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Objective: Patients with hypochondriasis hold unexplainable beliefs and a fear of
having a lethal disease, with poor compliances and treatment response to psychotropic
drugs. Although several studies have demonstrated that patients with hypochondriasis
demonstrate abnormalities in brain structure and function, gray matter volume (GMV)
and functional connectivity (FC) in hypochondriasis still remain unclear.

Methods: The present study collected T1-weighted and resting-state functional
magnetic resonance images from 21 hypochondriasis patients and 22 well-matched
healthy controls (HCs). We first analyzed the difference in the GMV between the two
groups. We then used the regions showing a difference in GMV between two groups as
seeds to perform functional connectivity (FC) analysis. Finally, a support vector machine
(SVM) was applied to the imaging data to distinguish hypochondriasis patients from HCs.

Results: Compared with the HCs, the hypochondriasis group showed decreased GMV
in the left precuneus, and increased GMV in the left medial frontal gyrus. FC analyses
revealed decreased FC between the left medial frontal gyrus and cuneus, and between
the left precuneus and cuneus. A combination of both GMV and FC in the left precuneus,
medial frontal gyrus, and cuneus was able to discriminate the hypochondriasis patients
from HCs with a sensitivity of 0.98, specificity of 0.93, and accuracy of 0.95.

Conclusion: Our study suggests that smaller left precuneus volumes and decreased
FC between the left precuneus and cuneus seem to play an important role of
hypochondriasis. Future studies are needed to confirm whether this finding is
generalizable to patients with hypochondriasis.

Keywords: hypochondriasis, gray matter volume, functional connectivity, support vector machine,
default mode network
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INTRODUCTION

Hypochondriasis is a disabling and exhausting psychiatric
disorder, which can be characterized by unexplainable
beliefs and a fear of having a lethal disease. Individuals
with hypochondriasis typically would check for health-related
information online frequently, which is regarded as the
major cause leading to the occurrence and development of
hypochondriasis (Starcevic and Berle, 2013). Recent surveys
revealed a growing proportion of individuals affected by
hypochondriasis ranging from 3.4% in the Australian population
(Sunderland et al., 2013) to a surprising 20% of outpatients in
medical clinics in London (Tyrer et al., 2011). These patients
may spend excessive time and money seeking repeated medical
examinations and diagnosis frommedical specialists. Meanwhile,
a large proportion of patients experience comorbid psychiatric
distress, with anxious, depressive, and somatoform symptoms.
Nevertheless, investigators still debate the neurological status
and conceptualization of hypochondriasis. The diagnosis of
hypochondriasis was recently updated by two new concepts,
somatic symptom disorder (SSD) and illness anxiety disorder
(IAD), in the Diagnostic and Statistical Manual of Mental
Disorders, 5th edition (DSM-5; Wise and Birket-Smith,
2002; Olatunji et al., 2009). In contrast, hypochondriasis was
moved from the category of somatoform disorders in the
International Classification of Disease (ICD)-10 to those of
Obsessive–Compulsive and Related Disorders in ICD-11 (Stein
et al., 2016; van den Heuvel et al., 2014). Hence, exploring
hypochondriasis is of great importance in understanding its
biological mechanism. In this article, we report our study
based on a group of patients with hypochondriasis recruited
locally, which hopefully may provide novel perspectives for
the neuroimaging findings related to pathogenic mechanisms
of hypochondriasis.

Gray matter (GM) abnormalities have been associated
with the clinical behavior of psychiatric disorders, including
decreased GM volume (GMV) in the left middle frontal
gyrus (MFG), which is likely due to the depressive mood
in post-stroke depression (Hong et al., 2020), and reduced
GMV in obsessive–compulsive disorder (Valente et al., 2005).
Some structural magnetic resonance imaging (sMRI) studies
have demonstrated a distinct dysfunction in the GM of
hypochondriasis patients. Murad Atmaca et al. reported
significantly smaller orbitofrontal cortex (OFC), left thalamus,
and pituitary volumes in hypochondriasis patients compared to
those in healthy controls (Atmaca et al., 2010, 2016).

