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In the human-computer interaction (HCI), electroencephalogram (EEG) access for

automatic emotion recognition is an effective way for robot brains to perceive human

behavior. In order to improve the accuracy of the emotion recognition, a method of

EEG access for emotion recognition based on a deep hybrid network was proposed

in this paper. Firstly, the collected EEG was decomposed into four frequency band

signals, and the multiscale sample entropy (MSE) features of each frequency band were

extracted. Secondly, the constructed 3D MSE feature matrices were fed into a deep

hybrid network for autonomous learning. The deep hybrid network was composed of

a continuous convolutional neural network (CNN) and hidden Markov models (HMMs).

Lastly, HMMs trained with multiple observation sequences were used to replace the

artificial neural network classifier in the CNN, and the emotion recognition task was

completed by HMM classifiers. The proposed method was applied to the DEAP dataset

for emotion recognition experiments, and the average accuracy could achieve 79.77%

on arousal, 83.09% on valence, and 81.83% on dominance. Compared with the latest

related methods, the accuracy was improved by 0.99% on valence and 14.58% on

dominance, which verified the effectiveness of the proposed method.

Keywords: electroencephalogram, access, emotion recognition, convolutional neural network, hidden markov

model, deep hybrid network

INTRODUCTION

In order to improve the reliability of HCI, researchers have always advocated for adding emotion-
related components to the information processing network of robot brains (Pessoa, 2019; Xiao
et al., 2020). With the development of HCI technology and cognitive neuroscience, the ability of
robot brains to perceive human behavior is enhanced using these modern achievements in a brain-
computer interface system (Korovesis et al., 2019). Therefore, it is of great significance to study
EEG access for emotion recognition and its application in robot brains.

At present, the process of emotion recognition based on EEG access can be divided into the
following steps, namely, induction of emotional states, acquisition and preprocessing of EEG
signals, extraction and processing of EEG features, and emotion pattern learning and recognition
(Koelstra et al., 2012). In general, the preprocessing of EEG signals involves the frequency and
brain location of the selected signals. Fast Fourier transform (FFT) is a common frequency analysis
method for EEG signals (Yin et al., 2017; Kwon et al., 2018). However, FFT cannot reflect temporal
information in frequency data. Therefore, short-time Fourier transform (STFT), which could
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extract time-frequency domain features, is now used as an EEG
emotion feature for emotion recognition (Liu et al., 2017). For
example, wavelet transform, a typical STFT analysis method, is
used to decompose and reconstruct EEG signals. The obtained
wavelet energy is used as a feature for emotion recognition
(Li et al., 2016). However, the human brain is a nonlinear
dynamic system, and the EEG signals are difficult to analyze when
using traditional time-frequency feature extraction and analysis
methods. So, the asymmetry features regarding brain regions,
such as DASM (differential asymmetry) and RASM (rational
asymmetry) were explored for emotion recognition (Zheng et al.,
2017). However, these methods only studied the relationship of
symmetrical electrodes in the brain, and did not connect all
the electrodes. In addition, the EEG signals were composed of
rhythmic signals from different regions of the brain, which could
reflect brain activity (Whitten et al., 2011). Hence, an EEG signal,
which was decomposed into different frequency band signals,
could be used for emotion recognition by the K nearest neighbor
algorithm (KNN) (Li et al., 2018), support vector machine (SVM)
(Zhuang et al., 2017), and an artificial neural network (ANN)
(Mert and Akan, 2016). However, traditional machine learning
algorithms cannot obtain the high-level abstract features of an
EEG. In recent years, deep learning network methods have
been applied to the EEG for emotion recognition. In terms
of static models, depth features extracted from the CNN and
statistical features selected by Pearson’s correlation techniques
were used for emotion recognition (Lee et al., 2020), which
achieved an average accuracy rate of 80.90% on arousal and
82.10% on valence. The time-frequency feature map of each
EEG channel was inputted into a 2D-CNN (Kwon et al., 2018),
which achieved an average accuracy rate of 78.12% on arousal
and 81.25% on valence. The frequency domain, spatial, and
frequency band features of EEG signals were fed into the capsule
network (CapsNet) (Chao et al., 2019), which achieved an average
accuracy rate of 68.28% on arousal, 66.73% on valence, and
67.25% on dominance. However, these static models cannot
extract the temporal information of EEG features effectively. As
for dynamic time models, a HMM model was used to establish
the relationship between current and previous emotional states
(Chen et al., 2015), which achieved an average accuracy rate
of 73.00% on arousal and 75.63% on valence. Then, a hybrid
neural network model was created, composed of a CNN and
a recurrent neural network (Li et al., 2016), which achieved
an average accuracy rate of 74.12% on arousal and 72.06% on
valence. And a recurrent neural network for long short-term
memory (LSTM-RNN) was used for emotion recognition (Xing
et al., 2019), which achieved an average accuracy rate of 81.10%
on arousal and 74.38% on valence. But these dynamic models
cannot effectively extract the spatial information of EEG features,
which have a low performance for emotion recognition based on
EEG access.

