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Neural patterns associated with viewing energy-dense foods can predict changes in
eating-related outcomes. However, most research on this topic is limited to one follow-
up time point, and single outcome measures. The present study seeks to add to that
literature by employing a more refined assessment of food craving and consumption
outcomes along with a more detailed neurobiological model of behavior change over
several time points. Here, a community sample of 88 individuals (age: M = 39.17,
SD = 3.47; baseline BMI: M = 31.5, SD = 3.9, range 24–42) with higher body mass
index (BMI) performed a food craving reactivity and regulation task while undergoing
functional magnetic resonance imaging. At that time—and 1, 3, and 6 months later—
participants reported craving for and consumption of healthy and unhealthy foods via
the Food Craving Inventory (FCI) and ASA24 (N at 6 months = 52–55 depending
on the measure). A priori hypotheses that brain activity associated with both viewing
and regulating personally desired unhealthy, energy-dense foods would be associated
with self-reported craving for and consumption of unhealthy foods at baseline were
not supported by the data. Instead, regression models controlling for age, sex, and
BMI demonstrated that brain activity across several regions measured while individuals
were regulating their desires for unhealthy food was associated with the self-reported
craving for and consumption of healthy food. The hypothesis that vmPFC activity would
predict patterns of healthier eating was also not supported. Instead, linear mixed models
controlling for baseline age and sex, as well as changes in BMI, revealed that more
regulation-related activity in the dlPFC, dACC, IFG, and vmPFC at baseline predicted
decreases in the craving for and consumption of healthy foods over the course of
6 months.

Keywords: food cue reactivity, food craving regulation, healthy food, unhealthy food, food craving, food
consumption, brain activity
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INTRODUCTION

For many of us, simply seeing or smelling something that
reminds us of a favorite food can elicit a strong desire for
that food. Strong desires, called cravings, often lead to the
consumption of that food (e.g., Fedoroff et al., 2003). This
frequently occurs for unhealthy or energy-dense foods like
snacks and desserts (Massicotte et al., 2019). Consumption of
such energy-dense foods is associated with increased risk for
overweight [25 kg/m2

≤ body mass index (BMI) < 30 kg/m2],
obesity (BMI ≥ 30 kg/m2), and health consequences associated
with higher body weight (Pereira et al., 2005; Duffey et al., 2007;
Centers for Disease Control and Prevention, 2011).

Cravings are a form of “food cue reactivity,” or conditioned
responses to food that are frequently accompanied by a suite
of experiential, physiological, and neural responses (Boswell
and Kober, 2016). However, people also work to regulate the
cravings they experience, such that they don’t automatically
lead to consuming the craved food (Giuliani and Berkman,
2015). A growing body of research has focused on brain activity
associated with food cue reactivity and the regulation of these
responses, with the goal of explaining how these neural responses
predict subsequent health outcomes. At present, this research is
mostly limited to studies with one follow-up time point, or a
single outcome measure (e.g., BMI, snack consumption; Yokum
et al., 2011; Lawrence et al., 2012). The present study seeks to
extend this work by (1) employing a more refined assessment of
food preference, craving, and consumption outcomes above and
beyond BMI, (2) interrogating these patterns for both healthy
and unhealthy foods, and (3) creating a more detailed model of
behavior change over multiple time points.

Behavior Change From Food Cue
Reactivity
The subjective experience of craving predicts subsequent eating
behavior in the presence (Cornell et al., 1989; Fedoroff et al.,
1997, 2003; Nederkoorn et al., 2000) and absence of actual food
cues (Gilhooly et al., 2007; Martin et al., 2008; Batra et al., 2013;
Cleobury and Tapper, 2014; Crowley et al., 2014). Recent work
suggests that this effect is specific to highly palatable energy-
dense foods (Massicotte et al., 2019), which are also those that
individuals most often report craving (Chao et al., 2014). Craving
is related to but separable from liking; where craving implies a
motivational state, liking is the hedonic reaction to the pleasure
of the reward (Berridge, 2009). As such, a full investigation of
the patterns of behavior change from food cue reactivity should
interrogate both subjective liking for foods as well as craving for
and intake of those foods.

Similarly, physiological and neural responses to food cues
are also prospectively associated with both eating behavior and
weight gain (Rogers and Hill, 1989; Nederkoorn et al., 2000;
Nederkoorn and Jansen, 2002; Jansen et al., 2003; Stice et al., 2010;
Yokum et al., 2011, 2014; Demos et al., 2012; Lawrence et al.,
2012; Mehta et al., 2012; Murdaugh et al., 2012; Lopez et al., 2014;
Winter et al., 2017; Versace et al., 2018). This literature, while
robust, is not uniform; several studies investigating measures
of food cue reactivity have failed to demonstrate associations
with eating behavior and/or weight, or found an association with

physiological cue reactivity but not self-reported reactivity (see
Boswell and Kober, 2016). A recent meta-analysis by Boswell and
Kober (2016) found a medium effect of food cue reactivity and
craving on food consumption and weight (r = 0.33), which did
not vary based on the presence or absence of an actual food cue
to induce the craving.

Interestingly, the bulk of the neurobehavioral work in this area
has focused on brain regions associated with reward processing
and incentive valuation, including the ventral striatum (VS),
ventromedial prefrontal cortex (vmPFC), and amygdala (Giuliani
et al., 2018). Craving is thought to recruit more of this reward
network than liking, but the overlapping neural structures
make experimentally separating the two processes quite difficult
(Havermans, 2011). Recent evidence suggests that liking may
be more associated with BMI than craving (Polk et al., 2017),
and that food cue reactivity in the VS may be more strongly
associated with food consumption than the vmPFC, which tracks
with craving (Lawrence et al., 2012). Past work from our lab found
that, independent of an individual’s motivational state, activity
in a broad network of regions involved in food cue reactivity,
including the parahippocampal gyrus, cingulate, inferior occipital
gyrus, and anterior insula, predicted consumption of a personally
desired unhealthy food, but only in individuals who were not
dieting (Giuliani et al., 2015). Other studies have found that
activity in the inferior frontal gyrus (IFG, a lateral prefrontal
region typically implicated in inhibitory control) while viewing
food cues was positively associated with weight loss several
months later (Neseliler et al., 2019). Therefore, the field’s
dominant focus on the mesolimbic dopamine system as the
neural seat of food cue reactivity, craving, and consumption may
be obscuring the roles of other brain regions and complementary
cognitive processes such as liking in predicting these behaviors.

