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While many publications have reported brain hemodynamic responses to

decision-making under various conditions of risk, no inventory management scenarios,

such as the newsvendor problem (NP), have been investigated in conjunction with

neuroimaging. In this study, we hypothesized (I) that NP stimulates the dorsolateral

prefrontal cortex (DLPFC) and the orbitofrontal cortex (OFC) joined with frontal polar

area (FPA) significantly in the human brain, and (II) that local brain network properties

are increased when a person transits from rest to the NP decision-making phase. A

77-channel functional near infrared spectroscopy (fNIRS) system with wide field-of-view

(FOV) was employed to measure frontal cerebral hemodynamics in response to NP in

27 healthy human subjects. NP-induced changes in oxy-hemoglobin concentration,

1[HbO], were investigated using a general linear model (GLM) and graph theory analysis

(GTA). Significant activation induced by NP was shown in both DLPFC and OFC+FPA

across all subjects. Specifically, higher risk NP with low-profit margins (LM) activated

left-DLPFC but deactivated right-DLPFC in 14 subjects, while lower risk NP with high-

profit margins (HM) stimulated both DLPFC and OFC+FPA in 13 subjects. The local

efficiency, clustering coefficient, and path length of the network metrics were significantly

enhanced under NP decision making. In summary, multi-channel fNIRS enabled us to

identify DLPFC and OFC+FPA as key cortical regions of brain activations when subjects

were making inventory-management risk decisions. We demonstrated that challenging

NP resulted in the deactivation within right-DLPFC due to higher levels of stress. Also,

local brain network properties were increased when a person transitioned from the rest

phase to the NP decision-making phase.
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INTRODUCTION

Neuroeconomics is an emerging field that integrates economic
theories with neuroscience to enhance the understanding of
how the human brain makes decisions under different business
conditions (Hsu et al., 2005). The “behavioral perspective
in decision-making” is common in business research. For
example, studies in management science have found that
psychological factors, particularly attitudes toward risks and
rewards, are essential drivers of business decisions. In general,
business research usually assesses cognitive and psychological
processes indirectly via human-subject experiments, surveys,

and/or real-world observations. On the other hand, functional
neuroimaging is a unique tool that allows researchers to “peek

into the black box” and gather data directly from pertinent
regions of the brain while subjects are engaged in making a
decision. Advanced neuroimaging technologies, such as multi-
channel electroencephalography (EEG) and functional magnetic

resonance imaging (fMRI), are potentially able to provide clues to
the underlying cognitive processes that previously were assumed
to be the determinants of human decision-making.

However, neuroeconomics with neuroimaging is still in its
infancy because of many challenges (Glimcher et al., 2008; Xue
et al., 2010). For example, the fMRI measurement settings are
very different from naturalistic environments, limiting accurate
explanatory power for real-life decision-making processes. Also,
it is uncertain “whether neuroimaging can provide theories
for economists or whether economic theories can provide
frameworks for neuroscience” (Xue et al., 2010). Thus, the goal
of this study was to link neuroeconomics with neuroimaging in
general and with functional near-infrared spectroscopy (fNIRS)
in particular to better understand the behavioral perspective
in decision-making in business research. The objective of this
study was to quantify alterations of cerebral hemodynamics
and network properties induced by the newsvendor problem
(NP) in the human prefrontal cortex using a 77-channel
fNIRS system.

Multi-channel fNIRS is a portable and non-invasive imaging
technique that measures cortical hemodynamic activities in
the human brain. It quantifies the cerebral concentration
changes of oxygenated hemoglobin (1[HbO]) and deoxygenated
hemoglobin (1[Hb]) with the high temporal resolution based
on the alteration of optical absorption and scattering of near-

infrared (NIR) light propagating through the human brain. The
temporal and spatial features of 1[HbO] and 1[Hb] are then
used as biomarkers of neuronal activations (Boas et al., 2004;
Cazzell et al., 2012). In the last two decades, fNIRS has gained
popularity and has been recognized as a non-invasive tool to
functionally image brain activations and diagnose brain diseases
(Benzion et al., 2008; Boas et al., 2014). Compared to fMRI, fNIRS
is cost-effective and less sensitive to motion artifacts, has less
restriction on body movement or confinement, and has a higher
temporal resolution. All these features make it easier to use in a
task-oriented, more-naturalistic experimental environment.

While many publications have reported brain activities in
response to risk decision-making under varying conditions
of risk, few studies have focused on inventory management

scenarios, such as the NP, in conjunction with fNIRS techniques.
NP has been widely used in management science (Gaspars-
Wieloch, 2017) and refers to a prevalent business decision-
making scenario in which an individual must balance between
potential loss andwaste to achievemaximum expected profit. The
typical scenario is that of a store manager deciding the number
of units of products to stock when the number of customers
is uncertain (Gaspars-Wieloch, 2017). Too little stock leads to
potential loss of sales; too much stock leads to potential waste.
Risky decisions have to be made when stocking the inventory
for profit under arbitrary requirements. The specialty of NP is to
holistically consider business management scenarios, not just one
element, for the best decision-making outcome. The NP setting
is a corner stone inventory management scenario that reflects
challenges that managers may encounter in practice. Kremer
et al. showed that business decision-making, particularly in the
newsvendor setting, is sensitive to context (Mirko et al., 2010).
That is, the same problem when framed using different contexts
often results in significantly different decision-making behaviors
(Platt and Huettel, 2008). Hence, the right context is a crucial
part of any research design that endeavors to explicate business
decision-making behaviors. This study aims to fill the void in the
extant literature by using fNIRS to map human brain activations
or deactivations and cortical network changes caused by NP.

