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This paper addresses how impairments in prediction in young adults with autism
spectrum disorder (ASD) relate to their behavior during collaboration. To assess it, we
developed a task where participants play in collaboration with a synthetic agent to
maximize their score. The agent’s behavior changes during the different phases of the
game, requiring participants to model the agent’s sensorimotor contingencies to play
collaboratively. Our results (n = 30, 15 per group) show differences between autistic and
neurotypical individuals in their behavioral adaptation to the other partner. Contrarily,
there are no differences in the self-reports of that collaboration.
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INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose main impact falls in two
domains: persistent deficits in social communication and restricted, repetitive patterns of behavior
or interest (DSM-5 American Psychiatric Association, 2013). ASD has been linked to a deficit in
prediction abilities and to the fact that feedback is more prominent compared to feed-forward
anticipatory control (Schmitz et al., 2003; Sinha et al., 2014; Wang et al., 2014).

Recent research (Sinha et al., 2014) suggests that a prediction deficit present since early
development (Prediction Impairment in Autism, PIA hypothesis, in Sinha et al., 2014) could
cause the diversity of expression of the autism syndrome. This theory divides the prediction
difficulties among insistence on sameness, sensory hypersensitivities, interacting with dynamic
objects, theory of mind, and islands of proficiency. Insistence on sameness represents repetitive
actions and thoughts, inflexible adherence to routines, resistance to change, and ritualized patterns
of verbal or non-verbal behavior. Sensory hypersensitivities refer to the sensory abnormalities
(like hypersensitivity to bright light) experienced by individuals in the spectrum, however, these
abnormalities are not caused by abnormally enhanced sensation. Individuals in the autism
spectrum also have difficulties with theory of mind (that is, inferring mental states to others and
ascribing causes to observations about a person through the connection of previous with current
behavior), which can cause deficit-adjusting behavior to suit different social situations. Finally, they
can exhibit enhanced abilities in strongly rule-based domains (known as islands of proficiency).
These domains, like mathematics, musical performance, or calendar calculations, are strongly
rule-based, which minimizes uncertainty.

Individuals with ASD show attenuated top-down prior expectations, which leads them to rely
more on bottom-up sensory signals. They thus experience hypersensitivity, enhanced perception
and sensation, and sensory overload (Mitchell and Ropar, 2004). Consequently, this dependence
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on perceptual evidence merged with impairments in
contextualizing sensory evidence impedes understanding actions,
and predicting social intentions. Nevertheless, individuals with
ASD do not show difficulties in perceiving social stimuli,
but rather in using them to update internal models of social
interaction, what leads to impairments in social abilities (South
et al., 2012; D’Cruz et al., 2013; Robic et al., 2015).

The so-called social symptoms encompass deficits in social
interaction and communication. These poor “social-specific”
priors compromise their interaction with others, as ASD
individuals have difficulties in coping with the uncertainty
that comes with social behaviors (Chambon et al., 2017).
Acting together with another partner requires considering
and integrating both one’s own and the partner’s next
action. This planning of cooperative actions, although less
studied, is also considered an aspect of sensorimotor control
(Sebanz et al., 2006).

Sensorimotor integration can be defined as the brain process
allowing response to specific demands of the environment by
executing voluntary motor behavior (Machado et al., 2010).
Planning and executing a simple movement require sensory
feedback, to effectively coordinate movement while acting. Thus,
sensorimotor approaches consider perception and action as a
united process. This interaction between action and perception
must be highlighted in sensorimotor approaches, as they are not
seen as separate processes. On the contrary, actions are conferred
an integral function for perception to explain cognitive functions.

To consider an anticipatory effect as reflecting prospective
sensorimotor control, an action has to differ depending on the
subsequent one (Rosenbaum et al., 2013; Ansuini et al., 2015).
Sensorimotor contingencies (SMCs) can be seen technically as
forward models that predict the expected sensory changes given
a certain set of movements. Knowledge of SMCs allows an
agent to simulate potential outcomes of behavioral alternatives.
Impairments in sensorimotor integration could lead to ineffective
use of sensory feedback in, for example, movement correction. As
a result, the individual could face difficulties in coordination and
sensory reactivity.

The main brain areas associated with sensorimotor integration
are the cerebellum (Paulin, 1993; Glickstein, 1998) and the basal
ganglia (Nagy et al., 2006; Chukoskie et al., 2013). It is not
surprising, therefore, the significant differences found in these
specific areas of autistic patients. For example, previous research
showed a lower number of Purkinje cells in the cerebellum
(Bauman and Kemper, 2005; Amaral et al., 2008) and a decreased
volume in the basal ganglia (Estes et al., 2011) in ASD individuals
as compared to typically developed ones.

The cerebellum is suggested to control the anticipatory and
predictive adjustments of motor programs (Koziol et al., 2012).
Its pathways link sensory signals to motor areas in the brain
(Glickstein, 1998), which have a pivotal role in controlling and
coordinating movement (Paulin, 1993). Research on autism has
provided ample evidence that the cerebellum is among the most
frequently disrupted brain regions in ASD (Palmen et al., 2004;
Courchesne et al., 2005), with persistent differences in volume
emerging since the first 2 years of life (Hashimoto et al., 1995;
Stanfield et al., 2008). Studies suggest that ASD is characterized

by alterations of the brain’s inference on the causes of socially
relevant signals, and this lack of ability to predict actions of other
individuals stems from cerebellar dysfunctions (Schmitz et al.,
2003; Sinha et al., 2014; Wang et al., 2014).