Resting-state functional MRI (fMRI) provides distinct
information about the functions of brain regions (Zhao
et al., 2018b,c). For example, functional connectivity (FC)
can reflect the status of integration of local activity between
brain regions, which is widely used in psychiatric research
(Moreira et al., 2017; Zhao et al., 2018a). However, there is
still lack of further investigation of hypochondriasis using
resting-state functional connectivity (rs-FC). According to
fMRI findings in the literature, altered FC in mental disorders
such as schizophrenia, obsessive–compulsive disorder (OCD),
and anxiety disorders have been proposed (Liu et al., 2015;

Armstrong et al., 2016; Wang et al., 2018; Chen et al., 2019; Cui
et al., 2020). The investigation of further FC studies in patients
with hypochondriasis is needed.

Support vector machine (SVM) is a classification method
successfully applied to diagnostic and prognostic problems
(Wenda et al., 2010), which is a supervised learning algorithm
popular for its strong theoretical foundation, ability to scale to
large datasets, flexibility, and most importantly, accuracy (Chen
et al., 2012). Such methods have been used to differentiate
patients with psychiatric disorders and healthy controls (Zhu
et al., 2018; Li et al., 2019).

This study was conducted to determine potential MRI
biomarkers of hypochondriasis and compare patients with
hypochondriasis with well-matched healthy controls.

MATERIALS AND METHODS

Participants
In this study, we recruited 21 outpatients with hypochondriasis
from the First Affiliated Hospital, College of Medicine,
Zhejiang University, Zhejiang Province, China. All patients
were diagnosed by at least two professional clinicians using the
Structured Interview for DSM-IV Axis I disorders (SCID-I),
physical examination and routine laboratory testing. Inclusion
criteria for patients to enter this study were as follows:
(1) age between 18 and 55 years; (2) a DSM-IV diagnosis of
hypochondriasis; (3) being psychiatric drugs naive; (4) negative
for HIV antibodies; (5) junior high school education or above;
and (6) of Han ethnicity. Patients were excluded if any of the
following conditions was met: (1) left-handed; (2) a history or
presence of any severe unstable physical disease; (3) substance
use disorders or alcohol abuse in the past 6 months; (4) being
pregnant, lactating, or planning to become pregnant within the
following 6 months; and (5) had metal implants.

Moreover, 22 healthy volunteers without psychiatric
disorders matched for hypochondriasis group for age, education,
marriage status, and sex were recruited from local communities
through advertising.

The Research Ethics Committee of the First Affiliated
Hospital, College of Medicine, Zhejiang University, approved
the study. All participants and their legal guardians signed the
written informed consents.

Clinical Assessments
The 17-item Hamilton Depression Scale (HAMD-17) was used
to assess the severity of depressive symptoms. The Hamilton’
anxiety scale (HAMA) was used to evaluate the severity of
anxiety symptoms.

MRI Data Acquisition
The MRI data were acquired using a Philips Achieva 3.0-T
TX MRI system (Philips Healthcare, Netherlands) at the First
Affiliated Hospital, College of Medicine, Zhejiang University.
The rs-fMRI data were acquired in the axial direction in a
sequential mode using a fast field echo-echo-planar imaging
(FFE-EPI) sequence, using a head coil with foam padded to
strengthen fixation of the head. All participants were instructed
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to remain still and relaxed, with eyes closed, but awake, clear of
any thought.

The rs-fMRI scanning parameters were as follows: 24 slices,
repetition time (TR)/echo time (TE) = 2,000/35 ms, flip
angle (FA) = 80◦, slice thickness/gap = 5.0/1.0 mm, voxel
size = 2.4 × 2.4 × 5.0 mm3, matrix = 100 × 100, and field
of view (FOV) = 240 × 240 mm2. The rs-fMRI scan lasted
6 min and 48 s, and we collected a total of 200 image volumes.
Individual three-dimensional T1-weighted images were also
acquired using the following fast field echo sequence: 150 slices,
TR/TE = 7.5/3.7 ms, matrix = 240 × 240, slice thickness = 1 mm,
FOV = 240× 240mm2, voxel size = 1× 1× 1mm3, and FA = 8◦.