Behavior Change From Food Craving
Regulation
Another complementary cognitive process is regulation. When
individuals view energy-dense foods that they crave, they often
don’t passively follow those temptations. People use a variety
of methods to regulate cravings for things that aren’t in line
with their long term goals (Giuliani et al., 2018). In the face
of a tempting food, individuals engage in a variety of food
craving regulation strategies. One popular strategy is reappraisal,
which entails recontextualizing the food stimulus to change one’s
response to it (e.g., focusing on the negative consequences of
eating a desired but unhealthy food; Giuliani and Berkman,
2015). Indeed, the tendency and capacity to engage in food
craving regulation varies substantially among individuals (Lowe
et al., 2019), supporting the notion that obesity, overweight, and
the consumption of unhealthy foods is much more complex than
differences in cue reactivity and craving. Behavioral measures of
food craving regulation have been found to predict changes in
the consumption of both healthy and unhealthy food over time
(Giuliani et al., 2015; Reader et al., 2018).

Regulating the motivation to consume a desired unhealthy
food relies heavily on the prefrontal cortex (PFC), which
is implicated in the control over human behaviors, actions,
and thoughts. When individuals are instructed to reappraise
or suppress their cravings for food, increased activity in the
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dorsolateral PFC (dlPFC), dorsal anterior cingulate cortex
(dACC), and inferior temporal lobe is regularly observed
(Giuliani et al., 2014; Han et al., 2018). A recent meta-analysis
found that BMI is negatively associated with activity in the
left dlPFC, right ventrolateral PFC (vlPFC), and IFG during
regulation, which suggests that individuals with higher BMIs
may be less able to recruit the lateral PFC to regulate their
food choices (Han et al., 2018). Indeed, it is believed that lateral
regions like the dlPFC modulate incentive valuation and reward
processing within medial regions like the vmPFC and ventral
striatum, which then affects the likelihood that individuals will
select food items on the basis of healthiness compared to taste
(Hare et al., 2009; Maier et al., 2015, though see Tusche and
Hutcherson, 2018). Of these regions, the vmPFC is uniquely
thought to support value-based decision-making (Berkman et al.,
2017), in which choice options are assigned subjective values
and a decision is made through a dynamic integration process
of gains and costs. Assessments of vmPFC activation during
decision-making, including in this study, typically take place
before consumption as people consider their degree of motivation
to approach (e.g., eat or purchase) the food stimuli. As such,
vmPFC activation as measured by tasks such as the one used in
this study can be considered an index of “wanting” as opposed
to “liking.”

Moving laterally, further evidence for the role of the lateral
PFC in regulation comes from experimental manipulation of
dlPFC activity. Stimulation of this region attenuates food cravings
and the consumption of energy-dense foods in individuals who
report strong food cravings, and inhibiting dlPFC activity is
associated with overconsumption of energy-dense foods via
changes in inhibitory control (Lowe et al., 2019). While there is
considerable evidence linking eating behavior to brain activity
(see Giuliani et al., 2018), additional evidence supports the effect
of weight on brain function. Recent work on individuals who
underwent bariatric surgery revealed that weight loss resulted
in significant increases in dlPFC activity during food appraisal
(Holsen et al., 2018). As such, this literature suggests a strong
but bidirectional association between lateral PFC activity and
eating behavior. Thus, according to Lowe et al. (2019), weaker
lateral PFC responses to food cues may increase individual
susceptibility to the rewarding properties of energy-dense foods,
which prompts overconsumption, which then, over time, leads
to lateral PFC dysregulation, exacerbated sensitivity to food
rewards, and increased adiposity. While this model is intriguing,
few studies have attempted to reconcile this PFC-centered
model with the large literature implicating mesolimbic food
cue reactivity in predicting food craving and consumption or
the recent work indicating that both reactivity and regulation
information are integrated in the vmPFC.

The Present Study
The present study aimed to address this gap by measuring brain
activity associated with both food cue reactivity and regulation,
and prospectively investigating how it predicted changes in self-
reported liking of, craving for, and consumption of both healthy
and unhealthy foods over the course of 6 months in a sample of
middle-aged adults with higher BMIs.

First, we hypothesized that brain activity associated with both
viewing and regulating personally desired unhealthy, energy-
dense foods would be associated with self-reported craving and
consumption of unhealthy foods at baseline. We also explored the
association between brain activity and liking of, craving for, and
consumption of healthy foods in order to examine the specificity
of this effect to unhealthy food. Second, we hypothesized that
activity in the vmPFC during the viewing of unhealthy foods
would mediate the association between regulation-related brain
activity and self-reported craving for and/or consumption of
these foods. Third, we hypothesized that value-related brain
activity in the vmPFC during food craving regulation at baseline
would predict a decrease in the consumption of unhealthy food
and an increase in the consumption of healthy food over 6
months. We also explored the role of other brain regions in
predicting eating behavior change.

MATERIALS AND METHODS

Participants
A community sample of 105 middle-aged individuals with higher
BMIs who intended to eat more healthfully were screened
and enrolled into a larger project investigating a text message-
based intervention aimed to improve eating habits. Inclusion
criteria for the overarching study included (1) an approximate
BMI between 25–40; (2) early, middle-age (i.e., approximately
35–45 years old); (3) no psychiatric, neurological, or eating
disorders; (4) no fMRI contraindications; (5) not actively enrolled
in a diet program or any other type of eating intervention;
and (6) self-reported desire to eat more healthfully. Ten
participants were excluded for non-compliance or repeatedly
missing appointments, or decided to drop out before completion
of the baseline session. A further 7 participants were excluded
from the MRI analyses because they had excessive motion
artifacts (defined below; n = 2), were not compliant with
enrollment criteria (n = 2), had structural anomalies (n = 1), or
for whom timing data were lost due to a technical error (n = 2).
Therefore, analyses for this study are from the 88 individuals
who provided useable MRI data (age: M = 39.2, SD = 3.57,
range 33–46; baseline BMI: M = 31.5, SD = 3.9, range 24–42);
they did not differ with regard to age or BMI from those who
provided MRI data that were not useable. These participants
were 81.91% female, and 79.5% identified as Caucasian, 8%
Hispanic, 3.4% Black (not of Hispanic origin), 2.3% Middle
Eastern, 1.1% each South Asian and American Indian/Alaskan
Native, and 3.4% other.

An a priori power analysis was not conducted for this study;
sample size was determined by budget and the duration of the
grant award period. A post hoc power analysis in G∗Power
(Faul et al., 2009) indicated that we were adequately powered
to test for medium-sized brain-behavior associations at baseline
(f2 = 0.156, with power = 0.8, α = 0.05, 5 predictors). With
regard to change over time, we achieved up to 89% power (time x
dlPFC interaction predicting craving for healthy foods) according
to post hoc power simulations using simr (Green and MacLeod,
2016). However, many of the other findings were underpowered
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and should be interpreted accordingly. Hypotheses and analytical
procedures for this study were preregistered at the Open
Science Framework1.