The basal ganglia play a functional role in sensory integration
and motor control (Nagy et al., 2006). This area, reciprocally
connected to the cerebellum (Chukoskie et al., 2013), has
previously been claimed to be different in individuals with
autism. For example, it has a lower volume than typical brains
(Estes et al., 2011), and one of its areas, the striatum, shows larger
functional connectivity in individuals with autism (Di Martino
et al., 2011). Previous research has shown weak connectivity
between sensory and motor brain areas in individuals with autism
(Oldehinkel et al., 2019). These findings are consistent with the
sensory symptoms (such as hypersensitivity) experienced in ASD.
They are also in line with work showing out of sync interactions
between visual and motor regions in individuals in the spectrum.

The aforementioned alterations in sensory input and motor
execution could play a pivotal role in autism. The available
evidence seems to suggest that autism shows widespread
disturbances in sensorimotor behavior (Haswell et al., 2009;
Rinehart and Mcginley, 2010; Cook et al., 2013; Gowen and
Hamilton, 2013; Thompson et al., 2017). Along similar lines,
self-reports about sensorimotor behavior coming from people
in the spectrum provide further evidence on sensory alteration
and over-responsivity (Kern et al., 2006; Ben-Sasson et al., 2009;
Tavassoli et al., 2014).

Some examples of sensorimotor alterations in ASD comprise
impaired motor processing and higher detection of unattended
changes compared to neurotypical individuals. There is support
presenting these impairments in movement and sensory
responsivity not as a peripheral feature of autism, but as a
fundamental cause of the social and communicative impairments
seen in the condition (Leary and Hill, 1996; Hilton et al., 2007;
Reynolds et al., 2011; Matsushima and Kato, 2013). Sensorimotor
difficulties in autism are associated with the development
and maintenance of social impairments characteristic of the
disorder. Integrating sensory information from the environment
is required to plan and execute movement effectively, to,
altogether, carry on proper social reciprocity.

The relation between sensorimotor impairments and social
deficits in autism suggests impairments in the coupling of
perceptual and social cues. More specifically, ASD individuals
may encounter difficulties using the sensorimotor contingencies
exhibited by another agent to predict the agent’s behavior. Thus,
this work focuses on the evaluation of the coupling of perceptual
and social cues based on sensorimotor interaction and the ability
to predict another agent’s behavior. More specifically, we aim
to assess how predictive abilities affect collaborative interaction
and how they differ between ASD and Typically Developed
(TD) individuals.

To do so, we devised a predictive game task where
participants collaborate with a synthetic agent that displays
different behavioral patterns expressed through sensorimotor
contingencies. The proposed task is an adaptation of the game
of Pong, where players in collaboration with a synthetic agent
need to intercept a falling target (see the following section for
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more information). To succeed in this task, players need to
identify and learn the social characteristics of the agent. Doing
so will allow them to use this information during the interaction,
and to later adapt more efficiently when the task becomes
uncertain. As the agent’s behavior is based on sensorimotor
information, we hypothesize that ASD individuals will show
deficits in successful social predictive/anticipatory skills. To
assess the differences in prediction between ASD and TD players,
we look at aspects of adaptive collaborative skills by analyzing
the interaction of the players with the AI agent of the game, how
the interaction evolves during the task, and how it relates to the
participants’ understanding of the other agent’s characteristics.
More specifically, we study partner monitoring and how it affects
the covered space and look at the mutual influence between the
player and the AI-controlled agent.

We hypothesize that:

• Participants in the autism spectrum will show slower and
less adaptation to the other agent than neurotypical ones.
• Participants in the autism spectrum will show

less adaptation to the other agent when the task
becomes more uncertain.
• Participants in the autism spectrum will show more

variable behavior than neurotypicals.

THE SCENARIO

The Task
The purpose of the current study is to evaluate how goal-oriented
coordination between partners could be achieved through
sensorimotor adaptation. To do so, we designed a collaborative
multiplayer version of the game of Pong: a computer version of a
2D tennis where two players try to intercept falling targets from
the top before they hit the ground by moving their paddles at the
bottom of the screen. The paddles move on the same horizontal
line and can push each other but cannot switch sides. In this
game, one player is AI-controlled, and the other is a human.
Figure 1 represents an example of the proposed scenario.

For this task, we considered a collaborative team task like
playing tennis doubles, where each player should cover a
maximal part of their field so that all targets return to the
opponent’s side. Targets sometimes fall in the middle part of
the field, thus in a zone where both players could intercept
the target. The location of the target was randomly selected
from a uniform distribution of possible angles, and the pace
of the target drop was uniform across all trials. The velocity
of the artificial player was controlled and the same across
all trials and the velocity of the participant depended on
their motion on the trackpad. A player can be characterized
by the area they cover and intervene, given the target’s
direction. Typically, in a game of two, the area covered by
each player is half of the playable area. However, more active
players may sometimes overpass their area to try and catch
ambiguous targets directed toward the middle area. Collisions
with the other agent were penalized by subtracting a point, and
participants were informed about the penalty before beginning

FIGURE 1 | Example of a trial during the task. Targets fall from the top of the
screen and players need to intercept them before they hit the ground. The
player on the left (blue) is controlled by a human and the one on the right
(green) is the synthetic agent. This example represents interaction with the
“Middle” agent.

the task. To evaluate whether the synthetic agent’s behavior and
predictability can influence the humans’ behavior, we varied the
playing styles of the agent.

