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Patients with chronic obstructive pulmonary disease (COPD) are characterized by

attenuated pulmonary function and are frequently reported with cognitive impairments,

especially memory impairments. The mechanism underlying the memory impairments

still remains unclear. We applied resting-state functional magnetic resonance imaging

(RS-fMRI) to compare the brain local activities with static and dynamic amplitude

of low-frequency fluctuations (sALFF, dALFF) among patients with COPD (n = 32)

and healthy controls (HC, n = 30). Compared with HC, COPD patients exhibited

decreased sALFF in the right basal ganglia and increased dALFF in the bilateral

parahippocampal/hippocampal gyrus. The reduced the left basal ganglia was associated

with lower oxygen partial pressure. Besides, the increased dALFF in the left

hippocampal/parahippocampal cortex was associated with poor semantic-memory

performance and the increased dALFF in the left hippocampal/parahippocampal

cortex was associated the forced vital capacity. The present study revealed

the abnormal static and dynamic local-neural activities in the basal ganglia and

parahippocampal/hippocampal cortex in COPD patient and its relationship with poor

lung function and semantic-memory impairments.

Keywords: chronic obstructive pulmonary disease, semantic memory, resting-state functional MRI, dynamic,

amplitude of low-frequency fluctuation

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a chronic disease of the lungs and a leading
cause of significant mortality and disability (Watz et al., 2008). According to the WHO, COPD is
the fourth leading cause of death and will be the third leading cause of death by 2030. Cognitive
dysfunction is one of the most important comorbidities of COPD, which must be cautiously
considered. It has been reported that 12–88% of patients with COPD present with cognitive
impairments (Hynninen et al., 2005), either globally or in single cognitive domains (Dodd et al.,
2010), especially memory deficits (Cleutjens et al., 2014). However, the pathogenesis of cognitive
impairments remains unclear.
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Multiple studies have revealed the relationship between
cerebral structural lesions and poor respiratory function (Liao
et al., 1999; Sachdev et al., 2006). Considering the direct relation
between hypoxia and neuronal functional activity, COPD
patients may be more susceptible to neuronal functional
alterations. Hence, it is more reasonable from a functional
view to explore the neural substance underlying cognitive
impairments in COPD. Indeed, it is widely known that cognitive
processing requires activity in the relevant cerebral regions
(task-related neuronal activity). However, compared with task-
related neuronal activity, spontaneous neuronal activity actually
consumes more brain energy (Raichle and Mintun, 2006) and
has been linked with multiple cognitive processes, such as spatial
orientation and memory (Greicius et al., 2003). Spontaneous
neuronal activity refers to the activity intrinsically generated by
the brain that is not attributable to particular information inputs
or outputs (Fox and Raichle, 2007).

Recently, spontaneous activity has been indexed by various
approaches, such as resting-state functional connectivity (RSFC)
and regional homogeneity (ReHo). These indexes reflect
functional coupling between distinct brain regions, spatially
remote and local, respectively (Friston, 2002; Zang et al.,
2004), but not direct neuronal activity. As regional measures of
spontaneous activity, the regional amplitude of low-frequency
fluctuations (ALFF) has been extensively used to represent
spontaneous neuronal activity (Zang et al., 2007). The ALFF were
shown to be closely associated with other classical measures of
brain activation, such as PET (Tomasi et al., 2013), and have
been widely used to measure the neural substrates of several
cognitive processes, including language learning and working
memory (Zou et al., 2013; Deng et al., 2016). Besides, abnormal
ALFF have been linked to cognitive dysfunction in various
neurological disorders, such as Alzheimer’s disease (Wang et al.,
2011). Recently, there have also been studies that investigated
the alterations in neuronal activity in patients with COPD using
ALFF (Wenjing et al., 2018; Lu et al., 2019). For example, Lu
et al. (2019) found decreased ALFF in bilateral basal ganglia areas
and the aberrant ALFF value was correlated with PaO2 and the
pulmonary ventilation function.

