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To improve the spatial resolution of imaging and get more effective brain function
information, a multi-distance probe configuration with three distances (28.2, 40, and
44.7 mm) and 52 channels is designed. At the same time, a data conversion method
of modified Beer–Lambert law (MBLL) with partial pathlength (PPL) is proposed. In
the experiment, three kinds of tasks, grip of left hand, grip of right hand, and rest,
are performed with eight healthy subjects. First, with a typical single-distance probe
configuration (30 mm, 24 channels), the feasibility of the proposed MBLL with PPL is
preliminarily validated. Further, the characteristic of the proposed method is evaluated
with the multi-distance probe configuration. Compared with MBLL with differential
pathlength factor (DPF), the proposed MBLL with PPL is able to acquire more obvious
concentration change and can achieve higher classification accuracy of the three
tasks. Then, with the proposed method, the performance of the multi-distance probe
configuration is discussed. Results show that, compared with a single distance, the
combination of the three distances has better spatial resolution and could explore
more accurate brain activation information. Besides, the classification accuracy of the
three tasks obtained with the combination of three distances is higher than that of
any combination of two distances. Also, with the combination of the three distances,
the two-class classification between different tasks is carried out. Both theory and
experimental results demonstrate that, using multi-distance probe configuration and
the MBLL with PPL method, the performance of brain function detected by NIRS can
be improved.

Keywords: functional near-infrared spectroscopy, multi-distance probe configuration, modified Beer–Lambert
law with partial path length, activation map, classification

INTRODUCTION

Functional near-infrared spectroscopy (fNIRS) is a widely used non-invasive functional
neuroimaging technology (Sato et al., 2016). Moreover, fNIRS is a safe, low-noise, portable, easy-
to-use, and low-cost technique (Naseer and Hong, 2015). It has a higher spatial resolution than
electroencephalogram and has a better temporal resolution than functional magnetic resonance
imaging (fMRI). FNIRS device measures the intensity of light after passing through a certain brain
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area. Then the measured light intensity could be converted to
the change of oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (HbR) concentrations with some algorithms, and
further the activation state of this area can be determined. Since
first implemented about 25 years ago, several results have proven
that fNIRS is an effective tool to study brain function and
disease (Hoshi and Tamura, 1993; Kato et al., 1993; Villringer
et al., 1993; Hoshi, 2005; Fujimoto et al., 2014). Now brain–
computer interfaces based on fNIRS and the clinical application
of fNIRS both have significant growths (Naseer and Hong, 2013;
Khan et al., 2014, 2018; Naseer et al., 2014; Hong et al., 2015;
Naseer and Hong, 2015).

For fNIRS, there are three typical techniques: continuous
wave (CW), frequency domain, and time domain (Scholkmann
et al., 2014). CW-fNIRS is one of the most popular fNIRS
techniques. For a certain CW-fNIRS instrument, its temporal
resolution is limited within a range and cannot be improved.
However, the spatial resolution both in depth and laterally could
be improved with some methods, for example, designing an
appropriate probe configuration. Probe configuration refers to
the distribution and connections between sources and detectors.
A connection between a source and a detector is called a channel,
and the distance of the channel is the separation of the source
and the detector. In the early applications of fNIRS, the probe
configurations of experiments were based on single-distance
channel (Maki et al., 1995; Franceschini et al., 2003). Later, probe
configuration with multi-distance channel was proposed. Once
proposed, it was continuously adopted in the experiment. In
2014, Gagnon et al. (2014) used two kinds of multi-distance
channels, eight channels of 10 mm and four channels of 30 mm, in
a finger tipping task to improve the reduction of superficial noise.
In 2016, Nguyen et al. proposed a bundled-optode method, which
contains seven kinds of distances ranging from 25 to 50 mm,
to detect the changes of HbO and HbR concentrations (Hoang-
Dung and Hong, 2016). In 2017, adopting a probe configuration
with multi-distance channels of 15, 21.2, 30, and 33.5 mm, Shin
et al. (2017) verified the effectiveness of multi-distance channels
to enhance the performance of fNIRS-BCI.