Protocol
Participants were recruited for this study using a combination of
online, newspaper, and public advertising. Interested individuals
were screened for exclusion criteria via phone, and eligible
participants were sent a battery of measures to complete
before arriving for their baseline session. Participants were
scheduled for their baseline lab visit, and asked to complete
the pre-baseline measures within 24 h of the visit. Pre-baseline
measures included demographic information, assessments of
eating behavior, self-reported food craving and liking, and a
set of psychometric measures not presented here. Participants
were instructed to not eat anything for at least an hour before
the baseline visit. During the baseline (T1) visit, participants
provided informed consent, after which they were screened for
MRI contraindications and instructed on the requirements of the
study. Weight and height were measured, after which participants
took part in an MRI session (described below). After the MRI
session, they were randomized into intervention and control
groups. The intervention, in which participants received self-
authored text messages aligning healthy eating with personal
values for 28 days after T1, did not have a significant effect on
changes in BMI, healthy eating, or food craving compared to
the control condition, where participants received standardized
healthy eating messages. For the purposes of the analyses pursued
here of measures acquired after randomization to condition,
individuals were collapsed across groups, with group assignment
controlled in the statistical models as a dummy-coded variable.

After the 28 days follow-up period, participants returned
to the lab where they repeated all baseline measures with the
exception of demographics and the MRI session (T2). Eating
behavior was assessed over two separate days in advance of the
visit. Three months after baseline (T3), participants were emailed
instructions as to how to provide information on eating behavior
and self-reported food craving and liking online. Six months
after baseline (T4), participants returned to the lab where they
repeated the procedures of the T2 visit.

Measures
Body Mass Index (BMI)
Weight and height were measured using a commercially available
weight scale and wall ruler, and BMI was calculated by dividing
the participant’s weight in kilograms by height in square meters.
These measures were collected in the laboratory at T1, T2, and
T4. The number of participants from whom we collected this
information at each time point is listed in Table 1.

Food Craving Inventory (FCI)
The FCI (White et al., 2002) is a 67-item self-report measure of
cravings for and liking of specific foods. Craving was defined as
“an intense desire for a specific food that is difficult to resist.”
Participants were asked to rate the frequency of cravings for the

1https://osf.io/uvrkj/

past 30 days on a 5-point Likert scale (1 = “not at all,” 5 = “nearly
every day”). They were also asked to rate how much they liked
each food on a 4-point Likert scale (1 = “dislike,” 4 = “love”).

Foods were grouped into categories and ratings in each
category were averaged for craving and liking separately. The
foods included in each category are listed in the Supplementary
Materials. We created composite measures of liking of and
craving for unhealthy foods by averaging across ratings in
the following categories: processed meats, fried foods, red
meats, sugary foods, and empty calories. The same procedure
was followed for healthy foods with the following categories:
vegetables, fruits, lean proteins, whole grains, and olive oil.

ASA24
Eating behavior was assessed via the Automated Self-
Administered 24 h (ASA24 R©) Dietary Assessment Tool (Subar
et al., 2012) which allows for the calculation of the Healthy Eating
Index (HEI; Guenther et al., 2013) using calculations provided
by the developers of the ASA2. Following the recommendations
proposed by the developers of this measure, participants
completed the ASA twice at each time point to obtain a more
representative estimate of daily eating behavior. We used the
HEI as our measure of healthy eating as it quantifies how
well a person’s eating behavior aligns with recommended
dietary guidelines for Americans. We also created an average
of HEI indices 1–4, which captured daily consumption of total
vegetables, greens and beans, total fruit, and whole fruit. In
addition, we used the ASA24’s calculation of total kilocalories
consumed and empty calories consumed. All data were averaged
across the 2 days of data collection at each time point.

Regulation of Craving (ROC) Task
Participants were trained to decrease their desire to consume
personally-desired (for task purposes these are referred to as
“craved” foods) foods using cognitive reappraisal (Giuliani et al.,
2014; Giuliani and Pfeifer, 2015). Participants viewed unhealthy
craved foods (“Craved” condition), unhealthy not-craved foods
(“Not Craved” condition), or healthy vegetables (“Neutral”
condition). For unhealthy craved foods, participants either
actively viewed the foods (“Look” condition) or reappraised
their craving for them (“Regulate” condition). On “Look” trials,
participants imagined how they would interact with the food
if it were in front of them. On “Regulate” trials, participants
reappraised the foods by focusing on the short- or long-term
negative health consequences associated with consumption (e.g.,
stomach aches, weight gain, cavities, etc.). Participants generated
several negative health consequences with the help of the
experimenter, to ensure they had multiple reappraisals they could
use during the task. To minimize demand characteristics (e.g.,
reduced craving ratings on regulate trials), participants were
reassured they were not expected to be able to regulate well
on every trial and were told that it was important to rate their
cravings honestly. Neutral stimuli were only viewed under “Look”
instructions, and are not used in the present analyses. To keep

2https://epi.grants.cancer.gov/asa24/resources/hei.html
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TABLE 1 | Demographic and self-report information.

Measure T1—0 months T2—1 month T3—3 months (online) T4—6 months

M (SD)/% (n) N M (SD) N M (SD) N M (SD) N

Age 39.2 (3.57) 88

Gender (# female) 83.9% (73)

BMI 31.5 (3.9) 88 31.57 (3.92) 78 31.18 (4.48) 52

FCI—healthy like rating 2.67 (0.46) 86 2.61 (0.45) 74 2.55 (0.47) 57 2.53 (0.50) 53

FCI—healthy crave rating 2.14 (0.73) 88 1.97 (0.68) 77 1.99 (0.68) 59 1.90 (0.63) 56

FCI—unhealthy like rating 2.70 (0.39) 86 2.61 (0.41) 74 2.63 (0.41) 57 2.61 (0.45) 53

FCI—unhealthy crave rating 2.47 (0.57) 88 2.20 (0.58) 77 2.26 (0.55) 59 2.16 (0.57) 56

ASA24—total kcal consumed 2087.94 (790.44) 87 1827.13 (688.58) 78 1805.44 (680.91) 55 1790.07 (797.25) 55

ASA24—HEI 52.86 (12.75) 87 50.75 (11.99) 77 50.38 (13.20) 55 54.24 (11.92) 55

ASA24—fruit/vegetable consumption 2.61 (1.28) 87 2.63 (1.28) 77 2.47 (1.26) 55 2.88 (1.09) 55

ASA24—empty calorie consumption 11.67 (5.22) 87 11.48 (5.73) 78 11.68 (5.19) 55 12.91 (5.45) 55

Age and gender were only collected at baseline; BMI was collected in person at baseline, T2, and T4; all other variables were collected at every time point. BMI = Body
Mass Index; FCI = Food Craving Inventory; HEI = Healthy Eating Index.

task time to a minimum, only craved foods were viewed under
“Regulate” instructions.