However, most of these studies on local spontaneous neuronal
activity have focused on measuring static ALFF (sALFF),
which is based on the implicit assumption that brain activity
remains temporally stationary during the entire scanning period.
Recently, mounting evidence has suggested there are time-
varying characteristics of brain local activity (Hutchison et al.,
2013; Allen et al., 2014; Liu et al., 2017), which was always
indexed by the dynamic amplitude of low-frequency fluctuation
(dALFF). Importantly, the dALFF has been frequently associated
with cognitive performance in healthy people (Fornito et al.,
2012) and patients with cognitive impairments (Fiorenzato et al.,
2019). However, whether patients with COPD exhibit abnormal
dALFF remains unclear. In the present study, we aimed to
explore the static and dynamic local neuronal activities and
their relationships to cognitive deficit in patients with COPD.
We assumed that COPD patients present aberrant static and
dynamic ALFF and these abnormal local activities may be related
to cognitive impairments in COPD patients.

MATERIALS AND METHODS

Participants
Thirty-two patients with COPD were recruited from the
Hefei Second People’s Hospital, Hefei, China. The patients
were diagnosed according to the Global Initiative for Chronic
Obstructive Lung Disease (GOLD) guidelines from 2013 and
met other necessary inclusion criteria: (1) no current mental
disorders or neurological illness or related history; (2) no history
of substance abuse; (3) no comorbidities such as diabetes,
liver failure, cardiovascular disease, neurological disorders, or
malignant tumor; (4) years of schooling >5; (5) eligible
head motion (<3mm, 3◦); (6) no claustrophobia or other
contraindications of an MRI scan. Finally, thirty-two patients
were included in the final analysis. Thirty healthy subjects
were also enrolled and matched according to gender, age, and
education via local advertisements. All participants were carefully
screened in a diagnostic interview to rule out current or past
significant medical illness or mental disorders. The present
study was approved by the Anhui Medical University Ethics
Committee, and written informed consent was obtained from
all participants.

Laboratory Tests
Within 3 days of MRI scanning, a standardized pulmonary
function test was performed to evaluate the function of
pulmonary ventilation in all participants. In addition, an arterial
blood gas analysis was performed for all patients.

Cognitive Test
The present study primarily focused on the semantic memory,
assessed by a category verbal fluency test (CVFT). During the
CVFT, participants were required to say as many words as
possible describing a vegetable within 1min. One point was
scored when participants gave a correct term for the correct
description of the vegetable. The total score was used as a record
of memory performance for further analysis.

MRI Data Acquisition
Structural and functional MRI images of participants were
acquired at the University of Science and Technology of China,
Anhui Province, with a 3-T scanner (Discovery GE750w, General
Electric). Before image acquisition, all participants were asked to
keep their eyes closed and body still, and not to think of anything
in particular. T1-weighted anatomical images were acquired in
the sagittal orientation [TR/TE = 8.16/3.18ms; flip angle =

12◦; field of view (FOV) = 256 × 256 mm2; voxel size = 1
× 1 × 1 mm3; slice thickness= 1mm; 188 slices]. Functional
MRI (BOLD) images were composed of 217 echo-planar imaging
volumes (TR/TE = 2,400/30ms; flip angle = 90◦; FOV = 192 ×
192 mm2; voxel size = 3 × 3 × 3 mm3; slice thickness = 3mm;
matrix size= 64× 64; 46 continuous slices).

Functional Data Preprocessing
Functional MRI data were preprocessed using the Data
Processing Assistant for Resting-State Functional MR Imaging
toolkit (Chao-Gan and Yu-Feng, 2010). For each participant,
we applied the following processing steps: discarding the
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first 10 volumes to allow for magnetization equilibrium; slice
timing correction; realignment to account for head motion; co-
registered structural images with the mean functional image and
then segmented into gray matter, white matter, and cerebrospinal
fluid; the gray matter maps were non-linearly co-registered
to the tissue probability maps in the Montreal Neurological
Institute (MNI) space; normalization functional volume to the
MNI space using the parameters estimated during non-linear
co-registration at a resolution of 3 × 3 × 3 mm3; nuisance
regressors with 24 Friston motion parameters, white matter high
signal, cerebrospinal fluid signal and global signals as regressors;
filtering with a temporal band pass of 0.01–0.1Hz, and spatial
smoothing (Gaussian kernel = 4 × 4 × 4 mm3). Finally, motion
scrubbing was conducted using the cubic spline method to
minimize the influence of the time points with high motion
[frame-wise displacement (FD) >0.5], as well as that of one time
point prior to, and two time points following, each of these high
motion time points.