Besides, there are many algorithms to convert the measured
light intensity to the concentration change of HbO and HbR,
and the modified Beer–Lambert law (MBLL) is one of the most
used algorithms (Scholkmann et al., 2014). As human tissue
is a strong scattering medium for the near-infrared light, the
Beer–Lambert law cannot be directly applied to biological tissue.
British Delpy et al. took the light scattering into account and
developed the MBLL in 1988 (Delpy et al., 1988). For MBLL,
the differential pathlength factor (DPF) is usually estimated
as a constant (about 6) (Duncan et al., 1995). However, for
multi-distance probe configuration, light will penetrate different
depths and pass through different brain tissue layers. For shorter
distance channels, light may only pass through the scalp and
skull (Strangman et al., 2014; Sato et al., 2016), whereas for
longer distance channels, light is possible to pass through
the cerebrospinal fluid (CSF), gray matter (GM), and white
matter (WM) (Okada et al., 1997). Therefore, for multi-distance
probe configuration, it will be more reasonable to take the
pathlength of different layers into consideration. In the study

of quantifying the influence of scalp and skull thickness on
sensitivity of near-infrared neuromonitoring, Strangman et al.
(2014) concluded the relationship between partial pathlength
(PPL) of different layers and the channel length. However, they
did not apply this relationship into the calculation of HbO and
HbR concentration change.

To improve the spatial resolution of imaging and obtain more
effective brain activation information, a multi-distance channel
with 52 channels is designed, which includes 12 channels of
28.2 mm, 24 channels of 40 mm, and 16 channels of 44.7 mm.
Besides, a method of MBLL with PPL is proposed to compute
the concentration change of HbO and HbR. For a preliminary
verification, another single-distance channel with 24 channels of
30 mm is also implemented. An experiment of three tasks, grip-
stretch of left hand (LG) and right hand (RG) and rest (RE),
is carried out with eight subjects. The reconstructed activation
map and the classification accuracy are shown to reflect the
performance of the proposed method, compared with MBLL
with DPF. Then, with the proposed method, a classification is
carried out to compare the performances of different distance
combinations of the multi-distance probe configuration. Besides,
with all 52 channels of the multi-distance probe configuration
and MBLL with PPL, a classification of different tasks is
also implemented.

MATERIALS AND METHODS

fNIRS Instrument and Subjects
A three-wavelength (740, 808, and 850 nm) CW-fNIRS
instrument (NirScan; Danyang Huichuang Medical Equipment,
China) is utilized to acquire the fNIRS signals. There are 24
sources and 42 detectors in total, and more than 100 channels
can be created by the combination of those sources and detectors.
Emitted by all sources, the raw light intensity is a certain
unknown constant. The remaining light intensity detected is
stored by the instrument and then transported to a computer.
The maximum sampling rate is set to 50 Hz, and the minimum
dynamic range could reach 120 dB.

Eight subjects (five males and three females, ages range
between 22 and 24) are invited to perform the experiment.
All subjects are healthy and right handed. None of them
have any neurological impairment or mental disorder. Before
the experiments, the precautions of the experiment are clearly
explained to the subjects. During the experiment, subjects are
sitting in a comfortable chair in front of a computer. All
experiments strictly adhere to the ethical standards and standard
biosecurity and institutional safety procedures.

Probe Configuration and Experiment
Design
To explore more active areas and improve the spatial resolution
of imaging, a multi-distance probe configuration is designed. As
shown in the left panel of Figure 1, this probe configuration
is composed of 12 sources and 20 detectors, which are made
up of two separate parts. Indicated with a black dotted line,
the distance between two adjacent transducers is 20 mm along

Frontiers in Human Neuroscience | www.frontiersin.org 2 November 2020 | Volume 14 | Article 569508

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-569508 November 2, 2021 Time: 10:25 # 3

Chen et al. Improvement of Detecting Brain Function

FIGURE 1 | Multi-distance probe configuration. Red and blue circles represent sources and detectors, respectively. In the horizontal and vertical directions, the
distance between two adjacent probes is 20 mm. Black line segments in (A) represent channels of 28.2 mm, pink segments in (B) represent channels of 40 mm,
and sky-blue line segments in (C) represent channels of 44.7 mm.

both horizontal and vertical directions. As depicted in the right
panel, various pairings of sources and detectors make three kinds
of channels with different distances. Marked with a black solid
line, the shortest channel configures a 28.2 mm source–detector
distance. Respectively identified with pink and sky-blue solid
lines, the other two channels correspond to a 40 mm and a
44.7 mm source–detector distance. When the source–detector
distances are 28.2, 40, and 44.7 mm, the corresponding numbers
of channels are 12, 24, and 16. For this probe configuration,
the total number of channels is 52. Also, the position of each
channel is defined as the midpoint of the corresponding source
and detector. For instance, if the positions of source and detector
are (x1, y1, z1) and (x2, y2, z2), the coordinate of the channel is
computed as (x, y, z) = [(x1 + x2)/2, (y1 + y2)/2, sqrt((x1 - x2)2