To maximize craving, participants selected their most craved
and least craved food from the following menu of unhealthy
food categories for the “Crave” and “Not Craved” conditions
respectively: chocolate, cookies, donuts, French fries, ice cream,
pasta, pizza. Stimuli were independently rated for desirability,
such that the mean desirability of stimuli within each unhealthy
food category did not differ significantly across categories
(Giuliani et al., 2013). As such, each participant viewed a set of
individually adapted unhealthy food stimulus categories; across
all participants, the only domain on which the “Craved” and
“Not Craved” conditions differed was with regard to individual
food preferences. Each condition (Look Neutral, Look Craved,
Look Not Craved, and Regulate Craved) had 20 trials, presented
across two task runs. On each trial (see Figure 1), participants
are presented with an instruction (2 s; Look or Regulate),
viewed a food image while following the instruction (5 s), and
rated their craving for the food on a 5-point Likert scale (4 s;
1 = not at all, 5 = very much). Each 11s trial of this event-related
design was followed by a jittered fixation cross (M = 1 s) and
trial order is optimized using a genetic algorithm (Wager and
Nichols, 2003). Stimuli were presented using Psychtoolbox
3 (Brainard, 1997), and participants responded using a
five-button box.

Neuroimaging Data Acquisition and
Preprocessing
Neuroimaging data were acquired on a 3T Siemens Skyra scanner
at the University of Oregon Lewis Center for Neuroimaging.
We acquired a high-resolution anatomical T1-weighted
MP-RAGE scan (TR/TE = 2,500.00/3.43 ms, 256 × 256 matrix,
1 mm thick, 176 sagittal slices, FOV = 208 × 208 mm),
functional images with a T2∗- weighted echo-planar sequence
(72 axial slices, TR/TE = 2,000.00/27.00 ms, 90-degree flip
angle, 100 × 100 matrix, 2 mm thick, FOV = 208 × 208 mm,
multiband acceleration factor = 3), and opposite phase encoded

FIGURE 1 | Example trials from the ROC task.

echo-planar images to correct for magnetic field inhomogeneities
(72 axial slices, TR/TE = 6,390.00/47.80 ms, 90-degree flip angle,
104× 104 matrix, 2 mm thick, FOV = 208× 208 mm).

Neuroimaging data were preprocessed using fMRIPrep 1.1.4
(Esteban et al., 2019). A detailed account of the preprocessing
pipeline appears in Supplementary Material, but briefly,
anatomical images were segmented and normalized to MNI
space using FreeSurfer (Fischl, 2012); functional images were
susceptibility distortion corrected, realigned, and coregistered
to the normalized anatomical images. Normalized functional
data were then smoothed (6 mm FWHM) in SPM12 (Wellcome
Department of Cognitive Neurology3).

Neuroimaging Analysis
Event-related condition effects were estimated in first-level
analyses using a fixed-effects general linear model and convolving
a canonical hemodynamic response function to stimulus events

3http://www.fil.ion.ucl.ac.uk/spm
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using SPM12. Regressors were entered for each experimental
condition (regulate craved, look craved, look not-craved, look
neutral) and were modeled during stimulus presentation (5
s). Additional regressors of no interest were added for the
instruction and rating periods. Five motion regressors were
modeled as covariates of no interest. Realignment parameters
were transformed into Euclidean distance for translation and
rotation separately; we also included the displacement derivative
of each, resulting in a total of four motion regressors. Another
regressor of no interest indicated images with motion artifacts
(e.g., striping) identified via automated motion assessment
(Cosme et al., 2018) or visual inspection. Data were high-pass
filtered at 128s and temporal autocorrelation was modeled using
FAST (Corbin et al., 2018). Task runs with > 10% of volumes
contaminated with motion artifacts were excluded (n = 8) or if
they were missing 80% or more responses (n = 5). Participants
were excluded completely if both task runs were excluded
(N = 4). For each participant, we computed the following linear
contrasts: Look Craved > Look Not Craved (LC > LNC, called
“reactivity”) and Regulate Crave > Look Crave (RC > LC, called
“regulation”) using SPM12.

We estimated second-level random effects for each contrast
using a one-sample t-test in SPM12. Multiple comparisons
were corrected using cluster-extent thresholding implemented
in AFNI version 18.2.04 (Cox, 1996). In accordance with recent
guidelines (Cox et al., 2017), the spatial autocorrelation function
was first estimated for each subject and task run separately
using AFNI’s 3dFWHMx, and then averaged across subjects. To
determine probability estimates of false-positive clusters given a
random field of noise, Monte-Carlo simulations were conducted
with AFNI’s 3dClustSim using the average autocorrelation across
subjects (ACF = 0.70, 4.27, 8.63). For each model, a voxel-wise
threshold of p < 0.001 and cluster extent of k = 61 was estimated
(voxel dimensions = 2 × 2 × 2 mm) to achieve a whole-brain
familywise error rate of α = 0.05.

ROI Definition and Extraction
Region of interests were defined anatomically due to the a priori
nature of our hypotheses. The VS and vmPFC ROIs were from
Bartra and colleagues’ (2013) publicly available database of ROIs
based on a 200 paper meta-analysis of subjective value (Bartra
et al., 2013)4. The dlPFC, IFG, and dACC ROIs were all created
using the WFU PickAtlas (Tzourio-Mazoyer et al., 2002; Maldjian
et al., 2003). For the dlPFC ROI, we selected Brodmann areas 8
and 9, and dilated the mask by 1mm. The IFG ROI was defined
using the WFU PickAtlas TD Labels inferior frontal gyrus ROI.
The dACC ROI was created by bounding the WFU PickAtlas
TD Labels anterior cingulate ROI on the y-axis at 0–32. Per our
hypotheses, we extracted individual parameter estimates from the
VS and vmPFC ROIs from the LC > LNC contrast, and dlPFC,
IFG, and dACC ROIs from the RC > LC contrast. These three
regulation ROIs were averaged and combined into a composite
for analysis purposes, and also explored separately.

In addition, we explored associations between regulation-
related brain activity and food craving (from the FCI) and

4https://www.sas.upenn.edu/$\sim$mcguirej/meta-analysis.html

consumption (from the ASA24) by creating 6 mm3 spherical
ROIs around the peaks from the RC > LC contrast (listed in
Table 2, labeled with an ∗). The purpose of these ROIs was
to explore the association of regulation-related brain activity
with longitudinal patterns of healthy and unhealthy food liking,
craving, and consumption orthogonal to the contrast that defined
the ROIs. These seven ROIs were averaged and combined into a
composite to reduce the number of statistical tests run, and also
explored separately.