Graph theory analysis (GTA) is an analysis method that has
been developed to examine large-scale complex brain networks
(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; Braun
et al., 2012; Kim et al., 2013; Liao et al., 2013). It can provide
an easy and yet powerful mathematical means to characterize the
topological properties of the brain networks (Sporns et al., 2005;
Pavlopoulos et al., 2011; Vecchio et al., 2017). In particular, a
few recent studies have combined GTA with channel-wise fNIRS,
and have revealed the topological organization and architecture
of large-scale, resting-state human brain cortical networks (Niu
et al., 2012; Niu and He, 2014; Li et al., 2018). Furthermore,
since the human brain is a dynamic organ, numerous alterations
take place in the brain at fast time scales. Neuronal alterations
occur in a millisecond scale while cerebral blood flow changes
within seconds. Thus, dynamic brain connectivity and networks
characterize the time-dependent neurophysiological processes
that are associated with prompt decision making and cognition
(Telesford et al., 2016; Hu et al., 2019). Recent literature has
reported that dynamic connectivity can be quantified for time
ranges in 15–120 s, and that a minimum temporal window for
calculating connectivity is 30 s (Thompson and Fransson, 2015;
Telesford et al., 2016; Farahani et al., 2019). While this 30-s
duration is not a strict requirement, the longer the time window
is, the less specific or dynamic the information gained.

This study also applied GTA to investigate dynamic brain
networks when the human brain switched from resting state
to dynamic task-based state. In particular, we performed our
analysis using a dynamic connectivity approach: We took three
of the decision trials and concatenated them to make or satisfy
a reasonable time duration (∼30 s) for dynamic connectivity
calculation. Moreover, we took a three-trial moving window
overlapping one trial for both decision-making and rest phase to
achieve adequate time resolution for each subject.
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Specifically, to examine dynamic activities of the human brain
in response to the NP tasks, we formulated two hypotheses:
Hypothesis I was that NP stimulates both dorsolateral prefrontal
cortex (DLPFC) and orbitofrontal cortex (OFC) significantly in
the human brain, and that a more challenging NP scenario results
in the deactivation of right-DLPFC (R-DLPFC) in addition to
activation of left-DLPFC (L-DLPFC). Hypothesis II was that the
local efficiency (Eloc), cluster coefficient (Cp), and path length
(Lp) of the human brain network are increased when a person
switches from resting phase to the NP decision-making phase.
To test these two hypotheses, we designed and incorporated the
NP protocol using a computer-based platform with simultaneous
77-channel fNIRS data acquisition.

MATERIALS AND METHODS

Participants
A total of 27 subjects (20 males and seven females; 23 ± 5
years of age) participated in the study. They were randomly
assigned to two experimental groups with different risk levels.
The subjects were included in the study if they met the following
criteria: belonged to either sex, were from any ethnic background,
and were between 18 and 40 years of age. The subjects were
excluded only if they (1) were diagnosed with a psychiatric
disorder, (2) had a history of a neurological condition or severe
brain injury or violent behavior, (3) had a history of prior
institutionalization or imprisonment, and (4) were currently
under any medicine or drug. The study protocol complied
with all applicable federal guidelines and was approved by the
institutional review board (IRB) of the University of Texas at
Arlington. Informed consent was obtained from every subject
who participated in the experiment.

NP Protocol Design
The experimental protocol design was based on the Newsvendor
Problem (Gaspars-Wieloch, 2017), where a news vendor must
decide how many newspapers to buy each day at the wholesale
price and sell at the retail price. This NP problem has five major
characteristics: (1) the demands are uncertain but from a known
distribution; (2) the decision must be taken for every period; (3)
there is a cost for ordering too many items; (4) the number of
items ordered at each time is called order quantity, which must
be decided for the inventory by the subject in each trial; and (5)
each trial is independent. According to the NPmodel (Schweitzer
and Cachon, 2000; Benzion et al., 2008; Gaspars-Wieloch, 2017),
under the condition that the order quantity (q) is larger than the
unknown demand (D), the final profit (π) can be calculated as
a function of q and D by Equation (1) (Schweitzer and Cachon,
2000), as shown below:

π(q,D) = pmin(q,D)− c q (1)

where c is the cost, and p is the price to sell.
Based on the conditions listed above, the experimental

protocol was designed with two independent treatments, namely,
high-profit margin (HM) (c << p) and low-profit margin (LM),
(c < p). Table 1 shows the details of the design for the two

TABLE 1 | NP protocol summary.

Treatment High-profit margin (HM) Low-profit margin (LM)

Price (p) $32 $32

Cost (c) $8 $24

Demand distribution Uniform [0 300] Uniform [0 300]

different treatments used in our study. In the HM treatment, the
price to sell, p, was designed to be $32 while the cost was only $8,
all of which resulted in a lower risk of losing profits. On the other
hand, in the LM treatment, while retaining p’s value of $32, the
cost was raised to $24, leading to a higher risk of losing profits.
The demand was kept unknown until the participant made his
or her decision by typing the order quantity between 0 and 300
per trial. Then, the given demand was randomly generated from
a uniform distribution between 0 and 300 with a mean of 150.
The history of demands from previous trials was visible to the
participant after each trial, based on which the participant could
decide for the current trial. There were 40 trials in total in each
experiment. The selling price and cost were kept constant and
known for each HM and LM treatment.

