped into 1,000 categories. The training
methodologies used by each architecture are documented in
detail in their respective articles. This step was done based on the
premise that the features learned by a CNN to discriminate a set

FIGURE 1 | Transfer learning figure.

FIGURE 2 | Flow chart of the proposed methodology.

FIGURE 3 | The transformation from 1D EEG signals to 2D EEG signals. Low-frequency channels are transformed to a smooth texture block. High-frequency

channels are transformed to a rough texture block.
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FIGURE 4 | On the left, original EEG signals. On the right the final image after channels transformation from the 1D channels to a 2D image.

of classes are capable of representing other samples as the model
can extrapolate the known patterns to new sample with the use of
transfer learning technique.

4.1.3. Converting CNNs Into Feature Extractor
In this last step, the CNNs trained on the previously mentioned
set are transformed into feature extractors. Nonetheless, to
perform this step, it is crucial to understand the four
transformations executed by these neural networks.

Initially, the input image is submitted to a sequence of
non-linear transformations. These transformations are defined
depending on the architecture used. In this first stage, the input
image is converted into a set of small matrices. Secondly, each of
these matrices is resized to a one-dimensional array. Then, the
set of arrays is concatenated, thus generating a single array. Each
one-dimensional array can be interpreted as a feature vector that
represents the heat map image. Lastly, the features vectors are
submitted to a classifier training. With the modified architecture,
the results of the model should not be interpreted as a probability
set of an input image related to a determined label but should be
interpreted as an information vector, which will be used by an
external classifier to compose the probabilities of predisposition
to alcoholism.

Figure 1 shows the fully connected layer after the removal of
the last convolutional layer. The outputs are concatenated and
then the vectors set that will be used to train and test the classifier
are created.

5. METHODOLOGY

In this paper, we propose the detection of a predisposition
to alcoholism comparing EEG signals from two subgroups:
alcoholism and control. Figure 2 illustrates the proposed
methodology step-by-step and it is divided into three main
stages: Acquisition of the EEG signals (A), Digital Signal
Processing (DSP) (B), and finally, extraction and classification of
the samples (C).

5.1. Pre-processing Step
Out of the 64 exam channels, only 11 were selected from the
mean-variance of each channel for all patients in the dataset. The

TABLE 1 | Number of features returned by each extractor.

Approach Extractor Number of features

Traditional

LBP 48

GLCM 14

Hu Moments 7

Transfer Learning

Densenet 121 1,024

Densenet 169 1,664

Densenet 201 1,920

InceptionResNetV2 1,536

InceptionV3 2,048

MobileNet 1,024

NASNetLarge 4,032

NASNetMobile 1,056

ResNet50 2,048

VGG16 512

VGG19 512

Xception 2,048

selected channels were: FP1, FP2, F7, F8, T8, T7, T7, CZ, C3, C4,
CP5, and CP6. These channels presented the highest values of
variance in their signals, which means more intense brain activity
in the regions where these channels were located.

Initially, stage A was performed out during the formation of
the Dataset. In stage B the data is prepared in step 3 (Figure 2B-
3) by removing any outliers, >73.3 and < −73.3 uV, which
represent possible head and eye movements (Zhang et al., 1995),
and then the set of signals is normalized within a range of 0–
1. In step 4 (Figure 2B-4), the interval is readjusted to 0–255,
in addition to turning all values into integers, which enables
the creation of an 8-bit image with 1,024 × 352 shape that
represents the concatenation of the exam channels, where each
of the selected channels are 1,024× 32 pixel regions, as shown in
Figure 3.

Finally, in stage C, the CNN technique is used as a feature
extractor combined with a Transfer Learning method. The
extracted features are classified in Alcoholic and Control, using
traditional classification models.
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Figure 3 shows the transformation process from a 1D EEG
signal to a 2D EEG signal, highlighting the distinction between
low and high-frequency. Step 1 (Figure 3-1) shows the 1D EEG
signals. The channels are transformed into a 2D image in step 2
(Figure 3-2) as previously described. Step 3 (Figure 3-3) shows
that high-frequency signals are represented by roughly textured
blocks, creating a surface with peaks and valleys due to the
high variation of the signals. On the other hand, low-frequency
signals are represented by smooth texture blocks, presenting a
flat surface due to the low variation of the signals. We found
such signals, high and low frequency, using the calculation of the
mean-variance of the exam channels.