Therefore, a method based on MSE and deep hybrid network
CNN-HMMs was proposed in this paper for EEG emotion
recognition. By taking the advantages of a HMM model
on tracking time series signals, high-level features from the
CNN could be modeled and classified by HMMs. In addition,
according to the position of brain electrodes, multi-band spatial

feature matrices were constructed and fed into the deep hybrid
network CNN-HMMs for emotion recognition.

PRINCIPLE

EEG Feature Extraction
Frequency Pattern Decomposition
EEG signals are composed of brain rhythm signals, event-related
potentials (ERP), and spontaneous electrical activity signals, and
changes of brain states are often characterized by rhythmic
signals from different brain regions (Whitten et al., 2011;
Koelstra et al., 2012; Wang et al., 2014). The EEG signal can be
decomposed into four frequency band signals by Butterworth
filters, which are the θ wave (4–7Hz), α wave (8–13Hz), β

wave (14–30Hz), and γ wave (31–45Hz). The properties of the
Butterworth filter include amaximally flat magnitude response in
the passband region, and a gain of 0 dB at direct current (DC).

The magnitude-squared response
∣

∣H(w)
∣

∣

2
, which is an integer

order Butterworth filter of order n, is given by Equation (1)
(Mahata et al., 2018).

∣

∣H(w)
∣

∣

2
=

1

1+ (w/wc)
2n

=
1

1+ ε2(w/wp)
2n

(1)

Where n is the order of the filter, w is the digital domain
frequency, wc is the cut-off frequency, wp is the passband edge
frequency, and ε is the ripple parameter.

MSE Algorithm
MSE analysis was used to estimate the complexity of irregular
physiological time series at different time scales (Costa et al.,
2002, 2005). The calculation processes of the MSE are shown
as follows.

The EEG sequences are transformed to different time scales
by different scale factors. For the given length of EEG sequence
X = {x1, x2,. . . , xN}, the EEG sequence Y with scale factor τ

is obtained by scale transformation. The scale transformation
process is shown in Equation (2).

yτ
j =

1

τ

j+τ−1
∑

i=j

xi, 1 ≤ j ≤ N − τ + 1; 1 ≤ i ≤ N; τ ∈ N+ (2)

Where N is the length of the sequence and τ is the scale factor.
When τ = 1, the resulting sequence is the raw EEG sequence
X. When τ > 1, the raw EEG sequence can be converted into
the sequence Y =

{

yτ
1 , y

τ
2 , . . . , y

τ
N−τ+1

}

, its length is no more
than N–τ+1.

For the EEG sequence Y at the scale of τ , the absolute value

of the maximum differenced
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]

between the elements of
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i and vector Yτ

j is shown in Equation (3).
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whereYτ
i =

{

yτ
i+1, y
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}

is a set of m dimension
vectors, yτ

i+k
is the element of the vectorYτ

i , and yτ
j+k

is the
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element of the vector Yτ
j , butY

τ
i 6= Yτ

j . For the given similarity

tolerance r(r > 0), the similarity Bmi (r, τ) between the vector Yτ
i

and the vectorYτ
j is shown in Equation (4).