+

(y1 - y2)2)/2].
To make a preliminary verification, a single-distance probe

configuration with 8 sources, 10 detectors, and 24 channels is also
designed. As exhibited in Figure 2, the probe configuration is also
made up of two separate parts. One is centered on C3 and covers
the left-brain area; another is centered on C4 and covers the right-
brain area. Each part contains 4 sources and 5 detectors, and
12 channels. The distance between two adjacent transducers is
30 mm in both horizontal and vertical directions, and the length
of all channels is 30 mm.

For this experiment, eight blocks are implemented, four for the
single-distance probe configuration and four for multi-distance
probe configuration. Figure 3 illustrates the process of a block. As
can be seen, each block will last for 425 s, including 5 s baseline
acquisition and 30 trials. Every trial is 14 s, 1 s for cuing, 4 s
for task and 9 s for rest. The baseline signal is only acquired at
the beginning of a block. When acquiring the baseline signal, the
computer screen is black, and subjects sit in the chair in front of
the computer with a relaxed state. During the cuing, three kinds
of cues, a green cross with red-left arrow, a green cross with red-
right arrow, or a green cross, will appear on the screen at random.
When the cue appears, subjects should make a preparation for the

FIGURE 2 | Single-distance probe configuration. Red and blue circles
represent sources and detectors, respectively. In the horizontal and vertical
directions, the distance between two adjacent probes is 30 mm. Green line
segments represent channels, and the distance of all channels is 30 mm.

corresponding task. The cue of green cross represents the task of
rest (RE), green cross with red-left arrow represents the grip of
left hand (LG), and green cross with red-right arrow represents
the grip of right hand (RG). Later, a cross will appear on the
screen and subjects will perform the corresponding task for 4
s according to the cue. During the task period, the grip of left
hand or right hand will be performed four or five times. Then the
green cross will disappear, and the computer screen turns black.
At that moment, subjects could have a short rest for 9 s. In a
block, each task will be executed 10 times. Therefore, for a probe
configuration, each task would be executed 40 times.

Concentration Convert
First, according to formula (1), the stored remaining light
intensity is normalized. i, t, and λ represent the channel number,
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FIGURE 3 | Experiment process of a block. A block will last for 425 s, including 5-s baseline acquisition and 30 trials. Every trial is 14 s, 1 s for cuing, 4 s for task,
and 9 s for resting.

time, and wavelength, respectively. For i− th channel, Ii (t, λ)
and Ii

out (t, λ) are the normalized and remaining light intensity
at time t of wavelength λ, and Ii

out (λ) is the mean light intensity
of wavelength λ.

Ii (t, λ) = Iiout (t, λ) /Iiout (λ) (1)

For MBLL with DPF, the function between the normalized
light intensity and concentration changes of HbO and HbR can
be described as formulas (2) and (3). 1OD, a unitless value,
represents the change of optical density. ε is the molar extinction
coefficients, and the values of different wavelengths are listed in
Table 1 (Matcher et al., 1995). 1C is the concentration change. d
is the length of a channel.

1ODi (t, λ) = − log10
[
Ii (t, λ)

]
=
[
εHbO (λ) 1Ci

HbO (t)+

εHbR (λ) 1Ci
HbR (t)

]
DPF · d (2)

Taking three wavelengths into consideration, 1C could be
calculated with formula (3). For MBLL with DPF, the value of
DPF is a constant and usually takes 6. The pathlength is the
product of DPF and d, through which light passes. However, for
multi-distance probe configuration, light will penetrate different
depths and pass through different brain tissue layers, and the
pathlength is different for different probe distances.

[
1Ci

HbO (t)
1Ci

HbR (t)

]
= d−1

· A−1
· B,

A =

 εHbO (λ1)

εHbO (λ2)

εHbO (λ3)

εHbR (λ1)

εHbR (λ2)

εHbR (λ3)

,B =

1ODi (t, λ1) /DPF
1ODi (t, λ2) /DPF
1ODi (t, λ3) /DPF

(3)

Taking the PPL of different layers into consideration, an
improved method, MBLL with PPL, is proposed and investigated.
First, the relationships between the PPL of different layers and
channel length are expressed by formula (4)–(8) based on the
simulation data in Strangman et al. (2014). The pathlength (PL)
can be computed by formula (9), where PPLscalp, PPLskull, PPLCSF ,
PPLGM , and PPLWM are the partial pathlength of scalp, skull, CSF,
GM, and WM, respectively.