The AI-controlled player differs in the way it approaches the
target and the area in which it will intervene, resulting in three
different agents: “Wider,” “Narrower,” and “Middle.” A “Middle”
agent will try to intercept any targets that fall within its half of
the space and has a 0.5 probability of intercepting an ambiguous
target that falls in the middle. A “Wider” agent will try to intercept
the target and overpass its area to try and catch a target even if
the target’s position is not ambiguous. In contrast, a “Narrower”
agent would try to intercept the target without overpassing its
area; in fact, it would cover a space that is smaller than half of
the overall space. The next section explains in more detail how
the agent’s behavior is obtained.

The Point of Social Subjective Equality
To measure the collaboration between the human player and the
AI player, we introduce the Point of Social Subjective Equality
(PSSE). The PSSE can be computed for every two players and
all possible target trajectories. This measurement is an analytical
measure of collaboration (i.e., social affordance gradient) that
defines the probability of going for the target depending on
the target’s position (Figure 2, left). Therefore, the PSSE is the
point where each player has the same probability of going to
intercept the target (Figure 2, right) and is an extension of
the Point of Subjective Equality (PSE) (Stoloff et al., 2011) to
a socially collaborative task. PSE represents the point where
there is an equal probability of using any of the two hands to
reach a target (presented from left to right circularly in front
of the participant). Thus, the Point of Social Subjective Equality
indicates how a player is relying or not on the partner, invading
or not the partner’s area of the field while intercepting targets
in the horizontal range. In short, it is the point where a player
has an equal probability of intercepting the target or letting their
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FIGURE 2 | The left image represents the probability to go for the target
depending on the player’s relative distance to the target. The right image
depicts the Point of Social Subjective Equality (PSSE). Here, the green line
represents the AI agent (in this case, the “Middle” one) and the black line, a
simulated perfectly matched participant. The red dashed line represents the
moment when both agents have the same probability of going for the target.
The x-axis represents the relative distance of the agent from the target; the
y-axis, the probability it has to go for the target.

partner intercept it. To calculate it, we first calculate the relative
distance from the player to the target (Eq. 1), that is, the difference
between one player to the target and the other player to the target.
After that, we fit a sigmoid function with the distance to the target
(rel_dist), a constant factor (k), and a bias value (b) representing
the behavior of each of the agents (Eq. 2). We estimated the
parameters of the PSSE (k, bias, and rel_dist) by running a logistic
regression using sklearn1. To our knowledge, this is the first time
such a direct behavioral measure of collaboration is introduced.

rel_dist =
(
∣∣pt − pp2

∣∣− ∣∣pt − pp1
∣∣)

w
(1)

Representation of the relative distance (rel_dist). pt represents
the position of the target, pp2 represents the position
of the other agent, pp1 represents the position of the
participant, and w represents the width of the (game) screen.

PSSE =
1

1+ e−(k × rel_dist+b)
(2)

Representation of the Point of Social Subjective Equality
(PSSE). b represents each partner’s bias, rel_dist is the
relative distance from the target, and k is a constant
factor (k = 20).

Based on the PSSE, two complementary partners would
intercept the target with the same probability (P = 0.5, Figure 2,
right), whereas any shift would indicate a lack of balance between
the partners. As mentioned previously, participants play with
three different AI agents, and we modulated their behavior based
on this shift of the interception point. Our three proposed
agents, namely “Middle” (M), “Wider” (W), and “Narrower”
(N), have therefore different probabilities of intercepting the
target. More specifically, the “Middle” agent has a 0.5 probability
of going for an ambiguous target (when the target falls in

1https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

the center of the arena). A “Wider” agent is more prone to
invade the space of the participant; therefore, the curve of the
probability to intercept the target based on the target’s location
would fall toward the left part of the space. In contrast, the
“Narrower” agent is more prone to stay in its half of the space
and allow the participant to enter the AI agent’s space to catch
the target. Consequently, the curve would fall toward the right
part of the space. Thus, if we split the playable area into two
equally sized sides, one for the participant and the other for
the synthetic agent, a “Middle” agent would cover only its 50%
of the space, while the “Wider” would cover more than 50%
and the “Narrower,” less. Figure 3 provides an example of the
representation of the curve for each AI agent. The agents were
programmed to catch the target following a pre-defined strategy
(M, W, or N). Consequently, if a participant decided to leave
the target to the artificial agent, the agent’s behavior would
depend on the predefined strategy and therefore the position
of the target and the relative positions of the two players.
Thus, there would be cases where the ball would be intercepted
by the artificial agent and others where it would be missed,
however, the PSSE sigmoid function would not be affected by the
movement of the human player. The coefficient and the intercept
of this curve will allow us to assess participants’ adaptation to
the other agent.