Bmi (r, τ ) =
Bτ
i (r, τ )

N −m
=

num
{

d
[

Yτ
i , Y

τ
j

]

< r
}

N −m
(4)

where Bτ
i (r, τ ) is the number of num

{

d
[

Yτ
i , Y

τ
j

]

< r
}

. Then,

the average similarity Bmi (r, τ ) can be calculated by Equation (5)
at the scale of τ .

Bm(r, τ ) = (N −m+ 1)−1
N−m+1
∑

i=1

Bmi (r, τ ) (5)

In Equations (3–5), the dimension m is changed to m + 1. The
average similarity Bm+1(r, τ ) can be calculated by the equations
of (3), (4), and (5). Then, the MSE value of the raw EEG sequence
X can be calculated as Equation (6).

MSE = − ln(Bm+1(r, τ )/Bm(r, τ )) (6)

where the settings of parameters m = 2 and r = 0.2 × std (std
is a standard deviation of the time series) are the best choice in
analyzing the EEG signals (Richman andMoorman, 2000). Thus,
the settings of them= 2 and r = 0.2× std are used in this paper.

Deep Hybrid Network CNN-HMMs
The deep hybrid network CNN-HMMs is composed of a CNN
and two HMMs. As shown in Figure 1, the CNN contains input
layers, hidden layers, and output layers. In addition, sequence
S1 = s1, s2, . . . , sn is the implicit state of HMM-1, and sequence
O1 = o1, o2, . . . , om is the observable state of HMM-1. Sequence
S2 = s1, s2, . . . , sm is the implicit states of HMM-2, and
sequenceO2 = o1, o2, . . . , om is the observable state of HMM-2.

Structure of CNN
The CNN is a kind of neural network which can be used to
generate feature hierarchy, it has two significant characteristics:
sparse connection and weight sharing (Lecun et al., 2015).
The sparse connection can be used to extract the features of
different regions in input layers, while weight sharing can greatly
reduce the number of training parameters and training time, and
simplify the network structure. As shown in Figure 2, the input
layers are a 3D MSE matrix of a size 10 × 10 × 4, where 10 ×

10 is the size of the single frequency band square matrix, and 4 is
the number of the EEG frequency bands. In the hidden layers,
the sizes of the four convolution layers are 10 × 10 × 64, 10
× 10 × 128, 10 × 10 × 256, and 10 × 10 × 64, respectively.
And the convolution kernel sizes of each convolutional layer are
4 × 4, 4 × 4, 4 × 4, and 2 × 2, respectively. In the output
layers, the sizes of the two connection layers are 1 × 1024 and
1 × 512, respectively. Moreover, the layer activation function
is a rectified linear unit (RELU). So, the CNN has the ability
of nonlinear feature transformation. And the function RELU is
shown in Equation (7).

RELU(x) = max(x, 0) =

{

x, if x > 0
0, otherwise

(7)

where the linear function RELU(x) is 0 when x < 0.

HMM Classifiers
A HMM has the ability of modeling time series. So, the EEG
feature sequences can be treated as the Markov observation
sequence O = O1, O2, . . . , Ok, and the EEG emotional states
can be treated as states S = S1, S2, . . . , Sk of a Markov process.
λ = (π , A, B) can be defined as the HMM. Key parameters
of the λ are the initial state probability distribution π = p(q0
= Si), the transition probabilities aij = p(qt = Sj

∣

∣qt1 = Si)
of the state transition matrix A, and a model to estimate the
observation probabilities bj(k) = p(Ok

∣

∣Sj ) of the observation

FIGURE 1 | Schematic diagram of the deep hybrid network CNN-HMMs.
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FIGURE 2 | Schematic diagram of the CNN model. Padding = “SAME” means that zero padding is used to prevent information from getting lost at edges of the

cube. Stride = 1 means that the step size of each convolution operation is 1. Dropout means that hidden neurons are randomly deleted in the network.

