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Epilepsy is a serious hazard to human health. Minimally invasive surgery is currently
an extremely effective treatment to refractory epilepsy. However, it is challenging to
localize the lesion for most patients because they are MRI negative. The identification
of epileptic foci in local brain region will be helpful to the localization of epileptic foci
because we can infer whether there is a lesion from the results of the classification. For
the sake of simplicity and the data we collected, only the hippocampus was segmented
as a local brain region and classified in this paper. We recruited 59 children with
hippocampus epilepsy and 70 age- and sex-matched normal controls, and diffusion
kurtosis images (DKI) for all subjects were collected because DKI can understand the
pathological changes of local tissues and other regions of epileptic foci at the molecular
level. Then, a mask of hippocampus was made to segment the hippocampus of FA,
MD, and MK images for all subjects, which are the parameter images of DKI and were
used to perform the independent-sample t-test and the classification task. At last, a
convolutional neural network (CNN) based on transfer learning technique was developed
to extract features of FA, MD, MK, and the fusion of FA and MK, and support vector
machine was employed to classify epilepsy and normal control. Finally, the classifier
produced 90.8% accuracy for patient vs. normal controls. Experimental results showed
that the features extraction based on CNN is very effective, and the high accuracy of
classification means that FA and MK are two remarkable features to identify epilepsy,
which indicates that DKI images can act as an important biomarker for epilepsy from
the point of view of clinical diagnosis.

Keywords: epilepsy, diffusion kurtosis imaging, deep learning, hippocampus, MRI-negative

INTRODUCTION

Epilepsy is a chronic disease caused by the sudden abnormal discharge of neurons in the brain,
which leads to transient brain dysfunction. As its prevalence continues to rise, epilepsy has gradually
become the second common neurological disease after headache.

Epilepsy often occurs in adolescents, and it will greatly affect the patient’s life if not treated
in time (Hoare and Russell, 2010). The younger the patient, the greater the impact. Epilepsy
may cause lifelong brain dysfunction in children and even endanger life (Harvey et al., 2010).
The early diagnosis and localization is extremely important for interventional therapy. Minimally
invasive surgery is currently an extremely effective treatment to refractory epilepsy. However, it is
challenging to localize the lesion for most patients because they are MRI negative.

Preference of diagnosis for epilepsy is EEG (electroencephalogram), followed by CT and MRI.
As the most common means of diagnosis, EEG could be used to determine whether the patient
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has a seizure and to determine the type of seizure, which
can help to identify the inducing factors of epilepsy. However,
because EEG lacks the understanding of etiology and low spatial
resolution of conventional EEG, the location and microstructural
changes of epileptogenic foci cannot be detected. CT and
conventional MRI is of great value in the diagnosis of epilepsy,
the location of the lesion, the choice of treatment plan, the
evaluation of curative effect, and the judgment of prognosis. But
unfortunately, both of them do nothing about primary epilepsy
without obvious structural changes. It should be noted that about
30% of the epilepsy population are MRI negative (Jörg et al.,
2013). Considering the MRI’s technical advantages of being non-
invasive, no injury, and fast speed, how to use it to improve
the diagnosis accuracy of brain lesions in patients with primary
MRI-negative epilepsy is of great significance.

Along with the development of MRI, diffusion-weighted
imaging, perfusion-weighted imaging, magnetic resonance
spectroscopy (MRS), blood oxygen level dependent, and so on
can understand tissue physiology and disease from the point of
view of molecular, hemodynamic, and metabolite. They cannot
only obtain the information of brain tissue morphology and
structure but also describe the functional state of brain from
molecular, metabolic micro-angle, and even brain network. At
present, these techniques have been widely used in the clinical
and scientific research of central nervous system diseases, such
as early diagnosis and prognosis evaluation of ischemic cerebral
infarction, preoperative grading and postoperative evaluation
of brain tumors, and microscopic neuropathological changes of
some mental diseases (Zhang, 2012; Liu and Zhang, 2014; Jiang
et al., 2020; Kang et al., 2020).