PPLscalp =
{

0.75× d + 37.5, 20 ≤ d ≤ 35
0.4× d + 48.5, 35 ≤ d ≤ 60

(4)

PPLskull =
{

2.71× d − 1, 20 ≤ d ≤ 35
1.2× d + 33, 35 ≤ d ≤ 60

(5)

PPLCSF =
{

d − 15, 20 ≤ d ≤ 45
1.17× d − 22.5, 45 ≤ d ≤ 60

(6)

PPLGM =
{

d − 15, 20 ≤ d ≤ 45
0.92× d − 11.2.5, 45 ≤ d ≤ 60

(7)

PPLWM
= 0.1× d − 2, 20 ≤ d ≤ 60 (8)

PL = PPLscalp + PPLskull + PPLCSF + PPLGW + PPLMW (9)

When taking PPL into consideration, formula (2), (3) would
be transformed into formula (10), (11). For channels of different
lengths, PL can be calculated according formula (4)–(9), and then
the value of PL is used in formula (11) to get the concentration
changes of HbO and HbR.

1ODi (t, λ) = − log10
[
Ii (t, λ)

]
=
[
εHbO (λ) 1Ci

HbO (t)+

εHbR (λ) 1Ci
HbR (t)

]
PL (10)

[
1Ci

HbO (t)
1Ci

HbR (t)

]
= A−1

· C,

A =

 εHbO (λ1)

εHbO (λ2)

εHbO (λ3)

εHbR (λ1)

εHbR (λ2)

εHbR (λ3)

,C =

1ODi (t, λ1) /PL
1ODi (t, λ2) /PL
1ODi (t, λ3) /PL

 (11)

For each block, the recorded light intensity is first translated
into the change of optical density. Second, the data are bandpass
filtered between 0.01 and 0.2 Hz. Third, MBLL with PPL
and MBLL with DPF are adopted, respectively, to accomplish
the concentration convert. Then, trials are extracted and the
concentration change within the 0–5 s of a block is considered
as the baseline and subtracted from each trial in this block.

Classification
To verify the advantages of the proposed method over the MBLL
with DPF, classification of the three tasks is performed with
the MBLL with DPF and the proposed method, respectively.

Frontiers in Human Neuroscience | www.frontiersin.org 4 November 2020 | Volume 14 | Article 569508

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-569508 November 2, 2021 Time: 10:25 # 5

Chen et al. Improvement of Detecting Brain Function

TABLE 1 | Extinction coefficient at wavelengths of 740, 808, and 850 nm.

λ (nm) εHbO(mM−1 cm−1) εHbR(mM−1 cm−1)

740 0.4920 1.3411

808 0.8164 0.8040

850 1.1596 0.7861

Besides, with the proposed method and the multi-distance
probe configuration, the classification is implemented to test
the performance of the combination of different distances.
For classification, support vector machine (SVM) is selected
compared with linear discriminant analysis (LDA) and artificial
neural networks (ANNs) because SVM is more suitable for
ternary classifications than LDA and is easier than ANN in
operation. The template of SVM is created by the Matlab function
templateSVM. In the template, “Standardize” is set to 1 and
others are set as default options. Second, five feature vectors
are constructed, including mean, variance, maximum, skewness,
and kurtosis of concentration change of HbO. The calculation
method of the five features refers to the paper of Naseer et al.
(2016). Considering the effect of hemodynamic delay, features
are calculated with the concentration change of HbO in the time
window of 2–8 s for every trial. The classification of different
tasks is also discussed, including the binary classification (LG/RG,
LG/RE, RG/RE) and ternary classification (LG/RG/RE).

To make classification accuracy more reliable, a 10-fold cross-
validation is carried out 10 times for every subject. Besides, to
make the results more convincing, the average of the 10 times’
accuracies is calculated as the final accuracy for every subject.