FIGURE 3 | Schematic diagram of HMM classifiers. A HMM classifier can be created for an emotion state. The classifier is made up of Q hidden states which can

generate observation variables Ot at each time point t. An observation sequence O can be obtained by regulating state transition probabilities aij and observation

probability distributions. Final decision MAX(P) can be treated as the maximum probability of each emotional state.

probability matrix B. The learning parameters of HMM can
be realized using the Baum-Welch algorithm (Rabiner, 1990)
based on the maximum likelihood estimation (MLE). Then, the
objective function Equation (11) can be optimized by updating
Equations (8–10). The parameters (π , A, B) can be obtained at
the end. As shown in Figure 3, the output probability P of each
HMM classifier can be obtained by Equation (11).

πi = γ1(i), 1 ≤ i ≤ N (8)

where πi is the initial state probability, and γ1(i) is the probability
of state Si at time t = 1.

ai,j =

T−1
∑

t=1
ξt(i, j)

T−1
∑

t=1
γt(i)

, 1 ≤ i, j ≤ N; 1 ≤ t ≤ T − 1 (9)

where ai,j is the state transition probability, ξt(i, j) is the state
transition probability from state Si at time t to state Sj at time t +
1, and γt(i) is the probability of state Si at time t.

bj(k) =

T
∑

t=1,Ot=Ok

γt(j)

T
∑

t=1
γt(j)

, 1 ≤ j ≤ N; 1 ≤ t ≤ T (10)

Where bj(k) is the observation probability of symbol Ok in state
Si, and γt(j) is the probability of state Sj at time t.

P(O |λ ) =

T
∏

k=1

p(Ok |λ ) =

T
∏

k=1

pk, 1 ≤ k ≤ T (11)

Where P(O |λ ) is the maximum likelihood estimate probability,
O(k) is the symbol of sequence O.
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RESULTS AND DISCUSSION

In this part, we introduce the experimental processes and
compare our method with other methods. Then, we evaluate
the effectiveness of our framework on the DEAP dataset.
Without loss of generality, the performance of emotional
recognition based on EEG access was analyzed by a 10-fold
cross-validation technology.

Experimental Environment and
Experimental Dataset
Table 1 shows the specific experimental environment for
the experiments.

The effectiveness of the proposed emotion recognition
method was verified using the DEAP dataset (Koelstra et al.,
2012). In the dataset, 63 s of EEG data were recorded for 32
subjects who watched 40 videos. The first 3 s of data were pre-trial

TABLE 1 | Specific experimental environment.

Name Version

CPU Intel Core i7-9750H @2.60GHz

GPU NVIDIA GeForce RTX 2060 6GB

RAM DDR4 16GB

OS Windows 10

Frameworks Tensorflow-GPU 1.14.0, MATLAB 2019b

baseline signals, and the last 60 s of data were trail signals. In
addition, we classified the emotional states according to the
scores of arousal, valence, and dominance. As shown in Figure 4,
we divided the emotion recognition of EEG into three binary
classifications. If the scores of arousal (or valence or dominance)
were less than or equal to 5, the label was marked as low. If the
scores were greater than 5, the label was marked as high. Thus,
there were six labels on three emotional dimensions, namely,
high arousal (HA), low arousal (LA), high valence (HV), low
valence (LV), high dominance (HD), and low dominance (LD).
We divided 60 s of EEG raw signals of a specific channel into
60 equal segments by 1 s sliding windows. Thus, all 60 divided
segments of 1-second EEG signals had the same label as the
original signals.

Construction of a 3D MSE Feature Matrix
To present the distinctive MSE features, we used Pearson’s
correlation to calculate the correlation (R) between the low level
and high level of each emotional state. When the time scale τ was
1, we calculated the average MSE values of the EEG samples with
statistical significance R< 0.05 and drew theMSEmap. As shown
in Figure 5, the MSE value became larger with the increasing
EEG frequency, which indicated that the complex components
of the EEG signal were increasing. Thus, in order to extract
more effective EEG emotional features, the MSE was used for
emotional feature extraction in this paper.

Before the MSE of the EEG signal was calculated, EEG signals
were usually divided into short time frames within a window size
of 1 second (Wang et al., 2014; Li et al., 2017). In order to improve

FIGURE 4 | Schematic diagram of the experiment labels and data division. We obtained 76,800 (32 × 40 × 60) samples of each EEG band from the DEAP dataset.