MATERIALS AND METHODS

Participants
The ASD participants recruited for the study had previously
been diagnosed as autistic, meeting the DSM-5 criteria for
level 1 of autism (“Requiring support;” American Psychiatric
Association, 2013) (N = 15, one female, age: 18.67 ± 2.4). This
criterion comprises difficulties in initiating social interactions
and switching between activities. This group was recruited in
the Educa Friends center2, an educational support service part
of the Friends Foundation, focused on providing support to

2https://fundaciofriends.org/es/servicios/educafriends/

FIGURE 3 | Representation of the curve of the probability to intercept the
target based on the target’s location for each of the three proposed agents.
From left to right: the curve of the “Middle” agent lies in the middle as both the
synthetic agent and the human player have the same probability of
intercepting the target. In contrast, the curve of the “Wider” synthetic agent is
slightly skewed toward the left, as this agent will enter the space of the human
participant. In contrast, the “Narrower” agent’s curve is skewed toward the
right; this agent has a higher probability of staying toward its half of the space
and allowing the human participant to intercept the target.
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high-level functioning ASD individuals. All participants had a
normal or corrected-to-normal vision and were not color blind.
Participants were matched for handedness (all of them were
right-handed) and almost matched for age (same mean, different
standard deviation) and gender (only one female more in the
TD group). The typically developed participants were recruited
in a high school of Barcelona and the campus of the Polytechnic
University of Catalunya, and their age matched those with ASD
(N = 15, two females, age: 18.38 ± 1.06). Written informed
consent was obtained for all participants (for the ones under the
age of 18, parental written informed consent was obtained too).
The study was approved by the local ethical committee (Parc
de Salut del Mar).

Apparatus
Participants sat at a viewing distance of (approximately) 50 cm
from a 27-inch monitor that operated at a resolution of
1,920 × 1,080. The monitor was part of an All-in-One desktop
computer connected to a touchpad and a keyboard. The task was
generated using Python and the PyGame library, and participants
controlled their avatar using the touchpad. There was no auditory
feedback during the task. Figure 4 depicts the setup used.

Experimental Procedure
All participants were provided with an information sheet that
contained the explanation of the task and a consent form they
had to sign before beginning the experiment. For the underaged
participants, information sheets and consent forms were given
to both participants and their parents/legal tutors. Before the
main task, participants filled in a small questionnaire with
demographics and the frequency of playing video games. As
mentioned earlier, the task is a Pong adaptation, and the goal is
to intercept falling targets. The task was performed in a computer
using a touchpad and consisted of three main phases. In “Phase

FIGURE 4 | Representation of the setup used in the task. Participants sit in
front of a computer screen where the game was displayed. Participants
controlled the motion of their avatar using a touchpad.

1,” participants played alone for one block. In all phases, each
block consisted of 150 trials. The number of trials was decided
after running a pilot study with other participants (excluded
from this sample), both in the spectrum and neurotypical. To
our understanding, 150 trials are enough to cover the probability
distribution for each participant, as players do not really cover
all the horizontal range of the screen. According to the design
of the task, both players go for the target within their field
and only need to decide whether to go or not when the target
falls in the middle. Thus, the focus is on the center of the
distribution, narrowing the range of interest by requiring fewer
samples to build a probability distribution for each participant.
In “Phase 2,” participants played for one block with each of the
three AI players (in total three blocks), and finally, in “Phase
3,” participants played for one block with all agents. The order
of the three AI players in “Phase 2” was randomized and for
each type of the three AIs. “Phase 3” was used to assess the
social predictive abilities of the participants, as they had to
interact with a random agent in every trial (counterbalanced
so there were 50 trials with each agent). Each of the three
agents was depicted in a different color (Neutral, blue; Wider,
green; and Shy, White). Color choices were made arbitrarily.
Players’ positions were initialized to the center of their side
at the beginning of each trial. Participants were instructed to
avoid hitting the other agent and were penalized with one point
less if they did.

In this study, we used behavioral data, questionnaires, and
interviews as instruments to collect information about the
participants’ behavior and perception of the task. Between each
of the blocks, participants had to answer questions in a tablet.
The questions involved perceived collaboration and predictability
of the target and the other agent and engagement. To answer,
participants had to rate each of them on a Likert scale from 1 to 5.
At the end of the task, we carried out a semi-structured interview
to assess the perceived differences between agents, followed by a
debriefing session. Figure 5 represents the experimental protocol.
In total, the whole experiment took around 30 min and was
conducted in Spanish or Catalan, depending on the preferred
language of the participant.

Data Collection
To evaluate the behavioral and perceptual differences between the
two groups, we collected data gathered from the logs of the game
(behavioral), questionnaires, and short interviews (perceptual).
More specifically, from the logs of the game, we obtained
in a trial-by-trial basis the performance (one point if either
the participant or artificial player intercepted the target), the
identifier of the artificial player (M, W, N), and the position of the
player, target, and agent. The last three positions (the positions
of both agents during the last three time frames in the trial)
allowed us to obtain the PSSE measure (by analyzing their
relative distance when one of them intercepted the target), as
explained in Eq. 1.

The between blocks questionnaire allowed us to assess
participants’ perception of the task and the artificial agent. In
all blocks, participants evaluated task engagement and target
predictability. In “Phase 2” and “Phase 3,” where the artificial
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Explana on and

Pre-ques onnaire

Phase 1

Single agent

Phase 2
Block 1

With partner

Phase 2
Block 2

With partner

Phase 2
Block 3

With partner

Phase 3

Random p.

Post-ques onnaire

and Debrie�ng

Questionnaire
(Q) Q

(150 trials) (150 trials) (150 trials) (150 trials) (150 trials 50
per partner)

Q Q

FIGURE 5 | Representation of the experimental protocol. First, participants are introduced to the task and fill in a short questionnaire. The task comprises three
phases, which contain one, three, and one blocks (of 150 trials per block), respectively. In “Phase 1,” participants play alone. In “Phase 2,” participants randomly play
with each of the AI agents for one block (three blocks in total). In “Phase 3,” participants are presented with a random agent in each trial (50 trials per agent).
Self-reports on perceived collaboration, engagement, and agents’ and target predictability are presented between phases/blocks. Finally, participants fill in a short
questionnaire and undergo an interview and debriefing.

player was introduced, participants also evaluated the agent’s
predictability and collaboration. All items were reported on a
5-point Likert scale. At the end of the experiment, participants
were also asked to report if they thought the other player
was a human or a computer, adding “I do not know” as a
possible answer.