Finally, Figure 4 shows a sample of the complete
transformation from the 1D channels to a 2D image. This
approach becomes a visual representation of brain activity in
different parts of the brain, rather than treating each channel
separately. This image corresponds to a heat map of the brain
activity in the regions measured by the electrodes. This image
clearly represents the variations of time-domain and reflect the
temporal variations of the channels through image texture, as
well as the EEG signal by the intensity of color. This approach
permits a visual analysis of the problem, as well as the use
of structural and textural analytical methods. Moreover, the
approach makes it possible to use recent methods of CV, DL, and
ML methods.

5.2. Feature Extraction
In Figure 2 stage 2-C, step 5 (Figure 2C-5), according to
section 4.1.3, this approach proposes the use of CNN techniques
as a feature extractor combined with a Transfer Learning

method for the two-dimensional signals. The image that
represents the EEG signals is processed by the first convolutional
layers of the neural network, and the output of the final
layer of the CNN is combined as a feature vector for
the classification stage. The traditional computational vision
extractors, such as GLCM, Hu Moments, and LBP were
evaluated. Table 1 shows the number of features generated by
each extractor.

5.3. Classification Healthy and Alcoholism
Patient
To evaluate the representativeness of the extracted features for
the classification of both sets, healthy patients and alcoholic
patients, the generated dataset is classified using five consolidated
ML techniques: Bayes (Theodoridis and Koutroumbas, 2008), k-
NN (Fukunaga and Narendra, 1975), RF (Breiman, 2001), MLP
(Haykin, 2008), and SVM (Vapnik, 1998).

In the classification process, Bayes classifier operated with the
Probability Density Function (PDF). MLP performed its training
using the Levenberg-Marquardt method, and with the neurons
varying from 2 to 1,000 in the hidden layer. The number of
neighbors for the k-NN classifier was determined through a
grid search, where the k value was varied using the odd values
from 3 to 15.

The SVM classifier used linear, polynomial and RBF kernels.
In all three configurations, the C hyperparameter was defined as
2−5, 2−4, 2−3, . . . , 215. For the RBF kernel, γ was varied from
2−15 to 23, while for polynomial kernel, the degree ranged using
the odd values from 3 to 9.

TABLE 2 | Accuracy, Precision, F1-Score, and Recall obtained through the classification of extracted features with classical extractors.