NP Protocol Implementation
Subjects were randomly divided into either the HM treatment (n
= 13) or LM treatment (n = 14) group before the experiment.
One entire experiment consisted of a 30-s baseline and 40 blocks
corresponding to 40 trials of NP tasks, as shown in Figure 1A.
The 30-s “baseline” was needed to acquire the baseline of cerebral
hemodynamic functions of each subject. Each block contained
oneNP trial, and eachNP trial entailed four phases: decision, rest,
feedback, and rest. The “decision” phase lasted for a maximum
of 20 s, during which each subject was asked to decide the
order quantity given such visible information as price, cost, and
demand distribution range for either the HM or LM group. The
subject was instructed to enter the quantity in a text box on the
screen within the 20-smaximal period. If the subject did not enter
anything within the 20 s, the program automatically entered the
order quantity to be “0.” In general, decision-making durations
were not the same for each subject over the trials.

After the decision phase, the screen shifted to a 5-s “rest”
phase, followed by a 10-s “feedback” phase. Within this 10-
s period, the subject was shown a summary table listing the
price, cost, demand distribution, profit/loss, and the cumulative
profits/losses that were made after every trial. Then the protocol
proceeded to the next trial following another 5-s “rest” period. All
trials of either LM or HM session consisted of the same setting
during the decision phase. All the profit/loss details were stored
along with the corresponding time stamps.

The NP trials were presented on a laptop computer in the
form of a game. The subjects were directed to use both hands
during the experiment, one hand to press the spacebar on the
keyboard for making an event stamp for fNIRS, and the other
to enter the order quantity for the corresponding trial. Before
each experiment, each subject was provided information on how
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FIGURE 1 | Experimental protocol and setup. (A) The NP experimental protocol consists of a 30-s initial baseline and 40 trials. Each trial has four phases: up to 20-s

NP decision task (Di), 5-s rest (R2i−1), 10-s feedback (Fi), and 5-s rest (R2i) again before starting another block/trial for Di+1 trial. (where i = 1, 2, 3, …, 40) Each block

lasts about 30–40 s. (B) A demonstration of the fNIRS optode-setting helmet on a dummy head, holding 25 pairs of light sources (red dots) and 23 detectors (blue

dots) with channel numbers marked covering the pre-frontal and frontal regions. (C) The entire optode layout for the whole-head helmet; the holes within the dashed

frames were not used to hold any optode in this study while the other holes are color-matched to those shown in (B) on the forehead.

to play the NP game and given a 5-trial practice session to get
familiar with the experimental protocol.

fNIRS Experiment Setup and Optode
Projection on a Human Cortex Template
A continuous-wave, multi-channel fNIRS system (LABNIRS,
Shimadzu Corp., Kyoto, Japan) was employed in this study.
As reported before (Cacola et al., 2018), a customized, wide
field-of-view, 77-channel layout incorporating 25 sets of laser
transmitters and 23 light receivers was used to cover the
area from the prefrontal cortex to the sensorimotor cortex.
Figure 1B demonstrates how a whole-head helmet facilitates all
optical optodes to be attached to a human head. Figure 1C
shows a top view of the source and detector layout with
only its frontal portion being used in this study. The distance
between the nearest source and detector optodes was 3 cm,
resulting in a detection depth of 1.5–2 cm under the scalp.
The helmet firmly and steadily held all the source and detector
fibers on each subject’s head; the data sampling frequency
was 12.82Hz. Spatial co-registration measurements were taken
using a 3D digitizer (FASTRACK, Polhemus, Colchester, VT,
USA). Montreal Neurological Institute (MNI) coordinates for

TABLE 2 | NIRS SPM output for anatomical registration of optodes.

Channel # BAs Percentage of BA covered

by the listed channel

01 10–FPA 0.54

01 11–OFC 0.46

02 10–FPA 0.90

02 11–OFC 0.10

03 10–FPA 0.76

03 11–OFC 0.24

04 10–FPA 0.51

04 11–OFC 0.33

04 46-DLPFC 0.09

04 47-inferior prefrontal gyrus 0.07

each source and detector location were calculated using the
statistical parametric mapping NIRS-SPM software (Ye et al.,
2009), providing projected locations of channels on a human
cortex template and corresponding Brodmann areas (BAs).

The frontal sinus makes it a challenge to image OFC—a
unique region of the prefrontal cortex—accurately using fMRI.
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Similarly, fNIRS can reach OFC partially through recordings
right on top of the eyebrows. To make sure that our fNIRS
was able to acquire signals from OFC, we identified and listed
in Table 2 the anatomical registrations of channels 1 to 4 (see
Figure 1B) generated by NIRS-SPM (Ye et al., 2009) according to
the optode locations (Hu et al., 2019), as an example. Specifically,
this table shows two major BAs (BAs 10 and 11) and respective
brain areas (i.e., frontopolar area (FPA) and OFC) that were
covered by each of the four channels as well as the percentage
of FPA and OFC covered by each channel. Since we could
not separate recorded 1[HbO] signals from OFC and FPA,
they were grouped together and noted as OFC+FPA in the
following sections.