Finally, the short-structured interview at the end of the
experiment allowed us to assess with further detail participants’
perception of the task and the other agents. More specifically,
we asked participants to report on the overall perceived difficulty
of the task and report on how they perceived the other player.
Here, participants could describe the other player and if they have
identified any differences between the blocks. Furthermore, we
asked participants to assess the difficulty of “Phase 3” of the task
(in each trial, participants played with a random AI) and report if
they followed any strategy.

RESULTS

The following results have been analyzed in Python, using the
following libraries: NumPy, JSON, math, scipy, and sklearn. In
order to choose the statistical tests used in this analysis, we
ran normality tests in the variables. The intercepts of the PSSEs
during “Phase 2” had a normal distribution, so parametric tests
were used (One-Way ANOVA, in this case). The mean squared
errors in “Phase 2” did not show a normal distribution, so
non-parametric tests were used (Mann-Whitney U).

Behavioral Results
We defined performance as the ratio of caught targets out of
the 150 of each phase. A Mann Whitney U test (U = 892448.0,
p = 0.433) showed that there were no significant differences
between the two groups (ASD: median: 1.0, MAD: 0; TD:
median: 1.0, MAD: 0) in performance during “Phase 1” (when
participants played alone). Thus, possible differences in “Phase
2” and “Phase 3” should not be related to their performance
when playing alone.

Participants in the Autism Spectrum
Showed More Variable Behavior Than
Neurotypicals
To assess participants’ adaptation to the artificial player, we
calculated the Point of Social Subjective Equality (PSSE). First,
we look at the two groups’ behavior in “Phase 2,” where we
take into account all trials with each agent per block. To
analyze the differences between groups and agents, we calculated
the differences between the coefficients among groups for the
same agent, and among agents for the same group. There
were no differences between agents in their coefficients in none
of the groups (Figure 6). In terms of intercepts, there were
significant differences between agents in both the ASD [One-way
ANOVA (6,749) = 5.68, p = 0.007] and TD group [One-way
ANOVA (6,749) = 10.83, p < 0.001]. More specifically, an
independent samples t-test showed differences in the ASD group
were between the Middle and Narrow agents [t(4,499) = −2.11,
p = 0.04] and the Narrow and Wider agents [t(4,499) = 3.46,
p = 0.002]; and in the TD between the Middle and Narrow agents
[t(4,499) = −5.17, p < 0.001] and the Narrow and Wider agents
[t(4,499) = 4.01, p < 0.001].

The lack of significant difference between slopes could
mean that, generally, both groups adapted in a similar way.
Nevertheless, as we can see in Figure 6, participants in the
ASD group showed a higher probability of going (∼0.25) with
a relative distance larger than 0. This means that they had more
tendency to go toward the target than the TD group (which
probability at that time was around 0.07), even when they should
not. The differences in intercept represent the adaptation of each
group to the specific agent they were playing with. In the next
sections, we will quantify the variability of each group and their
behavioral changes with respect to the other agent.

To assess the variability among participants in each group, we
calculated the mean squared error between each participant and
the general mean. To do so, we first calculated the general mean
of the coefficients extracted from the data points obtained in all
trials in all blocks from “Phase 2” in both groups. From that,
we calculated the average of those data points and obtained a

Frontiers in Human Neuroscience | www.frontiersin.org 6 October 2020 | Volume 14 | Article 559793

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-559793 October 3, 2020 Time: 17:47 # 7

Blancas et al. Collaboration Variability in ASD

TD

ASD

FIGURE 6 | PSSE intersections from the TD and ASD groups (top and orange and bottom and blue, respectively). From left to right: the PSSE curve of the AI agent
(depicted in green) and that of the participants, depicted in orange (TD) and blue (ASD), when playing with a “Middle” (N), “Wider” (A), and “Narrower” (S) agent
respectively. The bright colors represent standard deviation, while the darker and thicker line represents the mean.

representative mean squared error per group (ASD: 0.08 ± 0.08;
TD: 0.001 ± 0.001). A Mann Whitney U test was used to
analyze the differences between groups against the general mean
(U = 9.0, p < 0.001). Moreover, when assessing the variability
inside of each group (that is, the variability compared to the
mean of their group), the difference is even higher (U = 0,
p < 0.001). The U equal to zero signifies that all the mean squared
errors in the ASD group are greater compared to all the ones
in the TD group.

Participants in the Autism Spectrum
Showed Slower Adaptation to the
Artificial Agent Than Neurotypical Ones
To further understand the two groups’ adaptation, we then
looked at a possible evolution in time of the PSSE, and more
specifically, whether early (50 first trials) and late (50 last trials)
trials differed between the groups in “Phase 2.” To do so, we
analyzed the shift in PSSE for each of the agents. We used the
“Middle” agent as a baseline and subtracted from it the shift
for the “Wider” and “Narrower” agents. Like this, we could
calculate how much the participants’ behavior changed when
encountering the “Wider” and “Narrower” agents. As we can
observe in Figure 7, we found statistically significant differences
between the two groups for the “Wider” agent in the early trials
(U = 65.0, p = 0.042) but not the late trials. We did not find
any statistically significant differences between groups for the
“Narrower” agent in both early and late trials.