The number 32 represents 32 subjects, 40 represents 40 videos, and 60 represents that we divided the original 60 s of EEG signals into 60 equal segments.

According to the emotional dimension level classification, there are 34,320 samples in LA, 42,480 samples in HA, 32,580 samples in LV, 44,220 samples in HV,

30,000 samples in LD, and 46,800 samples in HD.
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FIGURE 5 | The MSE topographic map schematic of EEG samples. The color-bar represents the MSE value range of each topographic map. θ is 0.5 ∼ 0.62, α is

0.60 ∼ 0.70, β is 1.20 ∼ 1.50, and γ is 1.20 ∼ 1.60.

FIGURE 6 | Process of removing the influence of baseline signals. Base_Vector (i) is the MSE value of baseline signals, Mean
∑

Base_Vector (i) is the MSE mean

value of the 3-segment baseline signals, and Trail_Vector (i) is the MSE value of trail signals.

the recognition accuracy, the divided trail signals needed to be
removed from the baseline signals. As shown in Figure 6, every
second of the raw EEG signals were decomposed into θ waves,
α waves, β waves, and γ waves by Butterworth filters. Then,
the MSE value of the 3-segment baseline signals and 60-segment
trail signals were calculated by the MSE algorithm. Finally, the
MSE could remove the influence of the baseline signals by
calculating the difference between Mean

∑

Base_Vector(i) and
Trail_Vector (i).

The MSEθ , MSEα , MSEβ , and MSEγ of the 32 EEG channels
fill the orange positions in Figure 7B. In addition, the EEG
electrodes circled in orange were testing points used in the DEAP

dataset, as shown in Figure 7A. We connected the electrodes of
the international 10-20 system (Jasper, 1958) with the testing
electrode of the DEAP dataset. And then, a N × N square matrix
was constructed (N is the maximum number of points between
horizontal or vertical test points). Moreover, in order to avoid
the loss of edge information, a layer of gray untested points was
added to the outer layer of the matrix, as shown in Figure 7B.
The gray points were filled with zero values. Next, we obtained
four 2D square matrices (10 × 10). Finally, a 3D feature matrix
of a size 10 × 10 × 4 was constructed by superimposing the
four 10 × 10 square matrices of the EEG frequency bands in
Figure 7C.
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FIGURE 7 | Construction process of a 3D MSE feature matrix. (A) International 10–20 system (Jasper, 1958). (B) A 2D square matrix of 32 EEG channels. (C) A 3D

feature matrix of combining MSEθ , MSEα , MSEβ , and MSEγ .

Training CNN-HMMs and Parameters
Selection
The recognition performance was analyzed using 10-fold cross
validation technology. The obtained 76800 3D feature matrices
were divided into ten equal groups. Nine groups were assigned
to the training dataset, and the remaining one was assigned to
the test dataset. All the feature matrices were fed into the deep
hybrid network CNN-HMMs. The pseudo code of the detailed
procedures for EEG emotion recognition are listed in Table 2.
For the developed model with optimized parameters, the training
time and the testing time were 134.33s and 35.45s, respectively.

For the CNN, the training process of the CNN consisted of
optimizing parameters in the network. To prevent the CNN from
over fitting in the learning process, a dropout technology and L2
regularizationmechanismwere introduced into a fully connected
layer of the network. The value of Dropout was set to 0.5 and the
learning rate was initialized to 0.01. When the verification errors
of the network stopped dropping, the learning rate was divided
by 10 until the iteration stopped.

For the HMM, we built two HMMs through the hmmlearn
library of Python. A HMM classifier was created for an
emotional state. The number of iterations was set to 1000.
The stop threshold was set to 0.01. The learning parameters
of HMM could be realized using the Baum-Welch algorithm.
Parameters in HMMs were optimized in the training phase.
Firstly, the transformation matrix A was represented as a Bakis
model (Wissel et al., 2013) in which non-zero elements were
only allowed in the upper triangle part. In this structure, the
three transitions were looping (a11), jumping to the next state
(a12), and skipping (a31), as shown in Figure 3. Then, we set
experiments to explore the optimal Gaussianmixture component
M and the feature dimension of each emotional state.