Statistical Analyses
Statistical analyses were conducted in R (version 3.6.1; R Core
Team, 2019). First, variables were investigated for skewness and
kurtosis; all exhibited acceptable distributions and were retained
for further analysis. We then created a series of multilevel
models predicting liking, craving, and intake of healthy and
unhealthy foods with time at Level 1 and person at Level 2
using lmer in R (Bates et al., 2015). Because the models failed to
converge when including the linear effect of time (month slope)
as a random effect, only participant intercepts were modeled
as random effects. The time variable (number of months since
T1) was centered at 0, and the rest of the variables were grand
mean centered. These models included main effects of brain
activity, BMI, age, gender, and condition at baseline, as well as the
main effect of time and the interaction between time and brain
activity. Lastly, we investigated the pattern of missingness in this
data set using the non-parametric MCAR (Missing Completely
at Random) test proposed by Jamshidian and Jalal (2010, as
implemented in the MissMech R package, Jamshidian et al.,
2014). Here, a significant result for the Hawkins test of normality
and homoscedasticity indicates that the hypothesis of MCAR
would be rejected, and results should be interpreted accordingly.

To interrogate hypothesis 1, that food craving reactivity and
regulation brain activity would be associated with self-reported
craving for and consumption of unhealthy food at baseline,
we assessed these models for main effects of brain activity on
FCI-reported craving for unhealthy foods and ASA24-reported
consumption of empty calories. Because eight separate models
(4 ROIs × 2 dependent variables) were run to address this
hypothesis, a Bonferroni correction was used to correct for
multiple comparisons. The corrected alpha was therefore set at
p < 0.0063. Additional models assessing self-reported liking of
unhealthy foods were also included, in order to separate out the
motivational state (craving) from the hedonic response (liking).
We also explored the associations between brain activity and
the liking of, craving for, and consumption of healthy foods
at baseline, in order to examine the specificity of previously
reported brain-behavior associations by food type. Because these
analyses were exploratory, we only report estimates and 95%
confidence intervals for effects that surpass α < 0.05 in the
text; all results are included in supplementary material available
online5. To interrogate hypothesis 2, that vmPFC activity would
mediate the relation between regulation-related brain activity
and unhealthy food craving and/or consumption, we planned
to run mediation models in R using lavaan (Rousseel, 2012)

5https://github.com/UOSAN/regulation-craving-consumption
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TABLE 2 | Correlations at baseline (T1).

Variable 1 2 3 4 5 6 7 8

1. BMI

2. FCI—healthy like rating −0.040

3. FCI—healthy crave rating 0.207 0.467**

4. FCI—unhealthy like rating 0.052 0.335** 0.154

5. FCI—unhealthy crave rating 0.260** 0.005 0.488** 0.592**

6. ASA24—total kcal consumed −0.070 −0.010 −0.169 0.263* 0.077

7. ASA24—HEI 0.031 0.128 0.075 −0.141 −0.093 −0.071

8. ASA24—fruit/vegetable consumption 0.035 0.148 0.088 −0.071 −0.078 −0.056 0.680**

9. ASA24—empty calorie consumption 0.168 −0.038 −0.003 −0.221* −0.088 −0.322* 0.578** 0.160

BMI, body mass index; FCI, Food Craving Inventory; HEI, healthy eating index. *Indicates p < 0.05. ** indicates p < 0.01.

for any and all significant associations between regulation-
related brain activity and behavior at baseline. These models
would be constructed as follows: regulation-related brain activity
would be the independent variable; reactivity-related vmPFC
activity would be the mediator; the craving or consumption
variable associated with regulation-related activity would be
the dependent variable; and BMI, age, gender, and condition
included as covariates. Lastly, to interrogate hypothesis 3, that
vmPFC brain activity associated with regulating the desire for
personally desired energy-dense foods at baseline would predict
an increase in the consumption of healthy food and a decrease
in unhealthy food over 6 months, we examined the time x brain
interaction terms from the multilevel models. We additionally
explored other reactivity- and regulation-related brain activity in
other regions for this interaction on liking of, craving for, and
consumption of both food types.

RESULTS

Baseline
Baseline data from the FCI and the ASA24 are presented
in Table 1, along with relevant demographic information.
Correlations among non-brain variables at baseline are presented
in Table 2. BMI was significantly positively correlated with
self-reported craving for unhealthy [r(88) = 0.260, p = 0.014]
foods. Liking and craving were significantly correlated for
both healthy [r(88) = 0.467, p < 0.001] and unhealthy
[r(88) = 0.592, p < 0.001] foods. Total calories consumed
was positively correlated with self-reported liking of unhealthy
foods [r(87) = 0.263, p = 0.015], and negatively correlated with
consumption of empty calories [r(87) = −0.322, p = 0.002]. The
ASA24’s HEI was positively correlated with fruit and vegetable
consumption [r(87) = 0.680, p < 0.001] and empty calories
[r(87) = 0.578, p < 0.001]; it was not significantly associated with
liking or craving of healthy foods (p-values > 0.24). Consumption
of empty calories was significantly negatively associated with self-
reported liking of unhealthy foods [r(85) =−0.221, p = 0.042] and
total calories consumed [r(87) =−0.322, p = 0.002].

As shown in Figure 2A, whole brain results for the main
effect of food cue reactivity revealed significant clusters in
the left postcentral gyrus, right lingual gyrus, right fusiform

gyrus, and right inferior temporal gyrus. Peaks and cluster
sizes are listed in Table 3. The main effect of regulation was
associated with a very large cluster of activity with subpeaks
in the left supramarginal gyrus, right post-medial frontal gyrus,
and left inferior gyrus. Additional peaks were located in the
right supramarginal gyrus, midbrain, left cerebellum, and left
parahippocampal gyrus (Figure 2B and Table 3).

In contrast to Hypothesis 1, reactivity-related activity in
neither the VS ROI nor the vmPFC ROI was significantly
associated with self-reported craving for or consumption of
unhealthy foods at baseline. Average regulation-related brain
activity in neither the a priori ROIs nor the peak ROIs
were significantly associated with self-reported craving for or
consumption of unhealthy foods. Full models are available in the
supplementary material available online (see footnote).

Regulation-related activity in the average of the a priori
ROIs was positively associated with consumption of fruits
and vegetables, B = 0.73, 95% CI [0.08, 1.37], SE = 0.33,
t(108.06) = 2.24, p = 0.027. Exploration of the individual ROIs
revealed that this effect was only statistically significant in the
dlPFC, B = 0.68, 95% CI [0.07, 1.28], SE = 0.31, t(108.96) = 2.21,
p = 0.029. In addition, regulation-related activity in the vmPFC
a priori ROI was positively associated with craving for healthy
foods, B = 0.27, 95% CI [0.02, 0.52], SE = 0.13, t(90.80) = 2.11,
p = 0.037. While the average of the peak ROIs from the
RC > LC contrast was not significantly associated with liking,
craving, or consumption, individual peaks showed intriguing
associations with behavior at baseline. Left cerebellum activity
(−6, −56, −44) was positively associated with the HEI, B = 4.18,
95% CI [0.64, 7.72], SE = 1.79, t(124.12) = 2.34, p = 0.021,
and fruit and vegetable intake, B = 0.58, 95% CI [0.21, 0.95],
SE = 0.18, t(109.81) = 3.13, p = 0.002. This pattern was also
observed in the right supramarginal gyrus [64, −46, 36; HEI:
B = 4.07, 95% CI [0.63, 7.52], SE = 1.74, t(123.28) = 2.34,
p = 0.021; fruit and vegetable intake: B = 0.49, 95% CI [0.13,
0.85], SE = 0.18, t(110.40) = 2.72, p = 0.008]. Lastly, activity
in the right post-medial frontal peak (6, 12, 70) showed an
inverse relationship with the consumption of empty calories,
B = −1.80, 95% CI [−3.50, −0.09], SE = 0.86, t(136.97) = −2.08,
p = 0.039. Because Hypothesis 1 was not supported by the data,
the criteria for assessing the mediation outlined in Hypothesis 2
was also not met.
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FIGURE 2 | Whole brain maps of (A) reactivity and (B) regulation. p > 0.001, k = 61.