Participants in the Autism Spectrum
Showed Less Adaptation to the Other
Agent When the Task Became More
Uncertain
During “Phase 2” we have shown that healthy subjects acquired
an ad hoc behavioral strategy (i.e., PSSE shift) from the
interaction with each individual agent and that the adaptation

process was more pronounced in healthy subjects compared
to control. During “Phase 3” we aim at assessing whether this
strategy can be correctly retrieved when the subjects interact
with each agent in a randomized order. We hypothesized that
the ASD group will be less able to retrieve a correct strategy,
potentially due to the reduced ability to form an internal model
of the partner. To do so, for every subject we compute the PSSE
associated to each agent during “Phase 2.”

In “Phase 2,” participants played for one block with each
of the three AI agents. In contrast, in “Phase 3,” participants
encountered a random AI player in each trial for one block.
As mentioned earlier, the characteristic that distinguishes the
agents’ behavior is the color, and if players have not made the
color association with the agent’s behavior, “Phase 3” becomes
more uncertain. Here, we wanted to assess how much the players’
behavior in “Phase 3” matches that of “Phase 2” when playing
with the same agent during each of the blocks. To do so, we ran
a logistic regression using participants’ behavior during “Phase
2” as our “training data,” and compared against their behavior
during Phase 3, which was used as “testing data.” PSSE for
each agent is described by a logistic function with constant k
and intercept i. We further group the trials from “Phase 3”
according to the agent type and extract, similarly to “Phase 2,”
the probability of the subject to go for the target or to let the
partner go (p = 1 and p = 0, respectively). Finally, we compute
for every agent how accurately the parameters of the PSSEs from
“Phase 2” describe the behavior (i.e., probability of going for
the target) observed in “Phase 3.” The rationale is that high
accuracy of the model from “Phase 2” in describing the behavior
of “Phase 3” would confirm the hypothesis that a behavioral
strategy tight to each individual agent has been learned and can
be correctly retrieved.

In the left panel of Figure 8, we show the mean accuracy
matrix for the control group and the ASD group. This is obtained
by computing for every subject the accuracy of each PSSE agent
model (predicted) in describing the data of each agent during
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FIGURE 7 | Differences between groups in the difference in shift per agent (compared to the “Middle” one). The upper plots represent early (0–50) trials and the
lower plots, late (100–150) trials. Blue represents the ASD group; orange, the TD; and the red line represents the median.

FIGURE 8 | Matrix representing the relationship between Phase 2 (actual) and
Phase 3 (predicted) behavior. The blue matrix represents the group in the
autistic spectrum, while the orange one represents data from the neurotypical
group.

“Phase 3.” This generates a set of 3 × 3 matrices that are further
averaged for each group. This result suggests that the participants
in the neurotypical group (right, orange) behaved in the same way

in both phases, with a mean accuracy score of 0.97). However,
the participants in the ASD group (left, blue) did worse in
properly matching their behavior to the one in the previous phase
(mean accuracy score of 0.74). A Mann Whitney-U test showed
significant differences between the accuracy for both groups in
matching Phases 2 and 3 behavior (U = 0, p = 0.03). These results
could suggest that participants in the TD group developed a
model of the other player during “Phase 2” that they later used to
adapt their behavior in “Phase 3”; participants in the ASD group
failed to do so.

No Differences in Perception of the Task
Between Groups, Only by Perceiving the
Other Agent as Human or Synthetic
As previously mentioned, participants had to answer a short
questionnaire between blocks. More specifically, participants
evaluated target predictability, engagement (in all blocks), as well
as agent predictability and collaboration (in the blocks where the
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FIGURE 9 | Differences between agents and groups in perceived agent predictability, target predictability, engagement, and collaboration. Blue represents the
results for the “Narrower” agent; orange, for the “Middle” agent; and green, from the “Wider” one. Red lines represent means.

AI agent was introduced). There were no significant differences
in engagement or target predictability between “Phase 1” and
the rest of the task. In “Phase 2,” participants rated each agent
at the end of each respective block (Figure 9). Results suggest
no statistically significant differences between groups in any of
the dimensions. Nonetheless, participants in the ASD group
seemed to feel more engaged with the task than the neurotypical
group. Additionally, we observe higher variability in the ASD
group when evaluating target predictability. In contrast, the
TD group evaluated the target’s predictability similarly in all
three blocks. Regarding collaboration, both groups reported the
“Middle” agent as the most collaborative one. Finally, we could
observe differences in the perceived agent predictability, where
the “Narrower” agent was perceived as less predictable by the
ASD group than the TD one.

Finally, at the end of “Phase 3,” participants reported if they
were interacting with a human or a computer. There were no
significant differences between the ASD and TD groups as to how
many participants thought they were playing with a human or a
computer. Interestingly, if we divide participants into two new
groups (those that thought the other agent was a human and
those who thought it was a computer), we observe differences
in perceived collaboration (Figure 10). Participants that thought
the other agent was a human perceived it as significantly
more collaborative (Human: median 4.0, MAD: 0.0; Synthetic:
median: 3.0, MAD: 1.0; Mann-Whitney U: 37.0, p = 0.01). More
specifically, when comparing among agents (by assessing the
answers during Phase 2, where participants provided self-reports

FIGURE 10 | Differences in perceived collaboration between the participants
that perceived the AI agent as synthetic or as a human player. The white dot
represents the median.