RESULTS

Timing Analysis of Measurement Data
For the experiment, it is critical to ensure the effectiveness of
the measured data. With MBLL, the averaged concentration
changes of all channels are analyzed first. Taking single-distance
probe configuration for example, Figure 4 is the concentration
changes of HbO and HbR of a subject within a block. The time
window covered by the rectangle is the 1–7 s of each trial (the

time distribution of a trial is shown in Figure 3), including the
task period and the 2 s immediately after the end of the task
period. The rectangles of different colors represent different tasks.
The yellow, cyan-blue, and gray represent the task of LG, RG,
and RE, respectively. As can be seen, the change of HbO is
more significant than HbR, which is consistent with the human
physiological changes. Also, the concentration change of HbO is
discussed in the following analysis.

As illustrated in Figure 4, three kinds of tasks are performed
at random and each task is performed 10 times in a block. The
concentration changes of HbO of each task in Figure 4 are
extracted and displayed in Figure 5. Figures 5a–c, respectively,
represent the task of LG, RG, and RE. The value of the black
horizontal dotted line is 0, which means the concentration has
not changed. Below and above the black line indicate a relative
decrease and increase in concentration, respectively. As the trial
in the blue dotted frame, during trials, the concentration changes
of HbO both have a tendency of rising to the maximum and
then falling. At the beginning and end of a trial, the values
of the concentration are almost less than 0. Also, because of
the delay of hemodynamic response, the maximum comes after
several seconds of the task period of a trial (Gagnon et al., 2011;
Buxton, 2012). For the task of LG and RG, the range of the
concentration change is bigger than that of RE. Besides, for LG
and RG, the values of the concentration are positive numbers for
most of the time, whereas for the task of RE, the values of the
concentration changes are negative numbers for most of the time.
This phenomenon indicates that the movements of left and right
hands could cause obvious increases in the concentration of HbO
and confirms the effectiveness of the measured data.

Performance of MBLL With PPL
Compared With MBLL With DPF
To evaluate the performance of the MBLL with PPL, a brain
activation map is reconstructed and compared first. With
the single-distance probe configuration, Figure 6 is the brain
activation maps reconstructed from the calculated concentration
changes of HbO. Figure 6A is constructed from the method
of MBLL with DPF, and (B) is constructed from the proposed
method, MBLL with PPL. For (A) and (B), the left column

FIGURE 4 | The average concentration changes of HbO and HbR. Red line is the change of HbO, blue line is the change of HbR. Rectangles of different colors
represent different task. The yellow, cyan-blue, and gray represent the task of LG, RG, and RE, respectively.
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FIGURE 5 | The average concentration changes of HbO for each task. (a–c)
are the changes of LG, RG, and RE, respectively. The value of the black
horizontal dotted line is 0.

is the brain activation map of the left brain and the right
column is the brain activation map of the right brain. The
first, second, and third rows represent the task of LG, RG, and
RE, respectively. In Figure 6B, there is a relatively more active
area in the right brain for the task of LG. Similarly, there is
a relatively more active area in the left brain for the task of
RG. This phenomenon is consistent with the characteristics of
contralateral dominance of the brain (Cernacek, 1961). For the
task of RE, the average concentration of HbO (Figure 5C) is
less than 0, and correspondingly, there are no active areas in
the left and right brain. As shown in Figure 6A, for MBLL with
DPF, the brain activation map has the same characteristic, and
the corresponding active areas are almost the same as that in
Figure 6B. The good consistency demonstrates the correctness
of the proposed method.

Besides, the 40 trials’ signals of HbO are superimposed
averaged for each task. First, the baseline is subtracted for every
trial. Second, the signal in the time windows of 1–14 s (task
period and rest period of a trial) are extracted and superimposed
averaged. Third, the obtained 13-s singles in the time window
are presented in Figure 7. The left column (Figures 7A,C) is
the results calculated by the MBLL with DPF, the right column
(Figures 7B,D) is the results calculated by the MBLL with PPL.
The first row (Figures 7A,B) and second row (Figures 7C,D) are
the signal of the left brain and right brain, respectively. As can
be seen, all signals have an upward to the maximum and then
downward trend. For the signal of the left brain (Figures 7A,B),
the range and maximum of the task of RG are both larger than
tasks of LG and RE. Similarly, for the signal of the right brain
(Figures 7C,D), the range and maximum of the task of LG
are both larger than tasks of RG and RE. This phenomenon
reflects the characteristics of contralateral dominance of the
brain (Cernacek, 1961). As indicated by the green dotted line
in Figures 7A,B, for the task of RG, the maximum acquired by
MBLL with PPL is 16.06% bigger than that acquired by MBLL
with DPF. Also, for the task of LG in Figures 7C,D, the maximum
acquired by MBLL with PPL is also 16.06% bigger than that
acquired by MBLL with DPF. That is, for the same measured
data, the proposed method is able to acquire more obvious
concentration change. Also, the more obvious concentration
change on brain function change is very beneficial in clinical
application and fNIRS-BCI.