Change Over Time
As shown in Table 1, there was notable attrition over time.
A test for the nature of the missing data revealed that these
data were not Missing Completely At Random (Hawkins Test
p < 0.001). However, follow-up group comparisons between
participants who provided data at all three follow-up time points
compared to those who did not indicated that these groups did
not significantly differ with regard to age, gender, intervention
condition, reactivity or regulation-related brain activity, or
baseline BMI, healthy eating (both HEI and fruit/vegetable
consumption), or liking/craving for healthy and unhealthy foods.
The individuals who provided complete data did, however,
report consuming significantly fewer calories per day at baseline
compared to those who provided incomplete data, F(1, 85) = 4.61,
p = 0.035. As such, the following results should be interpreted
with this limitation in mind.

With regard to Hypothesis 3, linear mixed models controlling
for changes in BMI and age, gender, and intervention condition
indicated that regulation-related activity in the vmPFC ROI was
not associated with changes in the consumption of unhealthy
food over time, operationalized as self-reported intake of
empty calories via the ASA24. It was, however, significantly
associated with changes in fruit and vegetable intake over time,
B = −0.11, 95% CI [−0.21, −0.00], SE = 0.05, t(137.64) = −2.03,
p = 0.045. A visual interrogation of this effect revealed a crossover

TABLE 3 | Regions, MNI coordinates, cluster sizes, and peak t values for the Look
Craved > Look Not Craved and Regulate Craved > Look Craved main effects
(p < 0.001, k = 61 threshold used for all contrasts).

Contrast and region MNI Coordinates
(x, y, z)

Cluster size Peak t

Reactivity: Look Craved > Look Not Craved

Left postcentral gyrus (−46, −26, 64) 285 6.42

Right lingual gyrus (6, −86, −2) 165 4.37

Right fusiform gyrus (30, −60, −10) 84 4.14

Right inferior temporal gyrus (58, −58, −16) 75 4.08

Regulation: Regulate Craved > Look Craved

Left supramarginal gyrus* (−60, −52, 40) 46,121 12.03

Right post-medial frontal gyrus* (6, 12, 70) 10.83

Left inferior frontal gyrus* (−52, 20, −6) 10.8

Right supramarginal gyrus* (64, −46, 36) 3,180 8.34

Right middle temporal gyrus (48, −30, −2) 7.89

Midbrain (0, −18, −26) 79 5.61

Left cerebellum (IX)* (−6, −56, −44) 149 4.49

Left parahippocampal gyrus* (−10, −12, −18) 71 3.97

* mm3 sphere ROI created at that location.

interaction (Figure 3), such that individuals who recruited more
vmPFC activity during the regulation of the desire to consume
unhealthy food reported consuming fewer fruits and vegetables
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FIGURE 3 | Visualization of the time x vmPFC activity interaction predicting
changes in self-reported fruit and vegetable intake over time via the ASA24.
Lines indicate the association at –1 (black) and + 1 (gold) SD from the mean
vmPFC activity during Regulate Craved > Look Craved.

FIGURE 4 | Visualization of the time x activity interaction predicting changes
in self-reported craving for healthy foods over time via the ASA24. Lines
indicate the association at –1 (black) and + 1 (gold) SD from the mean activity
in the dlPFC, dACC, and IFG ROIs during Regulate Craved > Look Craved.

over time, whereas those who displayed less vmPFC activity
during regulation reported eating more fruits and vegetables.

Exploratory analyses revealed that this same pattern occurred
in the vmPFC with regard to changes in self-reported craving
for healthy foods, B = −0.04, 95% CI [−0.08, −0.01], SE = 0.02,
t(124.48) = −2.36, p = 0.020. It was also seen in the average
regulation-related brain activity across the three a priori ROIs
for changes in healthy food craving, B = −0.08, 95% CI [−0.14,
−0.02], SE = 0.03, t(124.50) = −2.84, p = 0.005, and only in the
dlPFC ROI with regard to changes in the consumption of fruits
and vegetables, B = −0.14, 95% CI [−0.27, −0.00], SE = 0.07,
t(134.70) = −2.00, p = 0.047. Visual inspection of the healthy
craving interaction across all three ROIs (Figure 4) indicated that
people who recruited these brain regions more during regulation
showed a decrease in their self-reported craving for healthy food
over time, which was not seen in individuals who did not recruit
these regulation network regions as strongly. Additional model
results that did not pass the significance threshold are included in
the Supplementary Material online.

DISCUSSION

The present study sought to investigate the associations between
food craving reactivity and regulation-related brain activity
and measures of craving for and consumption of healthy and
unhealthy foods in a community sample of middle-aged adults
with higher BMIs, as well as how this brain activity at baseline
predicted changes in food craving and consumption over the
course of 6 months.

Baseline
Reactivity
Our analyses did not reveal any significant associations between
food cue reactivity in the brain and self-reported liking of, craving
for, or consumption of unhealthy—or healthy—food at baseline.
This is surprising, given that the bulk of the brain-behavior
research in this area has focused on food cue reactivity, and that
a recent meta-analysis of this literature demonstrated a medium
effect of food cue reactivity on food consumption and weight
(Boswell and Kober, 2016). Because we controlled for BMI in
our analyses in order to focus on brain-behavior associations,
we may have obscured any weight-related effects. However,
post hoc analyses showed that there was also no association
between baseline BMI and reactivity-related brain activity in
the present sample [r(88)-values = 0.024–0.087, p > 0.41]. As
such, removing variance associated with BMI most likely did
not obscure any weight-driven brain-behavior associations at
baseline. It is also possible that these null results could be related
to the contrast we used to operationalize reactivity in the brain.
As evident in Figure 2A, there were very few clusters that differed
significantly between the craved (LC) and not craved (LNC)
foods, indicating that reactivity was similar across conditions,
despite substantial differences in self-reported craving ratings for
craved and not craved foods (Supplementary Table S1). Because
this measure of cue reactivity does not appear to have been
specific to craved foods here, it may account for not observing
the expected relationships. Lastly, these null findings may also be
due to limitations inherent to the self-report measures we used
to assess food craving and consumption (e.g., self-presentation
bias, imperfect memory recall). Accurate measurement of food
consumption is notoriously challenging, and while the ASA24
retrospective food intake measure used in the present study is
the measure of choice for the National Cancer Institute, a recent
paper documented several usability challenges with this tool that
may have led to reporting errors (Kupis et al., 2019).