Imaging Data Preprocessing
The rs-fMRI data were preprocessed using the Advanced
DPARSF1 and SPM82 toolkits. The first 10 functional volumes
were excluded to ensure steady-state longitudinal magnetization.
The remaining images were slice-time-corrected based on the
middle slice in the time and coregistered to the first image
for rigid-body head movement. Images identified with motions
greater than 2.0-mm translations or greater than 2.0◦ rotations at
any direction were removed. Consequently, no participants were
excluded due to excessive head motion. Next, the linear trend, 24
head-motion covariates, mean white matter, and cerebrospinal
fluid (CSF) signals were regressed from each voxel’s time
course. Our preprocessing analysis did not perform global signal
regression. Subsequently, the images were normalized to the
Montreal Neurological Institute space using an EPI template and
resampled into 3 × 3 × 3 mm3. The data were then smoothed by
convolution with an isotropic Gaussian kernel at a full width half
maximum (FWHM) of 6 mm and filtered (0.01–0.1 Hz).

Voxel-Based Morphometry Analysis
This study performed a GMV analysis using a voxel-based
morphometry (VBM) method within the SPM8 software
package2. T1 images were processed using the Montreal
Neurological Institute (MNI) template. The whole brain
structural data were segmented into white matter, GM, and CSF.
Bias correction was applied to remove image intensity non-
uniformities. Then, spatial registration was adopted to assess
volume changes in segmented GM images. During VBM analysis,
the GM volumes were reflected by the modulated images of the
GM after bias correction. Finally, GM images were smoothed by
applying a Gaussian filter with an 8-mm FWHM kernel.

Seed-Based FC Analysis
To study the alterations in FC induced by changes in GMV,
the brain areas that showed significant differences between the
groups in the GMV analysis were selected as the seed regions of
interest (ROIs). For each seed ROI, a voxel-wise FC analysis was
performed for the preprocessed fMRI data. For each participant
and each seed ROI, an FC map of the whole brain was obtained
by computing the correlation coefficients between the seeding
ROI and the remaining voxels in the entire brain. To improve the

1http://resting-fmri.sourceforge.net
2http://www.fil.ion.ucl.ac.uk/spm

normality of the data distribution, the FC maps were converted
to z-scores using Fisher’s r-to-z transformation.

Statistical Analysis
This study used SPSS (v. 25.0 Chicago, IL, USA) software to
perform the statistical analysis for demographic and clinical
information. Fisher’s exact test and two-sample t-tests were
used. For all of the statistical analyses, p < 0.05 was considered
statistically significant.

To analyze the differences in GMV and FC, we performed
voxel-wise two-sample t-tests within a GM mask between the
hypochondriasis group and healthy control group, with age,
sex, head motion, and TIV as covariates (false discovery rate
correction, p< 0.05).

To examine the correlation between the GMV and FC, a
Spearman correlation analysis was performed for each group.
The correlation between the GMV or FC results and the clinical
variables in hypochondriasis patients were calculated using
Spearman’s correlation.

SVM Classification Analysis
In this study, SVM classifier was tailored to build the predictive
model. Both GMV results and FC results were entered into
the classification model as feature variables. The k-fold cross-
validation approach (Abdel-Nasser et al., 2015; Varoquaux et al.,
2017), where k = 5 was adopted to evaluate the predictive
performance of the SVM, was considered as of the small
sample size. To investigate the classification accuracy of MR
images using GMV and FC as features, a linear kernel SVM
was adopted to reduce the risk of overfitting the data, and
the weight vector was extracted as an image (i.e., the SVM
discrimination map). All the hypochondriasis patients were
randomly divided into five subgroups. To fit the parameters
of each model, four subgroups were selected, and the left-out
subgroup (test set) was used to estimate the hypochondriasis and
nonhypochondriasis predictive performance. FeAture Explorer
(FAE, v0.2.23) on Python (3.5.44) was used to generate a receiver
operating characteristic (ROC) curve, which demonstrated the
performance of the SVM model. The accuracy, sensitivity, and
specificity were computed for the cutoff value that maximizes
the Yorden index. All the above processes were implemented.
Both GMV results and FC results were entered into the
classification model as feature variables. All the feature variables
were normalized and tested for their similarity and removed if
pairwise correlations were >0.86; between-group differences.