Extractors Classifiers Accuracy Precision F1 Score Recall

GLCM

Naive Bayes 64.44 ± 1.22 81.61 ± 0.40 46.55 ± 2.96 54.29 ± 1.56

MLP 64.44 ± 1.22 81.61 ± 0.40 46.55 ± 2.96 54.29 ± 1.56

kNN 86.11 ± 3.23 87.70 ± 3.97 84.66 ± 3.69 83.55 ± 3.73

RF 87.22 ± 2.87 89.06 ± 3.40 85.86 ± 3.18 84.56 ± 3.12

SVM Linear 73.22 ± 3.12 78.87 ± 4.39 66.47 ± 4.96 66.71 ± 4.05

SVM Polynomial 64.44 ± 1.22 81.61 ± 0.40 46.55 ± 2.96 54.29 ± 1.56

SVM RBF 72.22 ± 2.77 84.11 ± 1.14 62.83 ± 4.91 64.34 ± 3.62

HU

Naive Bayes 61.11 ± 0.00 30.56 ± 0.00 37.93 ± 0.00 50.00 ± 0.00

MLP 61.11 ± 0.00 30.56 ± 0.00 37.93 ± 0.00 50.00 ± 0.00

kNN 80.44 ± 3.19 81.64 ± 4.05 78.14 ± 3.85 77.19 ± 3.74

RF 80.67 ± 3.30 81.59 ± 4.08 78.51 ± 3.82 77.58 ± 3.78

SVM Linear 52.89 ± 3.79 55.34 ± 3.52 52.81 ± 3.78 55.38 ± 3.64

SVM Polynomial 51.89 ± 2.77 55.72 ± 2.91 51.75 ± 2.87 55.44 ± 2.84

SVM RBF 50.56 ± 4.28 57.97 ± 3.80 49.31 ± 5.34 56.17 ± 3.54

LBP

Naive Bayes 61.11 ± 0.00 30.56 ± 0.00 37.93 ± 0.00 50.00 ± 0.00

MLP 61.11 ± 0.00 30.56 ± 0.00 37.93 ± 0.00 50.00 ± 0.00

kNN 83.89 ± 2.87 84.81 ± 4.13 82.41 ± 2.89 81.47 ± 2.64

RF 87.33 ± 3.82 89.08 ± 3.99 85.96 ± 4.35 84.75 ± 4.49

SVM Linear 66.89 ± 3.33 65.00 ± 3.94 63.21 ± 3.81 63.09 ± 3.55

SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00

SVM RBF 68.56 ± 2.33 71.01 ± 5.78 60.57 ± 3.66 61.70 ± 2.77

The bold values are mean and standard deviation, respectively.
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TABLE 3 | Accuracy, Precision, F1-Score, and Recall obtained through the classification of extracted features with CNNs architectures.