Researchers around the world carried out research aiming to
find effective ways to localize epilepsy. Li (2018) reported that
the localization rate of MRI-negative epilepsy patients using PET
can reach 56.4%, the localization accuracy of EEG combined
with fMRI is 61.5 and 63.2%, localization accuracy is achieved
using MEG (magnetoencephalography). 3D-arterial spin labeling
is also employed by researchers to perform the localization of
epilepsy (Sebastiano et al., 2020), and they reported a 69.2%
accuracy. At the same time, they found that 1H-MRS (proton
magnetic resonance spectroscopy) can localize epilepsy with
76.9% accuracy. Furthermore, when combined with the two
methods, 84.6% localization accuracy was achieved.

Studies have also shown that diffusion tensor imaging (DTI)
and diffusion kurtosis imaging (DKI) have important value in the
study of pathophysiological mechanisms of epilepsy, lesion focus
localization, and so on (Gao et al., 2015). Gaizo et al. (2017) used
machine learning to classify epilepsy based on diffusion MRI,
achieving accuracy of 68% (FA), 51% (MD), and 82% (MK), and
he also verified statistically that FA and MK are more significant
than MD to diagnose epilepsy. Gaizo et al. (2017) did similar
work, but what they used to classify was the image of the entire
brain region, and they could only judge whether an individual
was ill, and could not locate epilepsy lesions. The purpose of this
paper is to provide a method to analyze DKI data using deep
learning methods to locate conventional MRI-negative epilepsy
lesions. The method of segmenting and then classifying the
kurtosis of DK images is mainly used to locate epileptic foci in

patients with conventional MRI-negative epilepsy. In particular,
a convolutional neural network (CNN) is introduced to segment
the hippocampus, and VGG16 that has been transfer learned is
used to characterize the image. The extraction of vectors uses
feature vectors as the input of the support vector machine (SVM)
classification network, and the results obtained by our method
are much better than those of Gaizo et al. (2017). The accuracy is
improved by 19.16% (FA), 8.78% (MD), and 8.81% (MK).

In this paper, DKI images were collected for all subjects, based
on which we focused on the classification of epilepsy in a single
brain region, specifically, the hippocampus. First, we analyze the
sensitivities of FA, MD, MK, and the fusion of FA and MK to the
identification of epilepsy by means of statistical method. Then, a
CNN with transfer learning technique was developed to extract
features for all subjects, which were used to identify epileptic
foci from normal control. Finally, 90.8% classification accuracy
is achieved, which makes it clinically feasible to identify epilepsy
using DKI based on deep learning.

It should be noted that although we have only identified one
brain region for epilepsy, actually, the localization of epilepsy
foci can be achieved by the results of identifying epilepsy in
several other brain regions, which is not discussed here because
it is beyond the scope of this paper. In addition, although the
hippocampus is not the most common brain region for epileptic
foci in children, we only take this as an example to illustrate our
method based on the collected data. The analysis of other brain
regions can be fully followed by the same analysis method of the
hippocampus discussed in this paper, which will contribute to the
localization of epileptic foci.

MATERIALS AND METHODS

Subjects
The data in this article are collected by the Affiliated Hospital
of Zunyi Medical University from 59 patients (32 males and 27
females) with epilepsy lesions in the hippocampus; all patients
were diagnosed according to the 2010 version diagnostic criteria
of the ILAE (Kramer, 2010) by intermediate-grade pediatricians
or higher. At the same time, 70 healthy volunteers (37 males and
33 females) with matching gender, age, and education level were
recruited as the control group. The subjects were all right handed.

The statistics of normal control and epilepsy patients by age
are as follows (Table 1).