When the time scale was τ = 1 for the MSE features, the
Gaussian mixture componentM was set to 1, 2, 3, and 4, and the
feature dimension of the state Q was set to 64, 128, 256, and 512.
As shown in Figure 8A, the accuracy of the emotion recognition
showed a decreasing trend with the increase of M. The highest
average recognition accuracy rate was obtained whenM was 1. As
shown in Figure 8B, the accuracy of emotion recognition was the

TABLE 2 | Pseudo code of the detailed procedures for EEG emotion recognition.

Read EEG Feature dataset and corresponding labels

Start model structural identification

Initialize CNN parameters and the learning rate

def conv_1, conv_2, conv_3, conv_4, cnn_fc1, cnn_fc2

def cnn_fc_drop, L2 regularization, cost_func, AdamOptimizer

def hmm_hight_model = hmm.GaussianHMM(components, iter, tol,

covariance_type)

def hmm_low_model = hmm.GaussianHMM(components, iter, tol,

covariance_type)

End model structural identification

Start training CNN-HMM model

for fold = 1: 10

for epoch = 1: training_epochs

for train_batch_num = 1: batch_num_per_epoch // CNN training

Assign cnn_batch, cnn_labels

session.run([cnn_fc2, cost], feed_dict={cnn_in: cnn_batch, cnn_labels})

end for

hmm batch = cnn_fc2;

Assign HMM train dataset, HMM test dataset

hmm_hight_model.fit(hmm_high_batch) // HMM training of hight-level

emotion

hmm_low_model.fit(hmm_low_batch) // HMM training of low-level emotion

high_score = hmm_hight_model.score(test_dataset) // get test probability

low_score =hmm_low_model.score(test_dataset) // // get test probability

compare [high_score, low_score] with [high_labels, low_lables]

update learning rate

end for

end for

End training CNN-HMM model

highest with a steady upward trend, and the maximum accuracy
rate was obtained when the feature dimension was 512. WhenM
> 1, the emotion recognition accuracy rate presented an unstable
state. The result showed that the increase ofM would reduce the
quality of the model estimation, and a higher accuracy rate was
obtained for a small number of states which contained only a few
mixture components.

In order to obtain a robust generalization ability for the
HMMs, the optimal feature dimension was 512 and M was 1. In
addition, we also needed to set experiments to find the optimal
time scale of the MSE.
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FIGURE 8 | Selection of feature dimensions and Gaussian mixture components. (A) When the feature dimensions were 64, 128, 256, and 512, the emotion

recognition accuracy of each mixture component can be obtained. (B) When the mixture components were 1, 2, 3, and 4, the emotion recognition accuracy of each

feature dimension can be obtained.

FIGURE 9 | Average accuracy rate of emotion recognition at τ = 1 ∼ 5.

Time Scale τ Selection of MSE
In order to find the optimal performance of the deep hybrid
network CNN-HMMs at the appropriate time scale, the MSE
value was calculated by five time-scales, and the average
accuracy rate of emotion recognition was obtained on arousal,
valence, and dominance. As shown in Figure 9, the average

accuracy rate increased at first, then decreased and then
increased again. When τ was 2, the deep hybrid network
CNN-HMMs could yield the highest average accuracy on
arousal, valence, and dominance, which were 79.77, 83.09,
and 81.83%. Therefore, the optimum time-scale of MSE
was τ = 2.
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Results of EEG Access for Emotion
Recognition
To verify the reasonableness of the proposed method, two groups
of experiments were designed to perform emotion recognition on
arousal, valence, and dominance.