Data Analysis
Behavioral Analysis
The NP protocol generated two types of behavioral scores: (1)
the decision-making (reaction) time and (2) the profit/loss score
that each subject made for each trial. These two parameters were
averaged across 40 trials for each subject for each of HM (n= 13)
and LM (n= 14) groups. Then, the grand-averaged reaction time
and profit score over each group were quantified and pooled with
box plots to quantify their respective distributions. Statistical
testing was next performed using a two-sample t-test for both
averaged reaction time and profit score to identify a significant
difference between the HM and LM groups.

fNIRS Data Preprocessing
The raw outputs of the fNIRS system were time-dependent
optical intensities at three wavelengths (i.e., 780 nm, 805 nm,
and 830 nm), alterations of which were affected by the changes
of hemoglobin concentrations. A band-pass filter of 0.01–
0.2Hz was applied to remove artifacts from cardiac pulses
(∼0.8–1.2Hz), respiration (∼0.2–0.3Hz) (Erdogan et al., 2014),
muscle movements, and systemic drifts. Next, the modified Beer-
Lambert Law was used to convert the recorded optical intensities
at 780 nm and 830 nm into concentration changes of oxygenated
hemoglobin (1[HbO]) and deoxygenated hemoglobin (1[Hb])
(Boas et al., 2004; Nguyen et al., 2018). Then, each time series
of 1[HbO] and 1[Hb] was baseline calibrated by subtracting
its temporal average to remove any potential drift during
the baseline recording. Moreover, to further remove systemic,
physiological variations contained in the scalp and skull, we
subtracted the signal spatially averaged across all 77 channels to
remove the global noise (Cacola et al., 2018). Also, the channels
close to the superficial temporal artery were excluded from the
analysis to prevent signal mixing with patterns from arteries
(Smielewski et al., 1997; Oldag et al., 2012; Urquhart et al., 2020).
Afterward, the pre-processed data were used for further analysis.
The data analysis was performed in two steps: (1) NP-evoked
1[HbO] activations based on a general linear model (GLM) and
(2) NP-evoked alterations in brain connectivity based on GTA.

Activation Maps Based on the General Linear Model
GLM is a mathematical model popularly applied in fMRI
(Calhoun et al., 2001, 2004) and fNIRS (Lin et al., 2014; Tian
et al., 2014) to estimate amplitudes of hemodynamic changes
at different brain regions in response to a variety of tasks. In

our study, a preprocessed time series of 1[HbO] per channel
was used as the input in the GLM analysis using MATLAB. In
the process, the designed temporal matrix was generated with
a boxcar function, reflecting the NP task blocks convoluted
with a hemodynamic response function (HRF) (Schroeter et al.,
2004). For each NP experiment (with HM or LM treatment), two
regressors were assumed for the decision and feedback phase,
while the data analysis focused only on the decision phase.
Equation (2) demonstrates the GLM model, where “y” is the
time series; x1 and x2 represent the designed temporal matrix
corresponding to the decision and feedback phase, respectively;
β1 and β2 are the amplitudes of 1[HbO] for the two phases; and
“e” is the fitting error term:

y = β1x1 + β2x2 + e. (2)

With this model, the activation amplitudes (β1 and β2) were
fitted with a regression algorithm between measured 1[HbO]
time series and the temporal design matrix using a weighted least
square method (Tian et al., 2014). Such regression processes were
carried out for each channel, resulting in an array of 77 fitted
values for each of β1 and β2 relative to the baselines for each
human subject. In this study, we focused on β1 only since it
reflected 1[HbO] responses to the decision phase.

Next, β1 values were averaged across the subjects for each of
the 77 channels, which permitted us to form topographic maps
on the frontal cortex at the group-level. Topographic 1HbO
maps were generated using easytopo 2.0 (Tian et al., 2014). Then
we utilized NIRS-SPM (Gaspars-Wieloch, 2017) to identify and
illustrate several key cortical areas, namely, DLPFC (BAs 9 and
46) and OFC+FPA (BAs 10 and 11), on the topographic maps,
with or without considering HM or LM treatment.

Due to a relatively small sample size, we decided to take
a region-wise (not channel-wise) statistical analysis, focusing
on three prefrontal regions of interest (pf-ROIs), R-DLPFC,
L-DLPFC, and OFC+FPA. Specifically, β1 values of 1[HbO]
within each of the three pf-ROIs were summed for each subject
and then averaged at group levels with or without considering
any decision-difficulty effect. One-sample and two-sample t-tests
were performed to test our hypothesis I. In particular, a one-
sample t-test (against the mean of zero baselines) was taken on
area-summed β1 values for each of the pf-ROIs at the group-level
from all 27 subjects without considering the degree of decision
difficulty. This step allowed us to identify any of the three pf-ROIs
that were significantly evoked by NP, as the main effect, while
the subjects made risky NP decisions. Then, a two-sample t-test
was performed on area-summed β1 values for each of the pf-ROIs
between the HM (n = 13) and LM (n = 14) groups to examine
whether a more challenging NP (i.e., with LM tasks) created a
significant difference of brain response in any of three pf-ROIs
with respect to easy HM tasks. All activation-related statistical
tests were performed at a significance level of α = 0.05 (with the
Bonferroni correction).

Correlation Between Brain Activation and Behavioral

Performance
To better understand the association of brain activation
with performance outcome, we analyzed correlations between
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performance scores achieved in NP tasks and area-summed
β1 values of 1[HbO] within each of the three pf-ROIs. The
performance was measured using the average profit each subject
made. For each of pf-ROIs, each pair of individual profit and
respective summed β1 value from each subject was plotted and
used to determine their linear correlation. The linear correlation
analysis was performed at the significance level of α = 0.05
without separating LM and HM treatment.