RESULTS

Demographic and Results of the
Participants
A total of 21 hypochondriasis outpatients and 22 healthy controls
were recruited. Demographic information on age, years of
education, and sex, and clinical information regarding HAMD
andHAMA cognitive performance scores is presented in Table 1.

3https://github.com/salan668/FAE
4https://www.python.org
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TABLE 1 | Demographic and clinical information of all participants.

Characteristics Hypochondriasis (mean ± SD) HCs (mean ± SD) t/x2 p

Sample size 21 22
Age (years) 35.43 ± 6.76 31.64 ± 6.06 1.939 0.059
Gender (male/female) 14/7 8/14 0.713 0.095
Years of education (years) 12.86 ± 2.94 13.86 ± 3.41 −1.034 0.307
HAMD 23.29 ± 8.80 0.68 ± 0.65 12.023 0.00
HAMA 18.90 ± 6.12 0.50 ± 0.51 14.056 0.00

HCs, health controls; HAMD, Hamilton Depression Scale; HAMA, Hamilton Anxiety Scale.

TABLE 2 | Brain regions showing significant GMV and FC difference between hypochondriasis patients and HCs (FDR corrected, p < 0.05).

Regions Hemisphere Peak MNI Clusters t-value

x y z

GMV
Medial frontal gyrus Left −4 20 −12 274 5.27
Precuneus Left −2 −50 66 130 −4.49
FC
MedFG-cuneus Left −9 −87 21 107 −3.96
Precuneus-cuneus Right 12 −69 3 111 −4.22

GMV, gray matter volume; FC, functional connectivity.

No significant difference in gender, age, or years of education
was noted between the patients and healthy controls. The HAMA
score was 18.90 ± 6.12 and HAMD score was 23.29 ± 8.80 in the
hypochondriasis group.

The hypochondriasis participants all had a history of high-risk
sexual behavior and experience of extreme fatigue, low fever,
loss of appetite, abdominal distension, diarrhea, coated tongue,
and other discomfort after sexual contact. Despite multiple tests
showing negative antibodies against HIV and other diseases, they
insisted that they were infected a mutated or new, unknown HIV
strain. Coincidentally, they were acquainted with each other in
a patient QQ group. The exchange of worries and symptoms
exacerbated their somatic symptoms and the belief of the same
serious illness that they have contracted. Accordingly, they came
to our hospital for help together.

GMV Results
Patients with hypochondriasis showed significantly decreased
GMV in left precuneus and increased GMV in the left medial
frontal gyrus compared to healthy patients (Table 2, Figure 1).

FC Analysis
Seed-based FC analyses were performed on ROIs defined in
GMV results and revealed decreased FC between the left medial
frontal gyrus and cuneus and between the left precuneus and
cuneus in the hypochondriasis group relative to that in controls
(Table 2, Figure 2).

Correlation and SVM Analyses
We extracted the average GMV and FC in the brain regions
that displayed a significant difference between the two groups.
Later, a Spearman correlation analysis was performed between
mean GMV and FC across each subgroup. A significant
negative correlation was observed between the GMV and FC
(r = −0.565, p = 0.006) among healthy controls (Figure 4).
No significant correlation was observed between changes in

FIGURE 1 | Gray matter volume (GMV) differences among the two groups:
the blue color represents decreased volume in hypochondriasis patients, and
the red color represents increased volume in hypochondriasis patients
compared to controls.