Static Amplitude of Low-Frequency
Fluctuations (sALFF)
After preprocessing, the filtered time series was converted to the
frequency domain using a fast Fourier transform. The square
root of the power at each frequency was calculated to obtain
amplitude values. The ALFF was calculated as the sum of the
amplitude values in the 0.01–0.1Hz low-frequency power range.
To reduce the global effects of variability across participants, the
ALFF was normalized to the mean within-brain ALFF value for
each participant.

Dynamic Amplitude of Low-Frequency
Fluctuations (dALFF)
The sliding window approach was used to calculate the dALFF
using DynamicBC software (Liao et al., 2014). Based on previous
recommendations, we chose 30 repetition times (TRs) (72 s) as
the window length (Leonardi and Van De Ville, 2015; Li et al.,
2018), and the window was shifted by 40% of the window length
(12 TRs, 28.8 s). There were 207 TRs for our data and, hence, 15
windows constituted the full time series. For the time series in
each window, the ALFF map was calculated using the procedures
described above for the sALFF calculation. To study the temporal
variability of ALFF, the standard deviation (SD) of ALFF at each
voxel was calculated across sliding-window dynamics, then the
coefficient of variation (CV: SD/mean) map was calculated, i.e.,
dALFF. Additionally, selected parameters, especially the length
of window and span (overlap), are key factors in the computation
of dynamics. To validate our findings, we conducted auxiliary
analyses with another span (one TR, 2.4 s) and two window
lengths [40 TRs (96 s) and 50 TRs (120 s)].

Statistical Analysis
The Pearson’s χ

2 test and two-sample t-tests were applied to
compare the demographic and clinical characteristics of the
two groups (gender, age, educational years, clinical symptoms,
and semantic memory performance) with SPSS 23. Voxel-
wise two-sample t-tests within the gray matter mask were
performed to quantitatively compare the differences in the sALFF

and dALFF values between the two groups with gender, age,
educational years, and head motion indexed by frame-wise
displacement (FD) as covariates with the software of DPABI
(http://rfmri.org/dpabi). Statistical maps for sALFF and dALFF
were corrected using the Gaussian Random Field method at
the threshold of p < 0.001 at the voxel level and p < 0.05 at
the cluster level (cluster size >40 voxel). Spearman’s correlation
analyses were conducted to examine the associations between the
significantly different sALFF and dALFF values between groups
and behavioral performance. Significance for correlations was
determined by p < 0.05 (two-tailed), with no correction.

RESULTS

Demographic and Clinical Characteristics
Thirty-two patients with COPD and 30 healthy controls
were included in the final analysis. No significant differences
were found between the two groups in terms of age or
gender. Compared with the HC, participants with COPD had
lower scores in the CVFT. Table 1 presents the demographic
characteristics of the two groups.

Group Comparison of sALFF
We explored the differences in sALFF between the two groups
based on voxel level. Compared with HC, there were lower sALFF
in the left basal ganglia (cluster size = 66; peak coordinate =

−24, 0, 0) (shown in Figure 1). No other regions demonstrating
significantly different sALFF between the two groups
were found.

TABLE 1 | Demographic and clinical characteristic.

COPD HC bT value/χ2 p-value

Gender (Male/female)a 30/2 27/3 0.29 0.59

Age 71.94 ± 5.52 71.10 ± 3.95 0.68 0.50

Educational years 6.03 ± 2.60 6.17 ± 2.13 −0.22 0.82

PH 7.40 ± 0.040

PaO2 83.68 ± 22.87

PaCO2 43.75 ± 10.70

FEV1 0.95 ± 0.44

FVC 1.84 ± 0.71

FEV1/FVC 0.51 ± 0.088

CVFT 12.69 ± 2.38

sALFF in BG 0.67 ± 0.10 0.80 ± 0.11 −4.97 <0.001

dALFF in LHIP 0.29 ± 0.08 0.19 ± 0.04 6.03 <0.001

dALFF in RHIP 0.25 ± 0.05 0.18 ± 0.04 6.76 <0.001

aData are presented as mean ± standard deviation except Gender.
bComparisons were performed using the chi-square test for the variable of Gender and

independent samples t-tests for other variables.