Applying GTA to Assess Network Properties in the

Brain
Graph theory is a renowned mathematical model to study
characteristics of a network system (Erdös, 1959; Bondy
and Murty, 1976), and it has been applied to investigate
resting state functional connectivity of the human brain
as measured with fMRI, Electroencephalography (EEG), and
Magnetoencephalographic (MEG) (Salvador et al., 2005; Achard
et al., 2006; Bassett et al., 2006; Iturria-Medina et al., 2008), as
well as fNIRS (Niu et al., 2012; Niu and He, 2014; Li et al.,
2018). A recent study demonstrated that based on GTA, brain
networks were altered when the human brain transitioned from
resting state to task-evoked states (Hu et al., 2019). In this study,
we also applied GTA to primarily focus on how brain networks
were altered from resting state to the decision-making state in a
dynamic context.

Our analysis based on GTA was performed following similar
steps to those in (Niu et al., 2012; Niu and He, 2014; Cai et al.,
2018; Li et al., 2018), as follows: (1) The processed 1[HbO]
time series for all channels were analyzed to create Pearson’s
correlation coefficient (PCC) matrices in the rest and decision-
making phases. Only positive correlations were considered for
calculations. The reason for avoiding negative correlations is that
there is lack of biological explanation for negative correlations
(Niu et al., 2012; Niu and He, 2014). Nodes were defined as
channels and edges were dependent on normalized Pearson’s
correlation strength. (2) Rest and decision periods of three
trials (see Figure 1A) were extracted and concatenated into
two time series separately. (3) Since the average time for a
decision trial was about 10 s, we took three of the decision trials
and concatenated them to make a reasonable time duration
for dynamic connectivity quantification. The three-trial moving
window was applied, overlapping one trial between the two
consecutive windows to create multiple concatenated time series
(see Figure 2). This operation resulted in multiple PCC matrices
for both rest and decision phases, respectively (see figure legend
of Figure 2). Only the first 20 trials were included for the
connectivity calculations to avoid impacts from fatigue and
stress. (4) The PCC matrices for all concatenated time series
were converted to z-values by Fisher’s r-to-z transformation to
improve normality, resulting in a 77 × 77 z-value functional
connectivity matrix Zij for each subject, where i, j = 1, 2, . . . 77.
(5) All three-trial-derived, Fisher-transformed Z matrices were
averaged to become two respective matrices for both rest and
task phases for each subject. (6) These two matrices were entered
as inputs in GRaph thEoreTical Network Analysis (GRETNA)
(Wang et al., 2015) to construct the functional brain network for
each subject. (7) Within GRETNA, we chose the sparsity, S, as

the threshold criterion, where S is the number of current existing
edges divided by the total possible number of edges in the current
matrix in a network.

We selected and quantified three global topological
properties/metrics to study network patterns with a range
of S level (S; 0.05 < S < 0.50; increment = 0.05) (Achard
and Bullmore, 2007), as follows: (1) local efficiency, Eloc, that
describes how efficient the communication is between the first
neighbors of i when i is removed; (2) clustering coefficient, Cp,
that measures network segregation; and (3) path length, Lp, that
is the average of the shortest path length between all pairs of
nodes. Detailed definitions and explanations of these network
metrics can be found in Cai et al. (2018). These metrics were
chosen primarily because they are network parameters popularly
reported in literature (Iturria-Medina et al., 2008; Tamburro
et al., 2020), Furthermore, these metrics focus on local network
connections and may reflect more direct linkage or association
with local brain activations.

All seven steps were repeatedly performed on all 27 subjects,
followed by statistical comparisons with two-sample t-tests
between the resting and dynamic decision-making phase for each
of the three network-metrics within 0.05 < S < 0.50 at the
significance level of α = 0.01.

RESULTS

Behavioral Results
When the subjects played NP games, their profit/loss scores and
the reaction times per trial were recorded, as well as the average
scores and average decision-making times over 40 trials. The
corresponding results for both LM and HM groups are shown
in Figure 3. Figure 3A shows that the profit score averaged over
the LM group was nearly zero, whereas the HM group gained
a mean profit of $2,600, with a large significant difference in
profit between the two groups as determined by a two-sample t-
test. Figure 3B shows that the subjects under the LM protocol
spent an average of 9 s to make the risk decision while the HM
group needed an average of 7 s to complete the task, which
was not significantly shorter by a two-sample t-test. Results
shown in Figure 3A were expected because the HM group had
a much easier scenario to make good profit, as compared to the
LM treatment.