GMV and HAMD score (MedFG: ρ = −0.177, p = 0.442;
Precuneus: ρ = −0.09, p = 0.70), in FC and HAMD score
(Ceunus_MedFG: ρ = 0.254, p = 0.266; Ceunus_Precuneus:
ρ = 0.310, p = 0.172), in GMV and HAMA score (MedFG:
ρ = −0.265, p = 0.246; Precuneus: ρ = −349, p = 0.121),
and in FC and HAMA score (Ceunus_MedFG: ρ = 0.014,
p = 0.953; Ceunus_Precuneus: ρ = 0.420, p = 0.058). The
final feature variables entered into the classification models
were the medial frontal gyrus (A) and precuneus (B) for
GMV results, the FC between the medial frontal gyrus
and cuneus (C), and between the precuneus and cuneus
(D). Table 3 and Figure 3 summarize the area under the
curve, sensitivity, specificity, and accuracy for each of these
features. However, none of the features discriminated patients
with hypochondriasis from healthy controls with satisfactory
sensitivity and specificity. We employed SVM analysis to
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FIGURE 2 | Functional connectivity differences among the three groups: the color bar represents t values. L, left; R, right; FC, functional connectivity.

FIGURE 3 | Support vector machine (SVM) results. The combined volume of precuneus and connectivity between precuneus and cuneus could distinguish
hypochondriasis from controls accurately. A and B represent the GMV in MedFG and precuneus, respectively. C and D represent the FC between MedFG and
cuneus and between precuneus and cuneus, respectively. MFG, medial frontal gyrus; GMV, gray matter volume; FC, functional connectivity; AUC, area under curve;
CIs, confidence intervals.

examine whether the combination of the GMV and FC results
(features A, B, C, and D) was able to discriminate patients
from controls with a sensitivity of 0.98, specificity of 0.93, and
accuracy of 0.95 (Figure 5). In addition, the combination of
precuneus volume (B) and connectivity between the precuneus
and cuneus (D) showed a sensitivity of 0.94, specificity of 0.92,
and accuracy of 0.93.

DISCUSSION

In this study, patients with hypochondriasis all reported a
history of high-risk sexual behavior, which triggered concerns
of HIV infection. Further, other tests indicated that they
were healthy, and they consisted of an unknown virus that
infected them. The use of the Internet to search for medical
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FIGURE 4 | Correlation analysis results. A significant negative correlation was observed between the GMV and FC (r = −0.565, p = 0.006) among healthy controls.

information and communicating in the online community
aggravated their feelings of fear and anxiety. A new conception
of ‘‘cyberchondria’’ has been invoked, referring to the effects
of searching for online medical information (Starcevic, 2017).
The Internet cannot always provide accurate and professional
information, although patients receive short-term relief from
their anxieties after checking, false information enhances their
long-term fear and belief of being infected. However, there
is still a lack of systematic neuroimaging investigation of
those patients.

This study examined whether hypochondriasis patients
exhibit different GMV and rs-FC from those in healthy controls.
In our study, two brain regions exhibited differences in GMV
in hypochondriasis patients, a smaller left precuneus volumes
and larger left medial frontal gyrus volumes, from those in
healthy controls. Different results were reported in the Atmaca
et al. study. They found that gray matter volumes did not differ
between patients and healthy controls, and significantly smaller
OFC and left thalamus volumes in hypochondriasis, compared
to healthy controls (Atmaca et al., 2016). The difference may
be due to some reasons: First, different analysis methods, in
the Atmaca et al. study, MRI was acquired with a 1.5-Tesla
scanner, and the study lacks the segmentation of the gray vs.
white matter in the anterior cingulate. Second, demographic
variables of age, gender composition, educational level, and
duration of illness of patients in the two studies were different,
which may lead to different results. Third, the patients in
the two studies came from different countries with different
cultural backgrounds. Further, we found decreased FC between
the left medial frontal gyrus and cuneus and between left
precuneus and cuneus, respectively. We discovered that by
using SVM analyses, the combination of GMV and FC results
can discriminate hypochondriasis from healthy controls. To

our knowledge, this is the first study to combine GMV, FC,
and SVM to investigate abnormal brain activity in patients
with hypochondriasis.