COPD, chronic obstructive pulmonary disease; HC, healthy control; PH,

pondus hydrogenii; PaO2, partial pressure of oxygen; PaCO2, partial pressure of carbon

dioxide; FVC, forced vital capacity; FEV1, forced expiratory volume in the first second;

CVFT, category verbal fluency test; sALFF, static amplitude of low-frequency fluctuations;

dALFF, dynamic amplitude of low-frequency fluctuations; BG, basal ganglia; RHIP, right

hippocampal/parahippocampal cortex; LHIP, hippocampal/parahippocampal cortex.
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FIGURE 1 | Group differences in sALFF. Patients with COPD showed decreased sALFF in the left basal ganglia compared to HC. Statistical maps were corrected via

the Gaussian Random Field (GRF) method at a threshold of voxel P < 0.001, cluster P < 0.05 (with 7.6*8.0*6.7 mm3 as estimate smoothness kernel). Scatter plots

present sALFF of each participant in the two groups. ***p < 0.001.

Group Comparison of dALFF
The differences in dALFF between the two groups were
also examined based on voxel level. Compared with HC,
patients with COPD exhibited decreased dALFF in the bilateral
hippocampal/parahippocampal cortex (cluster = 48, peak
coordinate = 27, −39, 0; cluster size = 50, peak coordinate
= −27, −51, −3) (shown in Figure 2). The validation analysis
with different sliding-window lengths also revealed decreased
dALFF in the bilateral hippocampal/parahippocampal cortex in
the COPD group (Supplementary Figure 1).

Relationship Between sALFF and dALFF
Clinical Characteristics and Behavioral
Performance
The reduced sALFF in the left basal ganglia were lower
oxygen partial pressure (r = 0.544, p = 0.001). Besides,
the increased dALFF in the left hippocampal/parahippocampal
cortex were associated with poor semantic-memory performance
(r = 0.544, p = 0.001) and the increased dALFF in the left
hippocampal/parahippocampal cortex were associated with the
forced vital capacity (r = 0.544, p = 0.001). The sALFF in the
left basal ganglia were negatively related with dALFF in the
bilateral hippocampal/parahippocampal cortex (r = −0.360, p
= 0.004 for the left and r = −0.341, p = 0.007). There was

no significant relationship of other clinical characteristics with
sALFF, or dALFF (see Table 2).

DISCUSSION

In the present study, we aimed to reveal brain functional
alterations in COPD patients and their relationships to
cognitive dysfunction. We found that COPD patients
exhibited decreased local spontaneous activity in the left
basal ganglia. We also observed a novel temporal dynamic
alteration in the local spontaneous activity in the bilateral
parahippocampal/hippocampal gyrus. Importantly, there
were significant relationships between static and dynamic
local spontaneous activities and clinical characteristics (both
pulmonary function and semantic-memory performance).

Increasing evidence has suggested that patients with COPD
display abnormal local spontaneous neuronal activity. Lu et al.
have demonstrated lower local spontaneous activity in the
bilateral basal ganglia among COPD patients indexed with static
ALFF (sALFF), which is consistent with our results (Lu et al.,
2019). Lower sALFF in the basal ganglia was associated with
poor pulmonary function. Their deep location in the brain may
contribute to the susceptibility of basal ganglia to persistent
hypoxia (Schindler et al., 2016), due to neurovascular-coupling
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FIGURE 2 | Group differences in dALFF. Patients with COPD showed increased dALFF in the bilateral hippocampal/parahippocampal cortex. Statistical maps were

corrected via the Gaussian Random Field (GRF) method at a threshold of voxel P < 0.001, cluster P < 0.05 (with 9.5*10.2*8.7 mm3 as estimate smoothness kernel).

Scatter plots present sALFF of each participant in the two groups. ***p < 0.001.

TABLE 2 | Correlations between clinical characteristics and brain function.