for each of the agents separately), the agent that was perceived
as more collaborative was the “Middle” (Human: median 5.0,
MAD: 0; Computer: median: 3.0, MAD: 2.0; Mann-Whitney U:
33.0, p = 0.009), followed by the “Wider” (Human: median 4.0,
MAD: 1.0; Computer: median: 3.0, MAD: 1.0; Mann-Whitney
U: 43.0, p = 0.04) and the “Narrower” (Human: median 4.0,
MAD: 1.0; Computer: median: 3.0, MAD: 2.0; Mann-Whitney U:
43.5, p = 0.04).
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Participants in the ASD Group Focused
on Movement to Describe the Other
Agent
After the last questionnaire in “Phase 3,” participants underwent
a short structured interview, which lasted ∼10 min. First,
participants were asked to report the difficulty of the task and
how well they performed. We later asked them to comment
and describe the other agent they interacted with. In the case
where participants reported differences between the agents, we
also asked them to provide a short description for each agent.
When participants described the agent(s) they interacted with,
we identified the following common features: movement (how
fast/slow the agent was perceived), field use (how much of
the field the agent was using), color (the color of the agent),
and collaboration (how collaborative the agent was perceived).
Figure 11 depicts the frequency of use of these characteristics
to differentiate between the agents (sometimes, more than
one per subject). In the ASD group, the most commented
characteristic was the agents’ movements (53%), followed by their
field use (33%), perceived collaboration (13%), and color (6%).
In the TD group, the frequency of use of the characteristics
is more homogeneous. Here the most frequent characteristics
are collaboration and field use (38%) followed by color and
movement (30%). Moreover, one participant in the TD group
differentiated between the agents by their perceived performance.

The two groups mainly differed in the type of characteristics
they used to describe the other agent. Participants in the ASD
used more personality-related terms to describe the behavior
of the other agent (“it’s Narrower,” “it’s more selfish”) than
neurotypical participants, who used a more performance-related
vocabulary (“it was playing well,” “it was taking my targets”).
When asked about “Phase 3,” in which they played with a
random AI agent in each trial, participants in the ASD group

FIGURE 11 | Frequency of characteristics commented about during the
interviews. Blue represents collaboration-related characteristics; purple,
color-related ones; green represents characteristics related to field use; and
orange, characteristics related to movement. The sum of the frequencies
inside each group surpasses 100% because some subjects highlighted more
than one characteristic.

communicated an added difficulty caused by larger uncertainty.
Some reported not knowing if the other agent would go or not
for the target; others reported that the task required more focus
(“You never know what can happen or how will the other player
react. You had to be more focused”). Only one subject reported
a relationship between the agent’s color and its behavior and
using it to decide to go or not for the target. In contrast, in
the TD group, more participants reported using color to identify
the agent and act accordingly. For both groups, “Phase 3” was
perceived as more complicated and confusing than the others.

DISCUSSION AND CONCLUSION

The main purpose of this study was to evaluate the ability
to predict another agent’s behavior based on sensorimotor
interaction and how these predictive abilities affect collaborative
interaction and differ between ASD and Typically Developed
(TD) individuals. We created a task where participants had to
learn the behavioral characteristics (as exhibited by sensorimotor
contingencies) of a synthetic agent and collaborate with the agent
to maximize reward. Each player controlled an avatar, and the
goal was to intercept falling targets. To assess collaboration, we
developed the Point of Social Subjective Equality (PSSE) that
calculates the probability of a player of going for the target given
the target’s position. Finally, we examined possible perceptual
differences regarding the task between the two groups.

Discussion on Differences in Behavior
As we observe larger individual differences between participants
in the autism spectrum (compared to neurotypicals), we
hypothesized that participants in the autism spectrum would
show more variable behavior than neurotypicals during the task.
Our analysis of the differences in variability between the ASD and
TD groups suggests that, indeed, the ASD group showed larger
variability compared to the TD individuals.

Social impairments associated with sensorimotor difficulties
are a characteristic of the disorder, and we assumed that ASD
individuals would encounter difficulties in predicting the AI
player’s behavior. Thus, we hypothesized that participants in the
autism spectrum would show slower and less adaptation to the
other agent than neurotypical ones. To assess this, we analyzed
the differences between groups in adaptation to the other agent
during Phase 2, and we showed differences in adaptation between
groups in early trials but not in late ones, showing differences in
adaptation timing. Our results show differences in the behavior
of neurotypical and ASD individuals when playing with the three
different synthetic agents. We observe the ability to converge
to a complementary PSSE in the case of the control group.
However, we do not observe the same with the ASD participants.
Furthermore, we assessed the online adaptation to the artificial
player by looking at the differences in errors between early and
late trials among groups. Our results seem to reflect a more
accurate adaptation in the neurotypical group than in the ASD.

Finally, as ASD individuals seem to find difficulties when a
task is uncertain, we postulated that they would fail to predict
the behavior of the AI agent correctly and, therefore, adapt less
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to the AI agent compared to the typically developed group. By
comparing the participants’ behavior with each agent in “Phase
2” and “Phase 3,” we can assess whether they applied previously
acquired information from the sensorimotor contingencies of
the AI agent (“Phase 2”) to a more uncertain task (“Phase 3”)
and predict the agent’s behavior. Our results suggest differences
in the prediction of the agent’s behavior. More specifically,
TD individuals were able to develop a better model of the
artificial player in “Phase 2” and apply that information to
adapt their behavior in “Phase 3,” while participants in the ASD
failed to do so.