The medial frontal gyrus (MedFG) is part of the medial
prefrontal cortex, which is considered to manage the perceptual
memory, the extinction of learned fear, and executive function
(Kim et al., 2009; Schwiedrzik et al., 2018). Volumetric changes
in the MedFG have been reported in adjustment disorder,
schizophrenia, and major depression disorder research (Inoue
et al., 2012; Frascarelli et al., 2015; Myung et al., 2016;
Belleau et al., 2019). The medial frontal cortex is also part
of the default mode network (DMN), and mounting evidence
suggested that the brain regions in the DMN have an important
role in depression and anxiety disorders (Coutinho et al.,
2016; Belleau et al., 2019). Although we found no significant
correlations between the medial frontal gyrus volume and the
severity of depression (HAMD scores) or anxiety (HAMA
scores) in patients with hypochondriasis, there is still the
possibility that brain connectivity differences are related to
some unmeasured factor related to depression or anxiety. On
the other hand, we speculate that the increased left medial
frontal gyrus volume among patients with hypochondriasis
might be associated with executive dysfunction. Many studies
have found that deficits in the medial prefrontal cortex are
associated with executive dysfunction (Inoue et al., 2012;
Cordova et al., 2014). However, the hypochondriasis group
showed increased GMV in the left medial frontal gyrus compared
to that in healthy controls. Executive function enables the
setting of goals and performing goal-directed activities. Increased
medial frontal gyrus volume may prompt the enhancement
of executive function in patients with hypochondriasis, which
could explain their unexplainable beliefs and need for repeated
physical examinations, tests, and reassurance from medical
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TABLE 3 | The results of SVM analysis based on the selected features.

Features AUC AUC 95% CIs Sensitivity Specificity Accuracy

A 0.43 0.35–0.52 0.06 1.0 0.52
B 0.79 0.72–0.86 0.52 0.99 0.75
C 0.34 0.26–0.43 0.0 1.0 0.49
D 0.51 0.42–0.60 0.19 0.94 0.56
AB 0.75 0.67–0.83 0.60 0.99 0.79
AC 0.34 0.26–0.42 0.0 1.0 0.49
AD 0.41 0.32–0.49 0.25 0.79 0.51
BC 0.85 0.79–0.90 0.83 0.76 0.80
BD 0.97 0.94–0.99 0.94 0.92 0.93
CD 0.74 0.65–0.81 0.82 0.54 0.68
ABC 0.89 0.84–0.94 0.74 0.95 0.84
ABD 0.98 0.96–0.99 0.97 0.93 0.95
ACD 0.75 0.68–0.82 0.64 0.74 0.69
BCD 0.96 0.94–0.99 0.88 0.95 0.91
ABCD 0.98 0.96–0.99 0.98 0.93 0.95

A and B represents the GMV in MedFG and Precuneus, respectively. C represent the
FC between MedFG and Cuneus, D represent the FC between Precuneus and Cuneus.
MedFG, medial frontal gyrus; GMV, gray matter volume; FC, functional connectivity; AUC,
area under curve; CIs, confidence intervals; SVM, support vector machine.

FIGURE 5 | Receiver operating characteristic (ROC) of the discrimination
between hypochondriac patients and healthy controls using the GMV and FC
values of the significantly different brain regions.

professionals. Moreover, the abnormality in this region may
explain the overreaction in fear conditioning of hypochondriasis,
particularly after high-risk sexual behavior and searching for
relevant information online.

The precuneus is involved in self-consciousness (Utevsky
et al., 2014), self-related processes (Cavanna and Trimble, 2006),
integration of past and present information (Fransson and
Marrelec, 2008), and different aspects of memory including
episodic memory retrieval (Cavanna and Trimble, 2006) and
autobiographical memory (Addis et al., 2004). Considering the
specific roles of the precuneus, this finding might reflect a
lack of self-related aspects of processing, possibly contributing
to hypochondriasis symptoms such as distress from increased
negative affect when engaging in excessive Internet searches,
overreaction to body signals, and memory distortions.