Extractors Classifiers Accuracy Precision F1 Score Recall

DenseNet121

Naive Bayes 72.78 ± 1.88 80.75 ± 2.42 64.94 ± 3.36 65.57 ± 2.48

MLP 75.78 ± 2.37 79.59 ± 4.55 71.66 ± 4.66 71.51 ± 3.88

kNN 87.44 ± 2.44 89.13 ± 2.56 86.12 ± 2.86 84.90 ± 2.93

RF 85.22 ± 2.81 87.35 ± 3.09 83.44 ± 3.35 82.09 ± 3.35

SVM Linear 89.67 ± 3.65 90.21 ± 4.20 88.89 ± 3.90 88.17 ± 3.85

SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00

SVM RBF 89.78 ± 3.51 90.32 ± 4.05 89.01 ± 3.74 88.31 ± 3.69

DenseNet169

Naive Bayes 71.00 ± 4.26 77.11 ± 7.90 62.22 ± 6.80 63.55 ± 5.00

MLP 72.56 ± 6.05 77.58 ± 8.26 65.86 ± 8.90 66.64 ± 7.39

kNN 87.22 ± 2.78 88.30 ± 3.10 86.04 ± 3.22 85.13 ± 3.38

RF 86.56 ± 3.67 89.05 ± 3.23 84.85 ± 4.48 83.44 ± 4.51

SVM Linear 89.11 ± 5.01 90.23 ± 5.05 88.05 ± 5.63 87.09 ± 5.84

SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00

SVM RBF 91.33 ± 3.36 92.26 ± 3.50 90.60 ± 3.69 89.69 ± 3.82

DenseNet201

Naive Bayes 70.78 ± 2.11 83.49 ± 1.06 60.22 ± 4.06 62.48 ± 2.78

MLP 76.56 ± 4.83 81.34 ± 5.81 71.74 ± 7.26 71.42 ± 6.13

kNN 85.56 ± 4.04 86.63 ± 4.11 84.06 ± 4.61 82.99 ± 4.70

RF 84.56 ± 4.75 86.57 ± 4.47 82.58 ± 5.79 81.44 ± 5.84

SVM Linear 89.56 ± 2.95 89.89 ± 2.79 88.77 ± 3.34 88.29 ± 3.79

SVM Polynomial 43.44 ± 9.11 26.70 ± 18.37 30.29 ± 4.63 50.14 ± 0.43

SVM RBF 90.00 ± 2.58 90.30 ± 2.04 89.25 ± 3.00 88.86 ± 3.60

Inception ResNet V2

Naive Bayes 67.44 ± 5.86 65.54 ± 6.93 63.26 ± 6.85 63.18 ± 6.42

MLP 72.22 ± 5.07 72.82 ± 7.24 68.77 ± 5.37 68.49 ± 5.22

kNN 84.44 ± 4.22 85.55 ± 4.14 82.74 ± 5.04 81.77 ± 5.11

RF 83.00 ± 4.25 85.07 ± 4.02 80.72 ± 5.23 79.55 ± 5.26

SVM Linear 87.56 ± 2.52 88.16 ± 2.81 86.51 ± 2.76 85.66 ± 2.76

SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00

SVM RBF 87.56 ± 2.71 88.37 ± 3.38 86.48 ± 2.92 85.51 ± 2.79

Inception V3

Naive Bayes 67.44 ± 5.94 67.49 ± 10.14 59.19 ± 8.36 60.58 ± 6.71

MLP 74.89 ± 5.02 79.19 ± 4.33 69.57 ± 9.75 70.26 ± 7.44

kNN 87.33 ± 4.16 89.20 ± 4.62 85.97 ± 4.59 84.70 ± 4.67

RF 87.33 ± 3.95 90.11 ± 3.74 85.71 ± 4.64 84.18 ± 4.68

SVM Linear 89.56 ± 2.23 90.87 ± 1.93 88.56 ± 2.60 87.51 ± 2.98

SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00

SVM RBF 89.44 ± 2.24 90.87 ± 1.86 88.42 ± 2.61 87.31 ± 3.01

MobileNet

Naive Bayes 73.33 ± 4.87 74.70 ± 5.26 71.67 ± 5.27 71.60 ± 5.08

MLP 86.89 ± 3.47 88.41 ± 2.70 86.55 ± 3.60 86.70 ± 3.44

kNN 92.78 ± 1.88 93.01 ± 1.84 92.65 ± 1.93 92.53 ± 2.06

RF 87.00 ± 3.62 90.03 ± 2.74 86.20 ± 3.99 85.50 ± 4.02

SVM Linear 93.00 ± 2.33 93.16 ± 2.38 92.88 ± 2.38 92.73 ± 2.39

SVM Polynomial 93.89 ± 2.59 94.16 ± 2.64 93.78 ± 2.64 93.60 ± 2.66

SVM RBF 95.33 ± 1.47 95.68 ± 1.31 95.24 ± 1.52 95.00 ± 1.63

NASNetLarge

Naive Bayes 64.00 ± 2.73 69.64 ± 11.36 48.76 ± 3.90 54.60 ± 2.81

MLP 72.56 ± 4.79 77.21 ± 6.50 67.62 ± 8.29 68.92 ± 6.62

kNN 87.56 ± 4.30 88.54 ± 4.70 86.41 ± 4.67 85.40 ± 4.69

RF 86.33± 2.33 88.17 ± 2.31 84.80 ± 2.82 83.52 ± 2.94

SVM Linear 87.56 ± 3.10 88.61 ± 3.55 86.41 ± 3.59 85.45 ± 3.55

SVM Polynomial 43.33 ± 8.89 21.67 ± 4.44 29.99 ± 3.97 50.00 ± 0.00

SVM RBF 90.33 ± 2.72 91.70 ± 3.29 89.47 ± 2.95 88.35 ± 2.88

(Continued)
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TABLE 3 | Continued

Extractors Classifiers Accuracy Precision F1 Score Recall

NASNetMobile

Naive Bayes 71.58 ± 3.23 71.50 ± 3.73 69.66 ± 3.51 69.39 ± 3.38

MLP 86.74 ± 5.14 87.77 ± 4.81 86.12 ± 5.57 85.99 ± 5.46

kNN 90.53 ± 2.58 91.35 ± 2.58 90.08 ± 2.76 89.47 ± 2.84

RF 86.00 ± 2.54 86.92 ± 2.34 85.23 ± 2.87 84.64 ± 2.92

SVM Linear 93.89 ± 3.04 94.56 ± 2.89 93.63 ± 3.19 93.16 ± 3.42

SVM Polynomial 57.89 ± 0.00 28.95 ± 0.00 36.67 ± 0.00 50.00 ± 0.00

SVM RBF 92.74 ± 2.72 93.32 ± 2.74 92.44 ± 2.87 91.95 ± 2.94

The bold values are mean and standard deviation, respectively.

TABLE 4 | Continuation of Table 3.