Regulation
We also did not see any significant baseline associations between
regulation-related activity and self-reported liking of, craving
for, or consumption of unhealthy foods in our a priori ROIs.
However, exploratory analyses revealed that regulation-related
brain activity was positively associated with the craving for and
consumption of healthy foods. Specifically, activity in an average
of our three a priori ROIs (dlPFC, dACC, IFG) was significantly
positively associated with fruit and vegetable consumption, which
appeared to be driven by dlPFC activity. We also saw this
effect with regard to healthy food craving in the vmPFC, and
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general healthy eating as well as fruit/vegetable intake in the left
cerebellum and right supramarginal gyrus. We also found that
right post-medial frontal activity was negatively associated with
empty calorie consumption.

Together, these data demonstrate that greater engagement
of these regions during the regulation of the desire for
unhealthy food was associated with concurrent healthier eating.
Activation in these regions could also be indexing health goals
representations (Tusche and Hutcherson, 2018), motivation to
change, or effort on and engagement with the task of down-
regulating craving for unhealthy foods. While we expected to
see this pattern in the traditional lateral prefrontal regions like
the dlPFC, we were somewhat surprised that the cerebellum and
supramarginal gyrus also showed such a consistent pattern of
associations with healthy eating. These two regions are generally
thought to underlie mentalizing and other types of social
cognition (Van Overwalle and Mariën, 2016), yet some studies
have found them to be significantly involved in cognitive control
(e.g., Żurawska vel Grajewska et al., 2011). Therefore, it may
be that individuals who engage these regions during regulation
may be—consciously or subconsciously—using more socially-
relevant regulation strategies, which may be associated with
greater healthy food intake. While we have explored different
types of craving regulation strategies in past work (see Giuliani
et al., 2013), these have not yet included social strategies (Nook
and Zaki, 2015).

The fact that almost all of the baseline associations we
observed were in the domain of healthy eating also supports
the assertion that our present lack of reactivity-consumption
findings—which are traditionally seen in the domain of
unhealthy food (e.g., Lopez et al., 2014)—may be due to the
increased motivation of our participants to eat better. The
specificity of the results to the healthy food domain may also be
why we found relatively few effects on craving for these foods, as
there are not as frequently craved as unhealthy foods (Massicotte
et al., 2019). Interestingly, we also found no brain-behavior
associations regarding the self-reported liking of healthy foods,
which suggests that this pattern is specific to the motivational and
ingestive aspects of eating behavior, and not the more subjective
process of liking.

Change Over Time
Reactivity
With regard to baseline levels of brain activity predicting overall
changes in food liking, craving, and consumption over the course
of the 6 month follow-up period, we did not find any evidence
that brain activity during food cue reactivity predicted behavior
changes in the domains of unhealthy or healthy foods. These
results are contrary to much of the previous findings in this
domain, which have shown relatively consistent associations
between food cue reactivity and behavior change using dependent
variables such as weight gain/loss, cue-induced eating, or snack
consumption (e.g., Demos et al., 2012; Lawrence et al., 2012;
Murdaugh et al., 2012; Versace et al., 2018). The present null
result may be due to the paradigm we used to index food
cue reactivity, which contrasted two energy-dense foods that

only differed based on participant preference. This is quite
different from most other studies in this domain, which usually
contrast high energy-dense foods with low-density foods, if a
contrasting condition is used at all. In addition, these results
may be due to the sample, which consisted of community adults
who were selected because they had BMIs between 25 and 40
but were also highly motivated to improve their eating habits.
As such, the increased motivation of the subjects may have
negated any hypothesized reactivity-consumption associations by
influencing both brain reactivity to pictures of unhealthy foods
and consumption of those foods.

Regulation
In contrast to the reactivity results, we did find that brain
activity associated with regulating the desire for unhealthy
foods was significantly associated with changes in craving for
and consumption of healthy foods. Specifically, we found that
increased regulation-related activity in the dlPFC, IFG, dACC,
and vmPFC significantly predicted decreases in healthy food
craving over time. Regulation-related activity in the dlPFC
and vmPFC also predicted a decrease in self-reported fruit
and vegetable consumption. Across all of these regions, greater
engagement during regulation predicted less craving for and
consumption of healthy foods over time. While the brain regions
implicated here are those we expected would track with real-
world regulation success, we found an opposite pattern than
predicted: less brain activity during regulation was associated with
more craving for and consumption of healthy foods.

This pattern of brain-as-predictor results is complex and
somewhat contradictory, with more regulation-related activity
associated with healthier eating at baseline, which then waned
over the course of 6 months. One possible explanation is
simply that craving regulation is multifaceted, reflecting many
psychological processes including effort, attentional control,
motivation, desire, meta-cognition and planning, among others.
As such, simply asking people to indicate their food desire
ratings via a button press after attempting to down-regulate
their desire for a food may not get at the complexity of
the process (e.g., effort, conflict, etc.). In addition, we used
mean-level activation within ROIs as brain-based indices of
reactivity and regulation, but because they are not specific
indicators of these psychological processes, they likely represent
integrated engagement of numerous cognitive functions. Future
studies should investigate multivariate measures of reactivity
and regulation to improve sensitivity and potentially predictive
utility (Cosme et al., 2020). Regardless, the present findings
suggest that the health neuroscience literature may benefit from
an increased interrogation of the factors predicting healthy
food consumption, instead of continuing to focus primarily on
reducing the consumption of unhealthy food.

As mentioned earlier, some features of the sample itself are
worth considering and might provide clues that help interpret
the observed pattern of response. The sample consisted of
community adults who were selected because they had higher
BMIs, and also highly motivated to improve their eating habits.
Indeed, it may be that this increased motivation to eat better
upon study entry was reflected in both greater effort during
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regulation—which resulted in more brain activity—and healthier
baseline eating behavior. Cognitive reappraisal, the regulation
strategy employed in the present study, is thought to be relatively
less effortful compared to more response-focused regulation
strategies like suppression (Gross, 2002). However, this work
was done using negative images; neural reactions to unhealthy
food cues have been found to occur early and are relatively
automatic (Meule et al., 2013). As such, reappraising the desire
for a delicious-looking unhealthy food may actually be a form
of late reappraisal, which has been shown to engage substantial
inhibitory control resources (Sheppes et al., 2009). This level of
effort is hard to maintain in the long run, which is why greater
recruitment of these brain regions at baseline ultimately resulted
in a downward trajectory of healthy eating over 6 months.
These results suggest that targeting less effortful food craving
regulation strategies may be more successful in helping people
meet their healthy eating goals over longer periods of time.
Recent work by Reader et al. (2018) supports this idea, showing
that greater success at up-regulating the desire for healthy foods
was associated with increased craving strength for low-calorie
foods as well as decreased consumption of high-calorie foods in
their daily lives.