Image Acquisition
All participants underwent MRI examinations (3.0 T HDxt; GE
Healthcare, Milwaukee, WI). Before starting the examination, the
metal substance carried by the subject was removed, earplugs are
worn to reduce noise, the subject’s head was fixed to reduce head
movement, and the head was straightened. Participants were
asked to close their eyes, lie down, and stay awake. The scanning
range is the entire head.

Scanning parameters:

1. 3D T1BRAVO: repetition time = 7.8 ms, echo
time = 3.0 ms, inversion time = 450 ms, flip
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TABLE 1 | Corresponding statistical information of subjects.

Characteristic Patients (n = 59) Normal (n = 70)

Gender (M/F) 32/27 37/33

Age (years) 11.13 ± 2.89 (range 7–18) 12.82 ± 3.13 (range 7–18)

Handedness 59R 70R

Duration (years) 4.22 ± 3.15 (range 1–13) –

VIQ 93.90 ± 18.99 (range 46–122) –

PIQ 90.87 ± 18.99 (range 43–129) –

FIQ 91.93 ± 19.36 (range 39–125) –

M, male; F, female; R, right; VIQ, verbal intelligence quotient; PIQ, performance
intelligence quotient; FIQ, full-scale intelligence quotient.

angle = 15◦, field of view = 256 × 256 mm, spatial
resolution = 1 × 1 × 1 mm, slice thickness = 1 mm,
slices = 256, scan time = 208 s.

2. DKI: b value (0, 1,000, 2,000 s/mm2), the diffusion-
sensitive gradient field is applied in 50 directions, b value
is 0, scan 2 times, field of view (FOV): 240 × 240 mm,
spatial resolution: 1 × 1 × 4 mm; echo time (TE): 100 ms;
repetition time (TR): 10,000 ms; layer thickness: 4 mm,
layer spacing: 0 mm; flip angle (FA): 90◦, scan time: 8′50′′,
scan layer number: 35 layers, a total of 1820 images were
collected in the whole brain.

Data Preprocessing
All data have been preprocessed by a series of standard
preprocessing procedures. dcm2niigui software was used to
convert all the image formats from Dicom to 3D nifty. Because
children’s brain structure is significantly different from that of
adults, the common adult brain template cannot be used to
perform the registration. Instead, a child’s brain is selected as
a template from our data. We used SPM8 toolbox (statistical
parametric mapping 8)1 in the MATLAB R2017a platform to
register all data.

Then, we tried to make a hippocampus mask. First, we
segmented the hippocampus region for each subject’s T1 image,
which was used to mask the hippocampus region of FA, MD,
and MK maps after some preprocessing (Figures 1, 2). Deep
segmented CNN was employed to perform the segmentation
which was trained by Ataloglou et al. (2019). Then, because it
contains T1 and segmented hippocampus images, the EADC-
ADNI HarP dataset2 was used to fine-tune the network and
segment the hippocampus region of T1 image for each subject. To
fully cover the hippocampus area for all subjects, union operation
was used to produce the hippocampus mask. Because it was found
that there was little difference between the three age groups in
the shape and size of the hippocampus, the hippocampus regions
segmented by all subjects are used to calculate the hippocampus
mask regardless of the age group.

Lastly, DKE3 software was used to estimate the DKI parameter
maps FA, MD, and MK. With the SPM8 toolbox, the affine
matrix was calculated from the B0 image of the subject and

1http://www.fil.ion.ucl.ac.uk/spm/
2http://adni.loni.usc.edu/
3https://www.nitrc.Org/projects/dke/

FIGURE 1 | The segmented hippocampus in T1.

FIGURE 2 | The completed hippocampus mask.

the T1 image after each registration, and affine transformation
and interpolation of the DKI parameter image was performed
(Figure 3). Consequently, we can use the hippocampus mask,
obtained from the aforementioned operation, to extract the
hippocampus regions of all the parameter images FA, MD, and
MK. Because the original format of the hippocampus parameter
image is 3D nifty, we converted the hippocampus parameter
images into jpg format to facilitate feature extraction using deep
learning model VGG16.