Brain Activation Evoked by NP Determined
With GLM
As a result of GLM analysis, the group-averaged channel-wise β1
values were generated based on hemodynamic changes,1[HbO],
when subjects performed the NP-based tasks. Respective
statistical tests aided us in identifying significant activations on
the prefrontal cortex in response to the decision-making tasks.
Two statistical analyses were performed to test whether: (1) any
of three pf-ROIs was significantly evoked by the NP with respect
to the baseline regardless of treatment (HM or LM) types, and
(2) more challenging NP tasks (i.e., LM) created a significant
difference in brain activation or deactivation in DLPFC or OFC
+FPA regions with respect to less challenging NP conditions.
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FIGURE 2 | A schematic flow chart for dynamic graph theory analysis from the 1st trial to 5th trial. Ri denotes the rest period during the ith trial. Di denotes the

decision period during the ith period. Rest (black lines) and decision periods (green lines) of three trials were extracted and concatenated into two time series

separately in a three-trial moving window overlapping one trial (see that R3 and D3 are used twice for three-trial windows). Each concatenated time series were used

to calculate PCC for the dynamic connectivity at each respective time. Then, correlation matrices from multiple three-trial windows were averaged for both rest (blue

lines) and decision (red lines) periods, respectively. The final averaged correlation matrices (labeled as R-Rest and D-Decision) underwent Fischer r-to-z transform to

calculate network parameters in GRETNA or Gretna for each subject.

We obtained the front view of a topographic1[HbO]-derived
beta (i.e., β1) map, as shown in Figure 4A, averaged over the 40
decision-making trials from all 27 human subjects regardless of
HM or LM treatment. The topographic map illustrates activated
cortical areas identified by the output of NIRS-SPM (Ye et al.,
2009) corresponding to the co-registration readings. Figure 4B
presents the corresponding group-level area-summed β1 values
from respective three pf-ROIs. The statistical analysis based on
the one-sample t-test illustrates that NP tasks significantly (p <

0.05, corrected) activated 1[HbO] in both the OFC+PFA and
L-DLPFC, but not in the R-DLPFC, with respect to the baseline.

Next, Figures 5A,B show topographic 1[HbO] β1 maps from
13 and 14 human subjects in response to HM or LM treatment,
respectively. It is clear that both HM and LM activated L-DLPFC,
while LM appeared to deactivate R-DLPFC. Figures 5C–E

plot respective group-level area-summed β1 values from three
pf-ROIs, R-DLPDC, L-DLPDC, and OFC+FPA, respectively,
with statistically significant difference marked between 1[HbO]
values under HM and LM treatment. These figures reveal that
within the R-DLPFC, more challenging NP with LM significantly
(p < 0.05; corrected) deactivated 1[HbO] than the easier NP
tasks with HM, and that both HM and LM tasks evoked brain
activations but without significant differences between them

in each of L-DLPFC and OFC+FPA. All these observations
supportedHypothesis I that NP stimulates both DLPFC andOFC
significantly in the human brain, and that more challenging NP
results in significant deactivation of 1[HbO] in the R-DLPFC.

Correlation Between Prefrontal Cortex
Activation and Behavioral Performance
The correlation analysis was performed between the performance
scores (i.e., profit values) in NP tasks and area-summed β1 values
of 1[HbO] in two key prefrontal cortical areas, namely, R-
DLPFC and L-DLPFC, together for both HM and LM tasks, as
shown in Figures 6A,B. A linear correlation (Figure 6A) between
the profit and summed β1 values is statistically significant (p <

0.014) in the R-DLPFC in spite of the scattered appearance of
the data. On the other hand, no similar correlation pattern is
seen in the R-DLPFC (Figure 6B). After close inspection of the
data, we noticed two separate clusters, one of which is outlined
by a red box in each of the two panels. Indeed, the data within
the boxes were derived from the LM group (n = 14) with
much lower profit values as compared to those from the HM
group (n= 13).
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FIGURE 3 | Behavioral scores showing (A) an average of profit per trial and (B) an average reaction or decision-making time acquired from the LM and HM groups.

“***”indicates the statistical significance between the two groups at p < 0.001 (p = 1.9 × 10−13). The reaction time did not show a significant difference. Outliers are

marked by “+”.

FIGURE 4 | Topographic β1 maps in response to brain stimulations by the 40-trial NP from all subjects (n = 27) without considering the treatment level. (A) Averaged

topographic beta (or β1) map derived from 1[HbO] during the decision-making phase. Dashed lines mark estimated regions of the three pf-ROIs: R-DLPDC,

L-DLPDC, and OFC+FPA. (B) Group-averaged, area-summed β1 values for decision-making relative to baseline for OFC+FPA (p < 0.015), R-DLPFC and L-DLPFC

(p < 0.008), respectively. “*” denotes p < 0.05 (corrected). Error bars: standard error of the mean.

Brain Network Changes Induced by NP
Analyzed by GTA
Dynamic brain network properties during the resting and
decision phases were obtained based on GTA, yielding three
selected global network properties: Eloc, Cp, and Lp for sparsity
between 0.05 and 0.5. Consequently, Figures 7A–C illustrate
respective network properties averaged over all subjects (n =

27) including both HM and LM tasks. Two-sample t-tests were
performed for each of the three network-metrics within 0.05
< S < 0.50 between the rest vs. decision phase regardless
of LM or HM at p < 0.05 and (ii) between LM and HM

at p < 0.05. Regarding the statistical test between the rest
and decision phase, Figure 7 marks that the NP decision tasks
significantly increased Eloc, Cp, and Lp compared to the rest
phase for almost all of the sparsity range (0.05–0.4 thresholds).
The same statistical conclusions hold consistently when we took

an alternative approach by comparing the integrated differences

(i.e., area under the curve, AUC) across sparsities between
0.05 and 0.5, as shown in Figure 7D. However, the other two-

sample t-test between HM and LM groups did not show any

significant difference at any sparsity threshold for any of the

global network properties.
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FIGURE 5 | Topographic β1 maps of 1[HbO] in response to the 40-trial NP from groups with (A) HM (n = 13) and (B) LM (n = 14) treatment. Group-averaged,

area-summed β1 values from groups with HM and LM decision-making tasks in (C) the R-DLPFC (p < 0.015), (D) the L-DLPFC, and (E) the OFC+FPA, respectively.