Limitations
The present findings should be interpreted in light of several
limitations of the present study. First, the sample was majority
female and Caucasian. We did employ broad recruitment in
the community of a mid-sized city in the Pacific Northwest,
United States, but the limited gender and racial makeup of
the present sample may limit the generalizability of the present
findings to other samples. In addition, the sample was entirely
higher BMI, with no comparison group. As such, the patterns
of results in this study may be reflective of this specific
group, who may also process stimuli and approach food in
ways different from lower-weight individuals. Second, while
we excluded individuals who were actively enrolled in a diet
program, we did not collect information about past diet attempts
or weight fluctuations. Because previous studies have found an
influence of dietary behavior on brain activity (e.g., Ely et al.,
2014), this is an important caveat to the present results that
should be addressed in future work. Third, while we worked hard
to retain our sample throughout the full 6 month study protocol,
we experienced substantial attrition, with only 52 of the original
88 participants providing BMI data at T4. A comparison of the
participants who provided data throughout the study versus those
who did not revealed that they did not differ significantly with
regard to age, gender, or ethnicity. However, we cannot assess
how this attrition may have impacted our longitudinal outcome
measures, as we do not have follow-up data from participants
who did not return to the lab at T4. Relatedly, participants
reported that inventorying their 24-h food consumption using
the ASA24 twice at each time point was cumbersome, which may
have led to loss of follow-up data and perhaps also contributed
to careless or more inaccurate reporting among those who did
complete the follow-up assessments (Kupis et al., 2019). While
accurately measuring actual food consumption is notoriously
difficult, future work would benefit from employing a measure

of food intake that participants are more likely to complete at
multiple time points (i.e., taking photos of meals). Lastly, half of
the participants in these analyses were enrolled in an intervention
designed to increase their motivation to engage in healthier
eating behaviors. While we collapsed across groups and included
intervention condition as a covariate in all analyses, the fact that
half of the participants had received this intervention between
baseline and T2 may have affected the self-reported food craving
and consumption data we collected at all three time points.

CONCLUSION

Overall, this study demonstrated that brain activity associated
with regulating desires for unhealthy food predicted meaningful
changes in the craving for and consumption of healthy food over
the course of 6 months in a population of middle-aged adults with
higher BMIs. These nuanced findings add to the growing body of
research on the neuroscience of eating, which has predominantly
focused on the consumption of unhealthy foods and/or body
weight, and highlights the importance of studying healthy eating
behavior as well.
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Żurawska vel Grajewska, B., Sim, E.-J., Hoenig, K., Herrnberger, B., and Kiefer,
M. (2011). Mechanisms underlying flexible adaptation of cognitive control:
behavioral and neuroimaging evidence in a flanker task. Brain Res. 1421, 52–65.
doi: 10.1016/J.BRAINRES.2011.09.022

Conflict of Interest: EB was manager of Berkman Consultants, a boutique
consulting firm specializing in goals, motivation, and behavior change.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Giuliani, Cosme, Merchant, Dirks and Berkman. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 13 November 2020 | Volume 14 | Article 577669

https://doi.org/10.1016/S1471-0153(03)00011-4
https://doi.org/10.3390/nu11010132
https://doi.org/10.1016/j.neuroimage.2012.06.070
https://doi.org/10.1177/0956797614531492
https://doi.org/10.1016/j.tics.2019.01.005
https://doi.org/10.1016/j.tics.2019.01.005
https://doi.org/10.1016/j.neuron.2015.07.005
https://doi.org/10.1016/j.neuron.2015.07.005
https://doi.org/10.1016/j.appet.2008.03.002
https://doi.org/10.1016/j.appet.2008.03.002
https://doi.org/10.1007/s40519-019-00706-8
https://doi.org/10.3945/ajcn.112.042341
https://doi.org/10.3945/ajcn.112.042341
https://doi.org/10.3389/fpsyg.2013.00669
https://doi.org/10.1016/j.neuroimage.2011.10.071
https://doi.org/10.1016/j.neuroimage.2011.10.071
https://doi.org/10.1016/S1471-0153(01)00045-9
https://doi.org/10.1006/appe.2000.0328
https://doi.org/10.1016/j.cmet.2018.09.024
https://doi.org/10.1162/jocn_a_00795
https://doi.org/10.1016/S0140-6736(04)17663-0
https://doi.org/10.1016/S0140-6736(04)17663-0
https://doi.org/10.1016/j.appet.2016.11.015
https://www.R-project.org/
https://doi.org/10.1016/j.appet.2018.08.036
https://doi.org/10.1016/j.appet.2018.08.036
https://doi.org/10.1016/0306-4603(89)90026-9
https://doi.org/10.1016/0306-4603(89)90026-9
https://doi.org/10.1016/j.ijpsycho.2008.06.006
https://doi.org/10.1523/JNEUROSCI.2105-10.2010
https://doi.org/10.1016/j.jand.2012.04.016
https://doi.org/10.1016/j.jand.2012.04.016
https://doi.org/10.7554/eLife.31185
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/J.NEUROIMAGE.2015.09.001
https://doi.org/10.1111/psyp.13309
https://doi.org/10.1016/S1053-8119(02)00046-0
https://doi.org/10.1038/oby.2002.17
https://doi.org/10.3945/ajcn.116.141143
https://doi.org/10.3945/ajcn.116.141143
https://doi.org/10.1002/oby.20882
https://doi.org/10.1002/oby.20882
https://doi.org/10.1038/oby.2011.168
https://doi.org/10.1016/J.BRAINRES.2011.09.022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Brain Activity Associated With Regulating Food Cravings Predicts Changes in Self-Reported Food Craving and Consumption Over Time
	Introduction
	Behavior Change From Food Cue*-1pt Reactivity*-1pt
	Behavior Change From Food Craving*-1pt Regulation*-1pt
	The Present Study

	Materials and Methods
	Participants
	Protocol
	Measures
	Body Mass Index (BMI)
	Food Craving Inventory (FCI)
	ASA24
	Regulation of Craving (ROC) Task

	Neuroimaging Data Acquisition and Preprocessing
	Neuroimaging Analysis
	ROI Definition and Extraction
	Statistical Analyses

	Results
	Baseline
	Change Over Time

	Discussion
	Baseline
	Reactivity
	Regulation

	Change Over Time
	Reactivity
	Regulation

	Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