The aforementioned data preprocessing process can be
represented by Figure 4, where rectangles represent operations,
parallelograms represent internal data, and arc-shaped
quadrilaterals are used to represent external input data.

Feature Extraction and Classification
Feature Extraction With VGG16
Deep learning is a powerful computing method that can
automatically learn features and patterns from mass data, and
CNN is a kind of deep learning algorithm that has proven to
be very effective in classification. In recent years, CNN has been
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FIGURE 3 | The DKI parameter image of each subject and the hippocampus mask are combined to obtain the hippocampus area of the DKI parameter image of the
subject.

FIGURE 4 | Data preprocessing flow chart.

successfully applied to image classification, image recognition,
natural language processing, speech recognition, and biological
signal processing (Smirnov et al., 2014; Palaz et al., 2015; Yin
et al., 2017; Ganapathy and Peddinti, 2018; Shang et al., 2018; Wei
et al., 2018; Bird et al., 2020). However, medical image datasets
are usually small, which is not suitable for processing with deep
neural network directly. To solve this problem, transfer learning
technique was introduced in this paper.

First, we transferred pre-trained parameters trained on natural
image dataset Imagenet with 1000 categories into VGG16
network. Then, the VGG16 network was fine-tuned with
transferred pre-trained parameters by the EADC-ADNI HarP
dataset because it has the same data structure as the data in this

paper. Finally, three VGG16 networks were trained with FA, MD,
and MK slice-level dataset, respectively, and the trained VGG16
networks were used to extract features of FA, MD, MK, and the
fusion of FA and MK images.

Transfer learning technique is to utilize the pre-trained
weights to initialize own network whose structure is the same
as pre-trained model trained by a much larger dataset, thus
realizes self-adaption from source to target domain. In this study,
we transferred VGG16 pre-trained weights trained by nature
image dataset Imagenet with 1,000 categories into own VGG16
network (Figure 5). Although brain image is very different
from nature images, the first few layers in CNN can extract
many generic features, such as side, angle, color, and so on.
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According to the difference of category number and image
attribute between source domain and target domain, we replaced
fully connected layer and freezed the pre-trained weights of the
first four convolution blocks of VGG16, then the pre-trained
weights in the fifth convolution block and the initial weights of
fully connected layer were continually updated during training
process; the aforementioned courses are also called fine-tuning.
The freezed layers will be used to extract generic feature whereas
the fine-tuned layer extracts high-level target-specific features.

In feature extraction part, some studies directly use square
instead of fine segmented brain region. The reason we do not do
that is that the finely divided brain regions cannot only remove
interference information but also effectively reduce the amount
of calculation and save network running time. Moreover, the
purpose of this experimental method is to locate the epileptic
foci in patients with conventional MRI-negative epilepsy. If the
square brain area is used directly, it will be difficult to determine
which specific brain tissue the epileptic foci came from.

Classification With SVM
We used support vector machine (SVM) to identify epilepsy
from normal controls (NC) because of its superior performance
in many similar classification tasks. SVM is widely used in
classification at present because it can choose the best interface
among many classification surfaces and add a penalty factor in
the learning process of small samples to produce a certain soft
boundary, which can effectively avoid over-fitting. So, it is very
suitable for small sample classification task (Bishop, 2006).

In SVM, assume the hypothesis space, namely the linear binary
classifier:

f (x) = sign
(

wTx+ b
)

(1)

using marginmin to denote the minimum geometric distance
from the hyperplane in the training sample. To maximize the
minimum geometric distance, it is equivalent to finding the
following function:

arg max
w

(
min

n

y
(
wTxn + b

)
w

)
(2)

Because the minimization problem has nothing to do with the
value of | |w| |, we can put | |w| | in the aforementioned formula:

arg max
w

(
1

w
min

n
y
(

wTxn + b
))

(3)