Extractors Classifiers Accuracy Precision F1 Score Recall

ResNet50

Naive Bayes 63.16 ± 0.00 31.58 ± 0.00 38.71 ± 0.00 50.00 ± 0.00

MLP 66.32 ± 1.94 82.62 ± 0.68 47.17 ± 4.62 54.29 ± 2.63

kNN 87.68 ± 3.40 89.01 ± 3.97 86.07 ± 3.88 84.71 ± 4.00

RF 85.26 ± 4.16 86.81 ± 4.03 82.97 ± 5.35 81.61 ± 5.45

SVM Linear 81.47 ± 2.50 80.59 ± 1.95 80.52 ± 2.28 81.40 ± 1.83

SVM Polynomial 36.84 ± 0.00 18.42 ± 0.00 26.92 ± 0.00 50.00 ± 0.00

SVM RBF 79.16 ± 1.87 77.95 ± 1.97 77.36 ± 2.15 77.25 ± 2.45

VGG16

Naive Bayes 64.00 ± 2.09 77.81 ± 4.35 51.25 ± 3.95 57.39 ± 2.46

MLP 81.26 ± 4.34 82.14 ± 4.67 80.15 ± 4.66 79.66 ± 4.72

kNN 90.84 ± 1.94 91.54 ± 1.89 90.44 ± 2.08 89.94 ± 2.29

RF 87.79 ± 1.50 89.65 ± 1.70 87.00 ± 1.65 86.08 ± 1.75

SVM Linear 86.63 ± 3.71 87.01 ± 3.67 86.16 ± 3.85 86.07 ± 3.84

SVM Polynomial 57.89 ± 0.00 28.95 ± 0.00 36.67 ± 0.00 50.00 ± 0.00

SVM RBF 93.37 ± 2.45 94.00 ± 2.16 93.08 ± 2.60 92.64 ± 2.86

VGG19

Naive Bayes 65.11 ± 1.59 77.94 ± 7.05 49.10 ± 2.96 55.40 ± 1.79

MLP 78.56 ± 5.07 81.53 ± 5.42 74.76 ± 6.80 73.88 ± 6.19

kNN 91.11 ± 2.72 91.53 ± 3.04 90.51 ± 2.81 89.97 ± 2.66

RF 86.67 ± 3.51 88.90 ± 3.10 85.04 ± 4.27 83.69 ± 4.35

SVM Linear 85.44 ± 3.86 84.92 ± 4.11 84.63 ± 4.04 84.56 ± 4.05

SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00

SVM RBF 91.89 ± 2.98 92.56 ± 2.89 91.24 ± 3.30 90.45 ± 3.51

Xception

Naive Bayes 66.00 ± 4.45 63.98 ± 5.23 63.02 ± 4.86 62.88 ± 4.76

MLP 74.78 ± 4.07 75.45 ± 4.92 71.32 ± 5.30 70.95 ± 5.15

kNN 88.11 ± 2.54 88.89 ± 3.24 87.11 ± 2.73 86.22 ± 2.72

RF 88.78 ± 2.96 90.36 ± 3.26 87.66 ± 3.32 86.45 ± 3.31

SVM Linear 90.78 ± 2.17 91.47 ± 2.52 90.06 ± 2.35 89.23 ± 2.38

SVM Polynomial 45.56 ± 10.18 22.78 ± 5.09 30.98 ± 4.55 50.00 ± 0.00

SVM RBF 92.56 ± 2.11 93.35 ± 2.14 91.97 ± 2.31 91.16 ± 2.49

The bold values are mean and standard deviation, respectively. Accuracy, Precision, F1-Score, and Recall obtained through the classification of extracted features.

For the RF classifier, the criteria function was varied for Gini
and entropy, the minimum number of samples that is necessary
to split an internal node ranged from 1 to 6, the lowest amount
of samples requested to be at a leaf node also ranged from 1 to 6,
and the number of estimators was 3,000.

The training stage of the classification models considered the
cross-validation technique. Of the total samples, 77 represent
patients in the Alcoholic group, and 48 represent the control
group. The samples were divided into ten subsets with a
proportion of 80% for training and 20% for tests, randomly

chosen. The hyperparameters for MLP, SVM and RF were
determined through a 20-iterations random search over a cross-
validation process with 10-folds.

The classification stage completes the C stage of the
proposed methodology. The evaluation metrics and results are
discussed below.