In the first group of experiments, MSE, power spectral
density (PSD), and differential entropy (DE) were used as EEG
emotion features, and CNN-HMMs was used for recognition
emotion. As shown in Figure 10, when PSD was used as
the emotion feature of EEG, the average recognition accuracy
rate of the deep hybrid network CNN-HMMs was 64.61%
on arousal, 68.60% on valence, and 73.48% on dominance.
When DE was used as the EEG emotion feature, 78.50,
74.96, and 78.29% were obtained. When MSE was used as
the EEG emotion feature, optimal accuracy rates of 79.77,
83.09, and 81.83% were obtained. PSD was a time-frequency
analysis method, while both DE and MSE were nonlinear
dynamics analysis methods. In the proposed method, both
MSE and DE were more effective in emotion recognition than
PSD, which indicated that the emotional features based on

EEG signals could be effectively extracted by the method of
nonlinear dynamics.

In the second group of experiments, the parameter settings
of the 1D-CNN, 2D-CNN, and CNN-HMM are shown in
Table 3, where Cov is the convolution layer and Fc is the fully
connected layer. MSE was used as the EEG emotion feature.
At the same time, the 1D-CNN, 2D-CNN, and CNN-HMMs
were used for emotion recognition. As shown in Figure 11, the
1D-CNN achieved average recognition accuracy rates of 62.16%

on arousal, 64.03% on valence, and 63.09% on dominance. The

2D-CNN achieved 71.15, 72.00, and 72.95%, while the CNN-

HMMs achieved an optimal accuracy of 79.77, 83.09, and 81.83%.
So, the deep hybrid network CNN-HMMs achieved a better
emotion recognition performance than the 2D-CNN and 1D-
CNN, which indicated that the proposed model could obtain
the time information of EEG more effectively. The emotional
recognition performance of the 1D-CNN was lower than that of
the CNN-HMMs and 2D-CNN, and it indicated that the CNN-
HMMs and 2D-CNN could obtain more spatial information
from the 3D feature matrix which we constructed.

FIGURE 10 | The results of the emotion recognition based on PSD, DE, and MSE.

TABLE 3 | Parameter settings of the 1D-CNN, 2D-CNN, and CNN-HMM.

Models Convolution kernel size Neurons Classifiers

Cov1 Cov2 Cov3 Cov4 Fc1 Fc2

1D-CNN 1×8 1×4 1×4 1×2 1024 —— Softmax

2D-CNN 4×4 4×4 4×4 2×2 1024 —— Softmax

CNN-HMMs 4×4 4×4 4×4 2×2 1024 512 HMMs
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FIGURE 11 | Results of the emotion recognition based on the 1D-CNN, 2D-CNN, and CNN-HMMs.

FIGURE 12 | Scalp MSE distribution of two emotion states under different frequency bands.

EEG Channel Activation
In order to reveal the reason for the poor performance
of emotion recognition and the EEG channels related to
the emotional state, Figure 12 presents the averaged MSE

distribution from all subjects, where each frequency band holds
two activation topologies.

We found that the FP2 channel of the right frontal lobe,
the O2 channel of the occipital lobe, the T7 channel of the left
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temporal lobe, and the T8 channel of the right temporal lobe
had significant activation at the MSE distribution, indicating
that these electrodes and brain regions are important for EEG
emotion and are consistent with the results found in a previous
study (Li et al., 2019b). We also observed that the same frequency
band-related activation distributions for different emotional
states are of a similar channel activation, which was the reason
for the low performance of emotional recognition.

Comparison and Analysis
We used deep hybrid network CNN-HMMs for emotional
recognition based on EEG access and achieved the emotional
recognition on arousal, valence, and dominance of the DEAP
dataset. A 10-fold cross-validation technique was used to validate
our emotion recognition results. At the same time, the proposed
method was compared with existing methods.

Firstly, we constructed a 3D spatial feature matrix using four
frequency band (θ , α, β , and γ ) features of EEG and removed
the baseline signals from the MSE features of the trail signals. As
shown in Figure 13, a two-dimensional planar feature matrix was
constructed by combining features of the four frequency bands
(Chao et al., 2019). The experimental results showed that the
proposed method achieved accuracy rates of 11.49, 16.36, and

14.58%, which were higher than theirs on arousal, valence, and
dominance, respectively. Therefore, the 3D feature matrix could
extract more useful EEG spatial information.