The inner layer minimization problem becomes the
minimization function interval, where the function interval
after minimization is fixed to 1, then the original problem
becomes

arg max
w

1
w

s.t. y
(
wTxn + b

)
≥ 1, n = 1, 2, . . . , N

(4)

According to the usual practice, the maximization problem is
transformed into the minimization problem. To facilitate the
solution, the second norm is changed to the inner product of the

vector, and the basic form of the SVM model is finally obtained,
namely:

arg min
w

1
2 wTw

s.t. yn
(
wTxn + b

)
≥ 1, n = 1, 2, . . . , N

(5)

EXPERIMENTS AND RESULTS

Data Preparation
To reduce the interference introduced by irrelevant information
and improve the computational efficiency, 36 slices from 40 to 75
were selected in the experiment, each of which has a resolution
of 256 × 256. Because the proportion of the hippocampus is
too small for data analysis and classification, furthermore, all the
slices were cropped to the size of 40× 40.

All slices were used to build two datasets, which consist of
2,520(70 × 36) epilepsy slices and 2,124(59 × 36) NC slices.
The slice-level dataset was split into train set and validation set
with the ratio of 8:2. Another subject-level dataset was built for
SVM classification, which consists of 129 folders, each of which
contains all slices for one subject.

The extracted features were put into the SVM with Gaussian
kernel function (rbf) to distinguish the hippocampus from NC.

Statistical Analysis
In this section, we analyze the two datasets from a statistical
perspective. First, we calculated the average gray for all FA, MD,
and MK parameter images with non-zero gray values, and IBM
SPSS 24 software was used for statistical analysis for MK, FA, and
MD of case group and NC group. Table 2 shows the results of
independent-sample t-test.

It could be found that the mean values of FA and MK of the
patients are significantly lower than those of NC, and there is not
much difference in the mean value of MD. It is consistent with the
DKI parameter image of epilepsy patients proposed in literature
(Xia, 2018), where the FA and MK decrease in the location of
the lesion. These areas with reduced FA and MK may reflect a
lack of myelin sheath, increased axonal membrane permeability,
or a less tight neural network (Zhang et al., 2016). It shows
that DKI parameters are sensitive to microstructural changes of
epilepsy tissues.

It could also be seen from Table 2 that the significance (two-
tailed) of FA and MK are both 0.000, and p is the significant
two-tailed. Because p < 0.05, it shows that there is a significant
difference between the patient and the NC’s FA and MK. The
significance of MD (two-tailed) is greater than 0.05, which
indicates that there is no significant difference in MD between
patients and NC.

The results are also consistent with that of Wieshmann et al.
(1999) and Liacu et al. (2010) using DTI, which can be inferred
that the loss of hippocampus neurons is not sufficient to induce
significant changes in the arrangement of water molecules in the
extracellular matrix. The decrease of FA and the normality of MD
indicate the loss of directionality of cell tissue and the integrity
of cell density.
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FIGURE 5 | The framework with VGG16 proposed in this paper.

TABLE 2 | Result of independent-sample t-test.

Normal (× 10−3 mm2/s) Patient (× 10−3 mm2/s) p

FA 0.3288 ± 0.0415 0.2254 ± 0.0208 0.000

MD 0.6488 ± 0.0586 0.6538 ± 0.0497 0.603

MK 0.8781 ± 0.0416 0.6978 ± 0.0350 0.000

The bold value represents the result of p < 0.05, indicating that the data has a
significant difference.

FIGURE 6 | Kruskal–Wallis ANOVA test.

We also conducted Kruskal–Wallis ANOVA test on the
subjects, and obtained the FA, MD, and MK box plots of patients
and NC as shown in Figure 6.