5.4. Evaluation Metrics
To compare our classification results with results from other
methods, we use evaluation metrics based on the results obtained
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FIGURE 5 | A plot representation of the best metrics from Tables 2–4.

in the confusion matrix. The results of the confusion matrix
include True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN), some of which were used for
the evaluation metrics. The evaluation of this approach used the
following metrics:

Accuracy (Acc) (Fawcett, 2006) reveals the proximity of the
result to the gold standard and is given by the relationship
between the hits and the set of all predictions, and is presented
by Equation (7).

Acc =
TP + TN

TP + TN + FP + FN
(7)

The value of Precision (Fawcett, 2006) is the probability of
true positives relative to all results classified as positive and
is presented by Equation (8). Even if the test diagnosis is
positive, this metric calculates the probability that the test will be
consistent with the prior probability.

Precision =
TP

TP + FP
(8)

Recall (Rec) (Sokolova and Lapalme, 2009) represents the
proportion of the results classified as positive among all the
results that are really positive and is presented by Equation (9).

Recall =
TP

TP + FN
(9)

As a counterpoint to Precision, considering its risk of imbalance,
the F1 Score () calculates the weighted harmonic mean between
Precision and Recall and is presented by Equation (10). The F1
Score represents the performance of a method and although a
diagnosis may be classified accurately, it does not mean that the
method will perform the same for other data.

F1Score =
2 ∗ Rec ∗ Precision

Rec+ Precision
(10)

Except for the F1 Score index, all other evaluation measures were
investigated in previous studies with signs of EEG (Ehlers et al., T

A
B
L
E
5
|
S
u
m
m
a
ry

a
n
d
st
a
tis
tic
a
lc
o
m
p
a
ris
o
n
to

o
th
e
r
m
e
th
o
d
s
to

c
la
ss
ifi
c
a
tio

n
a
lc
o
h
o
lis
m

a
n
d
h
e
a
lth

y
p
a
tie
n
ts
.

A
u
th
o
r

D
a
ta

C
h
a
n
n
e
ls

S
u
b
je
c
ts

F
e
a
tu
re
s
/M

e
th
o
d

C
la
s
s
ifi
c
a
ti
o
n
o
f
fe
a
tu
re
s

P
e
rf
o
rm

a
n
c
e
m
e
tr
ic
s

A
c
c

P
re
c
is
io
n

F
1
S
c
o
re

R
e
c
a
ll

P
ro
p
o
se

d
m
e
th
o
d

U
C
IK

D
D

1
1

2
0

C
N
N
a
s
fe
a
tu
re

e
xt
ra
c
to
r

M
o
b
ile
N
e
t
+
S
V
M

R
B
F

9
5
.3
3
±

1
.4
7

9
5
.6
8
±

1
.3
1

9
5
.2
5
±

1
.5
2

9
5
.0
0
±

1
.6
3

A
c
h
a
ry
a
e
t
a
l.
(2
0
1
2
)

B
e
rn

B
a
rc
e
lo
n
a

d
a
ta
b
a
se

2
3
0
0
0

E
n
tr
o
p
y,
4
H
O
S
fe
a
tu
re
s,

L
a
rg
e
st

Ly
a
p
u
n
o
v
E
n
tr
o
p
y

S
V
M

(li
n
e
a
r,
p
o
ly
n
o
m
ia
l,
a
n
d

R
B
F
ke

rn
e
ls
)

9
1
.7

9
3
.9

–
9
0

R
a
c
h
m
a
n
e
t
a
l.
(2
0
1
6
)

U
C
IK

D
D

6
4

7
7

D
a
u
b
e
c
h
ie
s
w
a
ve
le
t
fa
m
ily

M
a
xi
m
u
m
,
m
in
im

u
m
,

a
ve
ra
g
e
a
n
d
st
a
n
d
a
rd

8
5

–
–

1
0
0

M
u
m
ta
z
e
t
a
l.
(2
0
1
6
)

U
n
iv
e
rs
ity

M
a
la
ya

M
e
d
ic
a
lC

e
n
te
r

1
9

4
5

P
o
w
e
r
S
p
e
c
tr
a
lD

e
n
si
ty

(P
S
D
)

L
o
g
is
tic

R
e
g
re
ss
io
n

8
9
.5

8
8
.5

9
1

9
0

E
h
le
rs

e
t
a
l.
(1
9
9
8
)