Secondly, we used the MSE method to perform nonlinear
dynamics analysis of the EEG signals. As shown in Figure 13,
power spectral density (PSD) was used to perform time and
frequency domain analysis of the EEG signals (Xing et al.,
2019). The experimental results showed that the proposed
method was 5.39% on arousal and 1.99% on valence higher than
theirs. Therefore, the MSE nonlinear dynamic method was more
effective for EEG analysis.

Thirdly, on the basis of the CNN, we deeply fused the
HMM model which had time series modeling capabilities.
And the deep hybrid network CNN-HMMs were used for
emotion recognition. As shown in Figure 13, a CNN was
used to conduct the emotional analysis of the EEG and
PPG signals (Lee et al., 2020). The experimental results
showed that the proposed method was 0.99% higher on
valence and 1.13% lower on arousal, which indicated
that the combination of EEG and PPG signals was more
effective for emotion recognition, but other physiological
signal access would increase the complexity of actual
emotion recognition.

FIGURE 13 | Comparison and analysis with existing methods.
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TABLE 4 | Results comparison of emotion recognition based on EEG access among similar studies.

Studies Models Features Evaluation methods Accuracy (%)

Arousal Valence Dominance

Chen et al. (2015) HMM Fusion feature 5-fold cross-validation 73.00 75.63 ——

Li et al. (2016) CNN-LSTM

(CRNN)

Wavelet energy 5-fold cross-validation 74.12 72.06 ——

Zhuang et al.

(2017)

SVM Intrinsic mode

functions

leave-one-trail-out

validation

69.10 71.99 ——

Mert and Akan

(2016)

ANN MEMD-based

features

leave-one-trail-out

validation

75.00 72.87 ——

Kwon et al. (2018) 2D-CNN EEG spectrograms 10-fold cross-validation 78.12 81.25 ——

Chao et al. (2019) CapsNet Multiband feature

matrix

10-fold cross-validation 68.28 66.73 67.25

Xing et al. (2019) LSTM Frequency band

power

10-fold cross-validation 74.38 81.10 ——

Lee et al. (2020) CNN Fusion feature 5-fold cross-validation 80.90 82.10 ——

Our proposed

method

CNN-HMMs Multiscale sample

entropy

10-fold cross-validation 79.77 ± 0.61 83.09 ± 0.84 81.83 ± 0.53

Bold values indicate accuracy ± standard deviation (%).

Therefore, the proposed method could achieve the highest
emotional recognition accuracy on valence and dominance,
which was 83.09 and 81.83%, respectively. It was verified that
the effectiveness of EEG access was best for the proposed
emotion recognition method. A comparison of the related
methods are shown in Table 4. Our method still has some
limitations. On one hand, the proposed model requires
35.45 s when testing a group of EEG signals, which is
not sustainable for hardware implementation. On the other
hand, the accuracy of the emotion recognition obtained
cannot meet the actual needs, so we will consider using an
attention mechanism (Li et al., 2020), generative adversarial
network (GAN) (Li et al., 2019a), or other advanced models
for experiments.

CONCLUSION

A method of emotion recognition based on EEG access was
proposed by us in this paper. A 3D feature matrix, which
was conducted by the multi-band MSE features of different
EEG channels, could be extracted the EEG spatial information
effectively. And a deep hybrid network CNN-HMMs, which was
composed of a CNN and multiple HMMs, could be used to
model the time series and perform emotion recognition. The
proposed method was applied to the DEAP dataset for emotion
recognition experiments and compared with the existing relevant
studies, and it could achieve the highest average accuracy on
valence and dominance. So, the proposed method could not only
extract EEG features effectively, but could also improve the rate
of emotion recognition.

In our future work, we will focus on reducing the recognition
time and improving the recognition rate. Firstly, we will further
study the correlation between the different electrode channels
of EEG. In addition, we will utilize the method of rearranging

channels to reduce EEG channels and select the optimum
channels. Secondly, we will consider using a lightweight model.
While the network parameters are reduced, there is no loss of
network performance. In actual application, it is a competent
choice for hardware implementation. In the meantime, we will
also take into account the advanced deep learning models which
will be used for improving the recognition rate.
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