Classification With SVM
We used CNN to extract features and SVM to identify epilepsy
from NC in this paper. The accuracy rate (ACC), precision (PRE),
sensitivity (SEN), specificity (SPE), the area under the ROC curve
(AUC), and the coordinate axis are employed to evaluate the
performance of the proposed method. The ROC curves of 5-fold

FIGURE 7 | The ROC curve of each test parameter graph in SVM classifier.

cross-validation are shown in Figure 7. It can be seen from
Figure 7 that the AUC value of FA is 0.94, the AUC of MD is 0.60,
the MK is 0.97, and the FA + MK is also 0.97. The results indicate
that epilepsy patients can be identified from NC effectively by
using FA, MK, and the fusion of FA and MK, but not MD.
However, there is no significant difference between FA (or MK)
and their fusion.

The extracted features are normalized to distributions with
mean 0 and variance 1 before feature classification. Then, the
normalized features were fed into the optimal SVM classifier
selected through exhaustive search. To alleviate the problem of
data imbalance, class weights were imposed in SVM classification.

Table 3 lists the results of features classification, including
ACC, PRE, SEN, SPE, and AUC in Gaizo et al. (2017) and our
approach. As shown in Table 3, the classification performance of
our approach is superior to that of Gaizo. An average of accuracy
of 90.81%, a sensitivity of 89.29%, a specificity of 93.50%, and an
AUC of 91.0% have been achieved for identifying epilepsy from
NC with FA, MK, or the fusion of FA and MK. The method using
MK achieved the highest accuracy on identifying epilepsy foci in
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TABLE 3 | Classification performance comparison with previous studies based on DKI.

Train ACC Test ACC PRE SEN SPE AUC

FA Gaizo et al. 0.6830 0.6060 0.7520

Ours 0.9398 0.8716 0.8760 0.9041 0.8281 0.9400

MD Gaizo et al. 0.5140 0.3450 0.6640

Ours 0.7901 0.5978 0.6207 0.7676 0.3696 0.6000

MK Gaizo et al. 0.8200 07650 0.8700

Ours 0.9596 0.9081 0.9090 0.8929 0.9216 0.9700

FA + MK Ours 0.9864 0.9075 0.9230 0.8767 0.9350 0.9700

The total bold value represents the best result of the indicator in the table.

the segmented hippocampus region, and the accuracy using the
combination of FA and MK is a little lower than the accuracy
0.9081 achieved by only using the MK, which may be because the
simple combination of the two parameters does not make good
use of their features.

DISCUSSION

In this paper, we presented a method for identifying epilepsy in
a single brain region, especially the hippocampus, from normal
control using DKI images based on deep neural network. The
main reason for the identification of epilepsy by brain regions
is that it can be applied to the localization of epileptic foci.
To extract the hippocampus regions of FA, MD, and MK for
all subjects, we segmented hippocampus of T1 images for all
subjects, which were used to produce a hippocampus mask. The
hippocampus of FA, MD, and MK are extracted with the mask,
which were used for independent-sample t-test and classification.
The results of independent-sample t-test showed that there was
no significant difference in MD and significant change in FA and
MK between epileptics and normal controls, which is consistent
with the existing research findings.

To identify the epileptics from normal controls, a CNN with
transfer learning technique was developed to extract features of
FA, MD, MK, and the fusion of FA and MK for all subjects in
this paper. Finally, we used SVM to perform the classification
task by these features and achieved 90.8% accuracy. This result
is superior to the methods of similar techniques that have
been published so far. There may be two reasons for the
high classification accuracy: first, DKI imaging method; second,
feature extraction method based on migration deep learning.

It is well-known that the location of epilepsy is very difficult
because most patients are MRI negative. This may be because
the tissue changes caused by epileptic foci are too small to be
detected by conventional MRI. So, effective MRI imaging is the
key to locate epileptic foci. DKI, which measures the diffusion
movement of non-Gaussian water molecules in biological tissues,
is a sensitive indicator of brain microstructure changes and
can detect the abnormalities of brain microstructure before
the structural image. DKI has shown its important value in
pathophysiological mechanism, localization, and localization of
epilepsy. So, it is appropriate to introduce DKI as the imaging
technique in this paper. From the experimental results, both
the statistical analysis and the classification accuracy after

feature extraction have also verified the validity of DKI in
measuring microstructural changes of epilepsy patients who
are MRI negative.