What is more, the effectiveness of the proposed MBLL with
PPL is analyzed with the multi-distance probe configuration.
Figure 8 is the superimposed averaged signals. The left
column (Figures 8A,C) is the results computed by the
MBLL with DPF, the right column (Figures 8B,D) is the
results computed by the proposed method. The first row
(Figures 8A,B) and second row (Figures 8C,B) are the signal
of left brain and right brain, respectively. For the task of
RG, the maximum value of (B) is 23.20% bigger than that

FIGURE 6 | The reconstructed brain activation maps. The marks in the panels represent the sources and detectors. The color bar, denoting the activation strength,
is normalized according to the values of concentration change of HbO. (A) Reconstructed brain activation maps with MBLL with DPF. (B) Reconstructed brain
activation maps with MBLL with PPL.
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FIGURE 7 | The superimposed average concentration changes of HbO with the single-distance probe configuration. The red, blue, and black solid line are the signal
of LG, RG, and RE, respectively. (A,B) are the concentration changes of left-brain, (C,D) are the concentration changes of right-brain. (A,C) are calculated with
MBLL with DPF, (B,D) are calculated with MBLL with PPL.

FIGURE 8 | The superimposed average concentration changes of HbO with the multi-distance probe configuration. The red, blue, and black solid line are the signal
of LG, RG, and RE, respectively. (A,B) are the concentration changes of left-brain, (C,D) are the concentration changes of right-brain. (A,C) are calculated with
MBLL with DPF, (B,D) are calculated with MBLL with PPL.
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TABLE 2 | The three tasks’ classification accuracies (%) of the method of MBLL with DPF and MBLL with PPL (the letter “S” represents “subject”).

S1 S2 S3 S4 S5 S6 S7 S8 Mean

DPF 43.92 86.75 38.50 33.50 41.08 57.17 51.25 59.08 51.41

PPL 45.08 94.08 46.92 36.92 44.50 61.08 62.67 67.42 57.33

FIGURE 9 | The reconstructed brain activation maps with the multi-distance probe configuration. The marks in the figure represent the sources and detectors. (A–D)
are the reconstructed brain activation maps with the combination of 28.2 and 40 and 44.7 mm, 28.2 mm, 40 mm, 44.7 mm respectively.

of (A). For the task of LG, the maximum value of (D)
is 23.15% bigger than that of (C). The effectiveness of the
proposed MBLL with PPL is further verified with multi-distance
probe configuration.

In addition to the comparison of the activation map and
the waveform, based on the multi-distance probe configuration,
classifications of the three tasks are performed with both
methods, MBLL with DPF and MBLL with PPL. For every
subject, a 10-fold cross-validation is carried out 10 times. The
result for every subject is the average of the 10 times’ accuracies.
As exhibited in Table 2, the proposed method could achieve
higher accuracy for every subject. Based on the MBLL with PPL,
the average accuracy of all subjects is 57.33%, which is 5.92%

higher than that of MBLL with DPF (51.41%). Besides, the result
of the Wilcoxon signed-rank test, a non-parametric statistics
test method, shows a significant difference of the accuracy rate
between MBLL with PPL and MBLL with DPF (p = 0.012) for
the eight subjects.

Discussion on Different Distance
Combinations
With the proposed method, the performance of the combinations
of different distance is discussed. Figure 9 is the reconstructed
brain activation maps of different distance combinations.
Figure 9A is the activation map of the multi-distance probe
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FIGURE 10 | The classification accuracy of the different distance combinations (* represents significant difference, *p < 0.05 and **p < 0.01). The four different
colors represent different combinations and are listed at the bottom. The #1, #2, #3, and #4 represent the combination of 28.2 and 40 mm, 28.2 and 44.7 mm, 40
and 44.7 mm, and 28.2 and 40 mm and 44.7 mm, respectively. The letter “S” represents “subject.”

configuration, with three distances (28.2, 40, 44.7 mm).
Figures 9B–D are the activation maps of single distance probes,
with 28.2, 40, and 44.7 mm, respectively. As illustrated in
Figures 9A,C,D, for the task of LG and RG, the results are
consistent with the characteristics of contralateral dominance
of the brain (Cernacek, 1961). What is more, the relative
active areas in (C) and (D) also exist in (A), and the
corresponding areas in (A) are more accurate than those
of (B) and (D). Compared with the single distance probe
configuration, the multi-distance probe configuration has a better
spatial resolution and could explore more accurate information.
For the task of RE, there is no active area both in the left
and right brain.