These results suggest that neurotypical individuals can adapt
their behavior according to the AI player and converge to an
optimal game strategy by observing the sensorimotor patterns
of their partner. In contrast, ASD patients seem to lack this
ability, suggesting an impairment of socSMCs, possibly due to
their lower predictive skills (Schmitz et al., 2003; Sinha et al., 2014;
Wang et al., 2014).

Discussion on Differences in Perception
To understand possible perceptual differences between the
two groups, we looked at the questionnaires provided to the
participants after the completion of each block, and the short
structured interview at the end of the task. Participants at the end
of each block reported how they evaluated the task, the target,
and the other player in terms of engagement, predictability,
and collaboration. Although we did not find any statistical
significance in any of the items, participants in the ASD group
seemed to perceive the task as overall more engaging than the
TD group. Participants in the TD group perceived the task as
less engaging when interacting with the “Wider” agent. When
evaluating the agent’s predictability, the “Narrower” agent was
perceived as less predictable by the ASD group compared to
the TD. Playing with the different agents did not seem to affect
target predictability in the TD group. However, we observe higher
variability in the reported target predictability in the ASD group
when playing with the “Narrower” and “Middle” agents. In terms
of collaboration, both groups rated the “Middle” agent as more
collaborative than the “Narrower” and “Wider.” Despite a lack of
significance, our results provide possible insights on perceptual
differences regarding the tasks’ characteristics with respect to the
agent’s behavior. However, more data needs to be collected.

At the end of the task, we asked participants to report whether
they thought they interacted with another human or a computer.
We found no significant differences between the two groups.
The agent was perceived as significantly more collaborative by
participants that thought they were playing with a human instead
of a computer. More specifically, the “Middle” agent was rated
50% more collaborative when participants thought it was another
human. Indeed, according to Turing’s test (Turing, 1950), the
behavior of a machine can be confused with that of a human.

Finally, the short-structured interview allowed us to assess
further the perceived differences of the agents between the
ASD and TD groups. The main differences arise from the
characteristics used to describe the agents. Participants in the
ASD group mainly commented on the agents’ movements,
followed by their field use. The agents’ color was the

characteristic less commented about. In contrast, the TD group
differentiated between the agents by almost equally exploiting
all three characteristics. The focus on movement as the main
differentiating characteristic is something to be expected from
the ASD group, as individuals in the spectrum tend to focus
on moving objects. Moreover, the fact that almost no subject in
the ASD group commented on the agents’ color as a significant
trait could support the idea of the lack of model generation. If
the agent’s color was a characteristic that could help participants
predict its behavior, it would be unnecessary to consider it if no
model was being created.

GENERAL DISCUSSION

The contributions of this study are two-fold. On the one hand,
we formulated and introduced the Point of Social Subjective
Equality (PSSE), a concept that allowed us to model the behavior
of both humans and artificial agents in a collaborative task.
By observing the PSSE, we quantified the degree of behavioral
adaptation and how it can be modulated based on the variation of
sensorimotor contingencies of the synthetic agent. On the other
hand, this study demonstrated how collaborative behavior could
implicitly emerge and be modulated through the observation of
sensorimotor patterns of the partner.

Our behavioral analysis showed lower and slower adaptation
to the artificial player by the ASD group. Similar results were
found in Lieder et al. (2019), where participants in the autistic
spectrum showed lower and slower adaptability in the task
than their neurotypical counterparts. However, previous studies
examining sensorimotor planning in individuals with ASD have
yielded conflicting results. Some studies indicate an impairment
in prospective control in ASD (Hughes, 1996; Scharoun and
Bryden, 2016). In contrast, other studies showed no significant
differences (Hamilton et al., 2007; van Swieten et al., 2010).

The larger variability in behavioral results of the ASD group is
also present in the self-reported data. Nevertheless, the perceived
predictability and collaboration during the task showed no
differences between groups in these measures. Interestingly, the
differences in the behavioral data but not in the self-reports raise
the question of self-awareness. Could that be due to a lack of
metacognition or due to a coping mechanism? Unfortunately, our
current data do not allow us to answer this question, and further
studies need to be conducted.

CONCLUSION AND FURTHER STEPS

In conclusion, this study adds to the literature possible ways
of measuring collaboration through sensorimotor contingencies,
and how this collaboration is impaired in individuals with
ASD. While this study provides a preliminary insight, several
limitations need to be discussed. First, further studies with
larger sample sizes are needed to better control for individual
differences. Furthermore, it is important to note that our study
lacks female participants, as the main general users of the ASD
center we collaborated with were males. This is in line with
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the larger occurrence of autism in male individuals compared
to female ones. Despite these limitations, this study proposes
a simple (and non-invasive) method to evaluate the predictive
abilities of individuals in the autism spectrum. To do so, more
data would be needed, as the main limitation of this study is the
weakness of its statistical power.

Possible uses of this application would go in the line of an
environment where the user could train their social abilities in
a controlled and adaptive way. The system could be used to
improve the abilities of non-neurotypical people by training their
predictive skills. Like this, individuals in the spectrum could not
only train their tracking of moving objects and predict their
trajectories but also train their reading and understanding of
non-verbal cues. The task offers the possibility of merging these
two types of prediction (related to objects and social interaction),
in a game-like manner.

To the moment, the PSSE has not been contrasted with any
kind of diagnostic tool for ASD. In the future, a validation of the
PSSE measurement in comparison with a screening tool could
allow for a stronger claim on distinguishing between these two
groups. However, at this point, we do not claim that it can be
either a diagnostic tool or a tool to be able to distinguish between
the two groups, but we highlight the possibility.
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