The results also indicated decreased connectivity of the
precuneus and medial frontal gyrus with the cuneus in patients
with hypochondriasis. The cuneus is functionally connected to
a visual network and is well known in basic visual processing
(Vanni et al., 2001). The precuneus and medial frontal gyrus
are both major nodes of the main functional and structural
networks of the human brain, with a relevant role within
the default mode network (DMN; Utevsky et al., 2014). The
DMN has been found to be involved in inwardly focused
mental processes such as self-referential processing, personal
introspection, autobiographical memory, and future thinking,
all of which contribute to a coherent sense of self (Bluhm
et al., 2009; Liemburg et al., 2012; Sripada et al., 2012; Lanius
et al., 2015; Pankow et al., 2015). However, there are no
reported DMN abnormalities in hypochondriasis. In addition, an
fMRI study reported a decreased recruitment of the precuneus,
caudate nucleus, globus pallidus, and thalamus in patients with
hypochondriasis, compared with that in healthy controls, which
suggests the dysfunction of the precuneus and thalamus in
hypochondriasis (van den Heuvel et al., 2011). Hypochondriasis
was classified in the Obsessive–Compulsive and Related
Disorders in ICD-11 (van den Heuvel et al., 2014; Stein et al.,
2016). Meanwhile, similar brain abnormalities have been found
in patients with obsessive–compulsive disorder (OCD). It has
been suggested that hypochondriac patients behave like OCD
patients with respect to brain abnormalities and pathophysiology
(Atmaca et al., 2016). Several studies have reported alterations
in brain connectivity within the DMN in OCD (Goncalves et al.,
2017). In the present study, the hypochondriasis group showed
decreased GMV in the left precuneus and increased GMV in
the left medial frontal gyrus compared with those in the healthy
control group, and decreased FC between the left medial frontal
gyrus and cuneus, and between the left precuneus and cuneus,
which emphasize dysfunction in the DMN of hypochondriasis.
As a consequence, hypochondriasis may be attributable to the
abnormalities of DMN, and it may be one of the primary reasons
for patients to pay too much attention to their body signals and
insist they are ill. Further studies are needed to investigate other
brain regions involved in the DMN in hypochondriasis.

The SVM analysis suggested that a combination of both
GMV and FC in the left precuneus, medial frontal gyrus, and
cuneus was able to discriminate the hypochondriasis patients
from healthy controls with a sensitivity of 0.98, specificity of 0.93,
and accuracy of 0.95. Interestingly, an optimum combination
can distinguish hypochondriasis from heathy controls. Serving
as the most remarkable findings of this study, the combination of
precuneus volumes and FC in the left precuneus and cuneus for
correctly classifying patients had a specificity of 0.94, sensitivity
of 0.92, and accuracy of 0.93, which suggests that the left
precuneus and cuneus may be potential imaging biomarker
in hypochondriasis.

Overall, our study has some limitations. First, the number
of subjects was relatively small, which may have caused default
negative results. Although the performance of the predictive
model was tested using a k-fold cross validation method,
independent samples are needed to train and test the model.
A larger sample size might be a way to increase the reliability
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in the future. Second, it is unfortunate that the rating scale for
hypochondriac symptoms was not evaluated. In future studies,
hypochondriasis symptoms should be assessed. Third, the
correlations between the brain regions that exhibited differences
and mood symptoms were not distinguished. Therefore, which
changes contribute to depressive or anxious mood remain
speculative. Future studies based on a prospective design and
larger sample size can contribute to a better understanding of the
mechanism of hypochondriasis.

To conclude, the results from the current investigation
suggest that hypochondriasis patients had a smaller left
precuneus volumes and decreased FC between left precuneus
and cuneus compared with those in healthy controls.
This dysfunction seems to play an important role in the
pathophysiology of hypochondriasis.
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