PH PaO2 PaCO2 FEV1 FVC FEV1/FVC CVFT sALFF in Put dALFF in LHIP dALFF in RHIP

PH - 0.107 −0.514** 0.362* 0.196 0.441* 0.141 0.214 −0.014 −0.156

PaO2 - - −0.192 0.193 0.130 0.080 0.195 0.562** 0.089 0.219

PaCO2 - - - −0.403* −0.234 −0.437* −0.157 −0.082 −0.148 0.216

FEV1 - - - - 0.914*** 0.478** 0.314 −0.080 −0.202 −0.300

FVC - - - - - 0.140 0.265 −0.185 −0.231 −0.357*

FEV1/FVC - - - - - - 0.299 0.073 −0.146 −0.029

CVFT - - - - - - - 0.030 −0.579*** −0.121

sALFF in BG - - - - - - - - −0.360** −0.341**

dALFF in LHIP - - - - - - - - - 0.348

dALFF in RHIP - - - - - - - - -

*p < 0.05; **p < 0.01; ***p < 0.001.

alterations. Basal ganglia are a group of subcortical nuclei that
provide functions in the motor and multiple cognitive domains,
including executive functions (Monchi et al., 2006). The reduced
local activity has been linked with executive dysfunction in
COPD patients and other neuropsychiatric disorders (Maciel
et al., 2016; Lu et al., 2019). Notably, basal ganglia is also involved
in semantic processing (Viñas-Guasch and Wu, 2017). Studies
involving lesion imaging have suggested that lesions in the basal
ganglia may impair verbal-fluency performance (Chouiter et al.,

2016). Considering the fact that the verbal fluency test reflects
both executive and semantic processing, we speculate that the
lower local spontaneous activity in the basal ganglia may be
related to executive dysfunction and semantic impairments.

Besides the basal ganglia, the hippocampal cortex is another
brain structure that is sensitive to hypoxia (Dunn et al., 1999).
This phenomenon may be attributed to the relative lack of
capillary anastomoses between intrahippocampal vessels (Perosa
et al., 2020). In line with this concept, our results revealed
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abnormal local activity in the hippocampal/parahippocampal
cortex and the significant relationship between local activity and
poor pulmonary function. The hippocampal/parahippocampal
cortex is critical for episodic memory (Düzel et al., 2001)
and consolidation of long-term memory (Frey and Frey,
2008) and contributes to many other cognitive domains,
such as semantic memory (Sheldon and Moscovitch, 2012).
Hippocampal dysfunction has been linked to semantic-memory
impairments (Bai et al., 2019). Consistent with this, the present
study has found an association between hippocampal activity
and CVFT performance, which most likely relies on the medial
temporal cortex, which mediates the storage and retrieval of
semantic knowledge (Henry and Crawford, 2004).

Notably, this work took an innovative approach that
investigated the temporal variability of local brain activity in
COPD. Mounting studies suggest that brain dynamics reflect
the functional capacity of the neural system (Kucyi et al., 2016)
and more readily predict cognitive and affective conditions
(Wang et al., 2019; Cui et al., 2020). Using a novel dALFF
method, we revealed the abnormal enhanced dynamics of
hippocampal local activity, which imply abnormal stability
in the hippocampal local activity. Intriguingly, there were
negatively significant relationships between sALFF in basal
ganglia and dALFF in bilateral hippocampal/parahippocampal
cortex. Physiological meanings of these relationships are still
unclear. We speculate that the alteration of sALFF and
dALFF may play an intermediary role between anoxia and
memory impairments.

There are several limitations inherent in the present study.
First, the sample size was too small, which may have led
to sampling bias. Further studies with larger sample sizes
are needed to replicate our results. Second, the data on
arterial blood gas analysis and pulmonary function were lacking
for healthy controls, although all healthy controls were screened
rigorously by a physician to exclude possible hypoxemia and poor
pulmonary function. Third, patients in the present study were not
drug-free, and thus we cannot eliminate the confounding effects
of drugs on our findings.

CONCLUSION

These limitations notwithstanding, our results indicate that
semantic-memory impairments in COPD patients are linked
with abnormal static and dynamic local-neural activity in the

basal ganglia and parahippocampal/hippocampal cortex, which
may be modulated by poor pulmonary function.
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