“*” denotes p < 0.05 (corrected). Error bars: standard error of the mean.

FIGURE 6 | Correlations between behavior performance (i.e., profit values) and area-summed β1 values of 1[HbO] from the entire region of (A) R-DLPFC and (B)

L-DLPFC. The data within the red boxes were derived from the LM group (n = 14). The solid lines are a linear fit across all the subjects (n = 27 without separating HM

and LM tasks) with R2 value of 0.41 and 0.01, respectively, for both DLPFC areas. A significant linear correlation exists only for R-DLPFC at p < 0.014.

DISCUSSION

In a complex and turbulent business environment, managers

must make decisions that require complex trade-offs and
risk considerations. Decision-making under risk is a complex

cognitive process, requiring contribution and integration of

actions from multiple regions of the human brain (Gold and
Shadlen, 2007; Farb, 2013; Khani and Rainer, 2016). The scope
of this study was to observe which cortical regions of the
human frontal cortex are responsible for making risky decisions
in a business context, as represented by the widely studied
newsvendor problem. Hypothesis I was that NP stimulates both
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FIGURE 7 | Comparison of averaged dynamic functional network properties derived from GTA during NP decision (red) and rest (blue) phases for all subjects (n = 27):

(A) Eloc, (B) Cp, and (C) Lp considering sparsity ranging from 0.05 to 0.5, and (D) three respective network metrics quantified by the area under the curve (AUC)

within the sparsity of 0.05–0.5 for the decision (red) and rest (blue) phases. In all panels, the error bars are the standard deviation. The * indicates the significant

difference between the decision and rest phase for each network metric at p < 0.01.

DLPFC and OFC+FPA significantly in the human cortex and
that more challenging NP with LM treatment triggers more
deactivation in DLPFC than HM treatment. Hypothesis II was
that brain network increases its Eloc, Cp, and Lpwhen the human
brain switched from rest state to the NP decision phase. To prove
these hypotheses, we conducted 77-channel, wide field-of-view
fNIRSmeasurements from 27 human subjects concurrently when
they performed NP decision-making tasks. After performing
data analyses and reviewing the results, we have learned several
valuable lessons and gained scientific insights, as discussed below.

Behavioral Outcomes Affected by NP
Decision-Making Tasks
The behavioral scores (Figure 3) revealed how NP tasks with
HM and LM affected subjects’ performance in average profits
and average decision-making time. During the LM treatment, it
was difficult to earn positive rewards while the LM group took
about the same time as the HM group to make the decision.
In contrast, the HM group received much better and significant
profits. These observations may imply that the subjects facing the
LM challenge were under much more stress than those facing the
HM condition, as the former group had a more challenging and
risky, time-bound decision-making task that compelled them to
think much harder and more carefully to gain profits.

Brain Activation by NP Decision-Making
Tasks
Our results (Figure 4) confirmed that both DLPFC and
OFC+FPA regions, particularly L-DLPFC, played significant and
critical roles in cognitive processing when subjects had to solve
the NP regardless of difficulty levels. Our findings are consistent
with several previous studies in the literature that found DLPFC
responsible for risky decision-making (in non-business context)
and cognitive control in terms of planning and working memory
(Cazzell et al., 2012; Makwana andHare, 2012; Huang et al., 2017;
Farrar et al., 2018). Another significantly activated area observed
in this study was the combination of partial FPAwith partial OFC
(i.e., BAs 10 and 11), which are also crucial parts of the brain
involved in executive functions. Even though they are not a part
of the reward pathway, there is evidence of their contribution
to decision-making.

Moreover, a slight deactivation was observed in the left
anterior temporal lobe. One of the studies comparing brain
activation on fMRI-based semantic and non-semantic tasks has
shown deactivation in the left anterior temporal lobe in response
to non-semantic tasks while semantic tasks triggered activation.
Also, left-lateralized activation is closely related to scripted
words or generating speech. Our study was more related to a
non-semantic aspect. Therefore, the deactivation observed in the
left-temporal lobe can be attributed to the comprehension of
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written words when reading NP questions (Visser and Lambon
Ralph, 2011; Humphreys et al., 2015).

Brain Activation by Low-Risk (HM) NP
Tasks
It is seen (Figure 5A) that the HM group presented prominent
activation within the L-DLPFC when making low-risk NP
decisions. This protocol scenario would be similar to a goal-
oriented decision-making task in a less risky environment. Our
observation on L-DLPFC is consistent with a few published
reports. In an fMRI-based study where the subjects were given
the task of “Tower of London,” a popular protocol based on
planning, it was observed that the left DLPFC was significantly
activated during the hierarchical goal state (Kaller et al., 2011).
Another study reported significant DLPFC stimulations when
the subjects decided to execute a right-hand movement to enter
the order quantity on the computer keyboard (Hoshi and Tanji,
2004). Furthermore, we observed that OFC+FPA were activated
during the HM NP tasks. Since OFC is suggested to be one of
the significant components in the reward pathway (Bolla et al.,
2003), the activation of partial OFC explains the anticipation for
gains during the trials.