MK represents the average of the dispersion kurtosis along all
directions. It is an average indicator of the degree of diffusion
limitation of water molecules in the tissue and indirectly reflects
the complexity of the tissue structure. In this study, significant
differences in MK values were found, and the average MK value
of the normal control group was larger than that of the epilepsy
group. Kurtosis K is a sign of environmental heterogeneity, the
larger the value, the more restricted the non-Gaussian dispersion
of water molecules in the bilateral frontal lobe and bilateral outer
capsule tissues of the normal group, and the more complex the
tissue microstructure; on the contrary, the decrease of MK value
in the epilepsy group indicates that patients with epilepsy may
have a loose structure of bilateral frontal lobes and bilateral
outer capsules. Possible pathological changes include neuronal
degeneration and loss of glial cells, which are often prompted
by the pathology of current epilepsy cases. FA is another main
parameter of DKI, which infers the shape of white matter fibers
and the formation of myelin. Although both FA and MK can
describe the dispersion of water molecules in tissues, MK may be
more sensitive than FA parameters because it does not depend
on the spatial orientation of the tissue structure and takes the
average of multiple b values in the same direction of gradient. FA
is the anisotropy score, which reflects the degree of anisotropy
of the dispersion of water molecules. The smaller the value,
the more random the dispersion and the more non-directional.
There are also significant differences in FA between epileptics and
NC in the experiment, and the parameter values in the normal
group are larger than those in the epilepsy group. Because of the
restriction by myelin or cell membrane, the white matter nerve
fibers in normal people are arranged regularly, and the nerve
fiber bundles are tightly arranged, in which the dispersion of
water molecules has a higher directionality, so the FA value is
higher; when the white matter nerve fiber bundles are damaged,
such as the disintegration of neuronal myelin sheath or the
proliferation of irregular glial cells, it may lead to changes in the
dispersion environment of water molecules. In this case, it may
be accompanied by a decrease in the diffusion parameter (axial
diffusion coefficient) along the axon of the nerve fiber. It suggests
that the changes in the values of these parameters may be related
to the bending of axons, which needs further verification.

In addition, feature extraction method also contributes to the
high classification accuracy. CNN is an effective feature extractor,
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which has been successfully applied in many occasions. To extract
features more effectively, EADC-ADNI HarP dataset, which has
the same type of data as that in the paper, was used to fine-tune
VGG16. Artificial intelligence–assisted diagnosis is the direction
of medical development, and the paper tried to use the artificial
neural network to analyze and classify the data intelligently and
good results were obtained. This is of great significance for the
clinical application of AI, especially in the application of central
nervous system diseases.

It should be noted again that the idea of this paper is just a key
part of epileptic foci localization. The whole process for locating
epileptic foci needs a number of other operations. First, brain T1-
weighted images and corresponding DKI images for subjects are
required. Then, each ROI are pre-processed as the hippocampus
discussed in this paper and classified by the CNN. According to
the classified result, we can identify if there is a lesion. The pre-
processing process is shown in Figure 4, and the classification
CNN can be built as the method discussed in this paper.

It should be noted again that although the experiment was
done by segmenting only the hippocampus in this paper because
of the data we collected, actually, we can locate epileptic foci by
analyzing other suspected brain regions using the same method.
In other words, the method proposed in this paper is actually an
indirect approach to perform epilepsy localization. If the lesion
is located in another brain area, the same method can be used.
For example, when we are not sure where the lesion is, we can
input the patient’s DKI parameter map into the segmentation
convolutional neural network or software, divide the parameter
map into multiple brain regions, and then input the images of
each brain region into the feature extraction and classification
network to make predictions and judgments; the location of
the lesion may provide imaging reference for the study of the
pathophysiological mechanism of epilepsy. In this way, we can
perform the localization of epileptic foci.
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