U
n
iv
e
rs
ity

o
f

C
a
lif
o
rn
ia

1
3
2

C
D

D
is
c
rim

in
a
n
t
a
n
a
ly
si
s

8
8

–
–

–

K
a
n
n
a
th
a
le
t
a
l.
(2
0
0
5
)

U
C
IK

D
D

6
0

3
0

C
D
,
L
L
E
,
e
n
tr
o
p
y,
H

F
ilt
e
r
b
y
u
n
iq
u
e
ra
n
g
e
s

9
0

–
–

–

F
a
u
st

e
t
a
l.
(2
0
1
3
)

U
C
IK

D
D

6
1

6
0

H
O
S
c
u
m
u
la
n
ts

F
S
C

9
2
.4

9
1
.1

–
9
4
.9

P
a
tid

a
r
e
t
a
l.
(2
0
1
7
)

U
C
IK

D
D

6
4

1
2
2

Tu
n
a
b
le
Q
-w

a
ve
le
t
tr
a
n
sf
o
rm

C
o
rr
e
n
tr
o
p
y,

L
o
w
-f
re
q
u
e
n
c
y(
L
F
)-
rh
yt
h
m
s

b
a
se

d
st
a
tis
tic
a
lf
e
a
tu
re
s

9
7
.0
2

–
–

9
6
.5
3

Frontiers in Human Neuroscience | www.frontiersin.org 10 September 2020 | Volume 14 | Article 365

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Zhang et al. Alcoholism Pre-disposition Classification via EEG

TABLE 6 | Accuracy, Precision, F1-Score, and Recall obtained by Acharya et al. (2012) and Mumtaz et al. (2016) proposed methods.

Method Classifiers Accuracy Precision F1 Score Recall

Acharya et al. (2012)

SVM Linear 50.67 ± 19.05 49.24 ± 23.82 46.67 ± 20.73 50.67 ± 19.05

SVM Polynomial 1 48.5 ± 11.51 46.49 ± 20.88 41.04 ± 12.04 48.5 ± 11.51

SVM Polynomial 2 49.83 ± 4.61 44.95 ± 26.64 35.34 ± 5.66 49.83 ± 4.61

SVM Polynomial 3 49.67 ± 2.33 34.91 ± 21.47 34.01 ± 2.69 49.67 ± 2.33

SVM RBF 50.17 ± 2.42 37.54 ± 21.67 34.76 ± 3.50 50.17 ± 2.42

Mumtaz et al. (2016) Logistic Regression 58.00 ± 10.18 60.10 ± 10.64 54.92 ± 12.18 58.00 ± 10.18

The bold values are mean and standard deviation, respectively.

1998; Acharya et al., 2012; Mumtaz et al., 2016; Rachman et al.,
2016; Patidar et al., 2017).

6. RESULTS AND DISCUSSION

The proposed approach was evaluated on a computer with
an Intel Core i7 microprocessor, 8 GB of RAM, a GeForce
GTX 1070 Graphics Processing Unit (GPU), and a Linux LTS
16.04 operating system. The results of this paper are presented
in three stages. In the first stage, the evaluation of the 21
combinations of the traditional methods for image feature
extraction and classifiers. The second stage is the evaluation
of the 84 combinations of CNNs as the feature extractors and
classifiers. Finally, the best results are compared to related works
in the last stage.

Average values and standard deviations of Accuracy, F1-
Score, Precision, and Recall are shown in Tables 2–4 for the
features extracted with traditional methods and CNN-based
methods, respectively.

Analyzing Table 2, GLCM-k-NN, GLCM-RF, HU-k-NN, HU-
RF, LBP-k-NN, and LBP-RF stand out as they achieved at least
80% in Accuracy. Also, the RF classifier can be highlighted,
since it achieved the highest Accuracy when combined with
all three traditional methods. The best combination (LBP-RF)
is highlighted in green. This combination reached the highest
values in all four metrics.