Then, with MBLL with PPL and multi-distance probe
configuration, a three-class classification is carried out to test
the performance of the different distance combinations. Four
kinds of distance combinations are discussed, including 28.2 and
40 mm (#1), 28.2 and 44.7 mm (#2), 40 and 44.7 mm (#3),
and 28.2 mm and 40 mm and 44.7 mm (#4). Figure 10 shows
the classification accuracies of the four combinations of every
subject. For most subjects, the performance of the combination
of 28.2 + 40 + 44.7 mm is the best, the maximum accuracy
of a subject is up to 94.08%, and the mean of all subjects is
57.33%. For the combination of 28.2 + 40 mm, 28.2 + 44.7 mm,
and 40 + 44.7 mm, the highest accuracies of a subject are
81.25, 91.92, and 89.42%, respectively. The mean accuracies
are 54.81, 52.09, and 54.44%. For different combinations, the
mean accuracy of #4 is 2.52, 5.24, and 2.89% higher than that
of #1, #2, and #3. Besides, Wilcoxon signed-rank test yields a
significant difference of classification accuracy between #2 and #4,
and #3 and #4.

Further, classification of the combination of different tasks
is performed with all channels in the multi-distance probe
configuration. The classification accuracies are presented in

TABLE 3 | The classification accuracy of the different task combinations.

Subject Classification accuracy (%)

LG/RE LG/RG RG/RE LG/RG/RE

S1 72.63 57.00 47.88 45.08

S2 97.88 97.88 88.88 94.08

S3 72.25 54.38 66.63 46.92

S4 51.13 58.50 49.38 36.92

S5 50.50 66.38 55.63 44.50

S6 75.25 79.50 63.38 61.08

S7 70.25 84.50 69.63 62.67

S8 67.63 88.25 78.63 67.42

Mean 69.69 73.30 65.00 57.33

Table 3. As displayed, in the binary classification, the mean
accuracy of the LG/RG (73.30%) is the highest, and the
mean accuracy of LG/RE (69.69%) and RG/RE (65.00%) are
slightly lower. One of the reasons is that, compared with
nothing to do, the subjects are more focused when performing
movements. The mean accuracy of the ternary classification
(57.33%) is less than all binary classifications. The highest
accuracies are 97.88, 97.88, 88.88, and 94.08% for the four
different task combinations. Like the aforementioned, the value
of the final accuracy is the average of the 10 times’ accuracies
for every subject.

CONCLUSION AND DISCUSSION

In this study, a multi-distance probe configuration with three
distances (28.2, 40, and 44.7 mm) is designed, and the data
conversion method of MBLL with PPL is proposed. With a
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single-distance probe configuration, the feasibility of
the proposed method is validated first. Compared with
MBLL with DPF, the proposed MBLL with PPL is of
good performance, which is able to acquire larger brain
function change and could acquire higher classification
accuracy. Besides, the activation map of multi-distance
probe configuration contains more accurate brain function
information. In addition, when all channels are applied,
the designed multi-distance probe has the best classification
performance, and the mean classification accuracy is
2.52, 5.24, and 2.89% higher than the other distance
combinations. Finally, the classification of different tasks is
also discussed.

All results indicate the work’s potential for detecting
higher spatial resolution brain function. For the reconstructed
brain activation map of 28.2 mm in Figure 9B, the
characteristics of the opposite side of the brain are not
reflected. This may be caused by the joint of low-density
measurement and shorter distance of channel. For the
multi-distance probe configuration, the combination of
the three distances has the best performance than other
combinations, and it is likely to acquire better performance
with significant differences by optimizing the experimental
paradigm. Several works have revealed that the shorter
distance in a multi-distance probe configuration could be
used to remove the surficial noise (Lee et al., 2002; Scremin
and Kenney, 2004; Bauer et al., 2006; Gagnon et al., 2011;
Saager et al., 2011). In the following studies, the shorter
distance will be taken into consideration for removing the
surficial noise and more work will be done to explore the
experimental paradigm.
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