Tables 3, 4 show the results of features extracted using
CNNs, and then classified. The combinations that achieved a
minimum of 90% of Accuracy and Recall were: MobileNet-
k-NN, MobileNet-SVM Linear, MobileNet-SVM Polynomial,
MobileNet-SVM RBF, NasNetMobile-SVM RBF, VGG16-SVM
RBF, VGG19-k-NN, VGG19-SVMRBF, and Xception-SVMRBF.
The combinations that had at least 90% in Accuracy, but did not
achieve this value in Recall were disregarded since low values
of Recall are not desirable in order not to classify alcoholism
as healthy. The SVM classifier stands out when classifying deep
features. This classifier obtained the best metrics values for all
CNN extractors, except for ResNet50, in which the best classifier
was k-NN. Among the SVM kernels, RBF reached the highest
metric values for ten of the twelve CNN architectures evaluated.
The best combination (MobileNet-SVM RBF) is highlighted
in green.

Figure 5 compares the best combination of the traditional
methods and the CNN architectures. The features extracted

by the CNN-MobileNet and classified by SVM RBF achieved
an accuracy 8% higher than the features extracted by the
LBP and classified by RF. Also, the standard deviation for
MobileNet+SVM RBF is lower, contributing to greater reliability
for the system. Furthermore, even though the combination
LBP+RF has an accuracy of 87%, its recall is only 84%, while
the combination MobileNet+SVM RBF has accuracy and recall
of 95%.

The results show that the number of features, according to
Table 1, indicate that traditional feature extraction methods have
a low representative potential. On the other hand, the feature
extraction through CNN can extract more information, and this
contributed to improving the classification results. Besides, tests
in other bands with lower frequency channels, such as F5, TP7,
PO7, and O1, did not reach metrics with values higher than
95.33%, as we achieved with the channels proposed in this work.

Acharya et al. (2012), approach, the 4 HOS features were not
able to detect the most relevant features for class distinction,
reaching an average accuracy of 91.7%. While the works of
Ehlers et al. (1998), Kannathal et al. (2005), and Rachman et al.
(2016) used statistical analysis of EEG signals. However, the use
of the average value as a descriptor of the samples made the
classification sensitive to extreme values. In addition, the use of
descriptors with a fixed range of analysis makes it difficult to
generalize unknown samples. All of these studies presented an
average of <90%. Table 5 gives a summary of the characteristics
of these approaches.

The work of Faust et al. (2013) analyzed the signals using
a non-linear approach. Accumulating the HOS characteristics,
and combined the extractions with a Fuzzy Sugeno Classifier
reached 92.4%. However, an approach using fuzzy classification
imposes the need for prior knowledge of the data set for method
calibration, and this makes the approach semi-automatic. Our
approach does not require previous knowledge of EEG signals
since the extraction models use the transfer learning techniques
for feature extraction to achieve promising results.

We see in Table 6 the results obtained by the methods
proposed by Acharya et al. (2012) and Mumtaz et al. (2016).
We obtain the results using extractors and classifiers proposed
with the same parameters of cross-validation and dataset that we
used in our method. Thus, we show the efficiency of our method
within the set of EEG channels that we chose in our work. Both
compared to a method that uses non-linear features and against a
method that uses features in the frequency domain, respectively.
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Finally, the proposed approach presented superior results
to all the methods considered in this study. Our approach
achieved accuracy values equivalent to the work of Mumtaz
et al. (2016), considering the standard deviation. However, our
approach innovated by applying a 2D analysis of the EGG signal,
which allowed the application of CV techniques to overcome the
problem.Table 5 presents the results of the proposed approach of
this paper compared with other works available in the literature.

7. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed a new method to detect a
predisposition to alcoholism from image-transformed EEG
signals using traditional and deep feature extractors. We used the
Learning Transfer method to extract deep image characteristics
and consolidated ML methods to classify EGG signals between
alcoholism and normal.

From the results presented, we can see that the CNN
architectures extracted more relevant features from the samples,
since the best values of Accuracy 95.33%, Precision 95.68%,
F1-Score 95.24%, and Recall 95.00% were obtained in the
MobileNet-SVM RBF combination. The best combination for
classic extractors was LBP-RF reaching 87.33, 89.08, 85.96, and
84.75% for the same metrics.

For future work, we will apply the Principal Components
Analysis (PCA) algorithm to select the most significant channels
after preprocessing in order to highlight the differences between
the features of each class. Another possibility is the application
of fuzzy logic as a method of filtering EGG signals after

preprocessing, as well as the application of mathematical

morphology to highlight the differences between image textures
after 1D to 2D transformation.
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