Brain Activation by High-Risk (LM) NP
Tasks
Compared to HM stimulation, several distinct features of the
brain responses to LM stimulation (Figure 5B) are noted:
(1) strong activation within the L-DLPFC and partial Broca’s
area, (2) apparent deactivation in the R-DLPFC, and (3) weak
activation/deactivation in OFC + FPA. This set of tasks was
more challenging than those with HM, so the subjects needed
to pay more attention to the tasks and to control their emotions
during the tasks. Since Broca’s area has a function of modulating
emotional response besides the language process, it is reasonable
to observe certain activation in this cortical area in response
to the LM tasks. Also, the observed R-DLPFC deactivation
may be attributed to intense stress induced by more difficult
decision-making challenges (Qin et al., 2009; Bogdanov and
Schwabe, 2016). OFC is expected to have a strong response
in this case because OFC plays a key role in decision-making
involving reward, but we did not observe such activations in
OFC. A plausible reason for this finding is that, as the more
challenging NP tasks shifted the subjects’ attention from a less-
stressful reward phase to amore-stressful defying phase, the brain
activations occurred in DLPFC rather than in OFC.

Differences in Brain Activation Between
High-Risk (LM) and Low-Risk (HM) NP
Tasks
Two-sample t-tests on brain responses to LM andHM treatments
revealed that LM tasks triggered significant deactivation within
the R-DLPFC (Figure 5C). This observation is consistent with
the results reported in several recent publications. For example,
an fMRI study involving 27 subjects suggested that deactivation
in R-DLPFC may occur due to acute stress, which weakens high-
level cognitive functions such as working memory (Dias and

Segraves, 1999). Also, a transcranial direct current stimulation
(tDCS) based study with 120 participants showed that tDCS
delivered on the R-DLPFC could prevent stress-induced working
memory deficits (Qin et al., 2009; Bogdanov and Schwabe, 2016).
In our study, the NP with the LM protocol was somewhat
risky and a bit lengthy, subjecting the participants to higher
levels of stress. Consequently, we observed clear and significant
deactivation in r-DLPEC only during LM tasks.

Correlation Between Brain Activation vs.
Performance in NP Decision-Making
Figure 6A demonstrates a significant NP-evoked correlation
between the NP decision-making outcome vs. the brain
activation/deactivation in the R-DLPFC. The literature
reports that R-DLPFC deactivation takes place when a subject
experiences stress or fatigue (Qin et al., 2009; Bogdanov and
Schwabe, 2016). Our results present consistent findings at
the individual and group levels, respectively, as shown in
Figures 5C, 6A. These two figures demonstrate that 1[HbO] in
the R-DLPFC is reduced when subjects faced difficult decisions
while the corresponding 1[HbO] increased significantly
(p < 0.015) when they performed well in making easy decisions
to make profits. On the other hand, L-DLPFC has shown
significant increases in 1[HbO] under both easy and hard
decision-making conditions to win profits (Figure 5D), but
without any significant correlation between the performance
outcome vs. 1[HbO] activation (Figure 6B). Overall, our results
hinted that brain activation in the L-DLPFC is closely associated
with risk decision-making regardless of the level of challenges,
while brain activation or deactivation in the R-DLPFC is driven
by the stress level when facing difficult decision tasks.

Brain Network Alteration Caused by NP
Decision-Making Tasks
Our GTA-derived analysis (Figure 7) demonstrated that,
regardless of difficulty levels, NP-evoked decision-making tasks
altered the global dynamic network properties of the human
brain from those at rest. The observation of increases in Eloc,
Cp, and Lp (in sparsity range of 0.05–0.5) caused by NP indicates
that NP stimulated sub-region connections in the brain more
locally, not globally.

This observation also implies that more communications
among regional segregations and/or clusters take place to achieve
decision-making tasks. Also, increases in Eloc and Cp (in sparsity
range of 0.05–0.5) as well as Lp (in sparsity range of 0.05–0.4)
by NP reveal that NP decision-making needs the brain to boost
or enhance network segregation/clustering, which also leads to
an increase of Lp and Eloc consistently (Hu et al., 2019). As
evidenced, Figures 4A,B illustrate that only a few cortical regions
(i.e., DLPFC and OFC+FPA), not the entire prefrontal cortex,
were involved in the decision-making process, regardless of
either LM or HM treatment. These results indirectly support the
underlying reasoning of enhanced Eloc and Cp during NP tasks.

Graph theory provides the conceptual foundation to
investigate the network properties behind brain fluctuations.
Many of the graph theory-based analyses focus on resting state
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networks. However, there are a few investigations that explore
dynamic network properties during a task phase. Tamburro
et al. explored connectivity and efficiency of the brain networks
during an endurance cycling task (Tamburro et al., 2020). The
study discussed several aspects of global network parameters that
could affect behavior. The increase in Eloc probably indicates the
transition from resting state to a specific task state, which may
require a wide range of information interchange related to new
settings among all brain regions before task execution (Petsche
et al., 1997; Pfurtscheller and Andrew, 1999). In this study, we
observed Eloc and Cp increase during our decision phase with
respect to the rest phase, indicating the transition from the
resting state. Moreover, it was suggested that the reduction of
global efficiency (Eg) is a probable sign of hard effort (Kong et al.,
2015; Tamburro et al., 2020). In theory, Eg and Lp are highly
anticorrelated, a reduction of Eg is equivalent to an increase of
Lp. In our study, the primary objective for each subject was to
make right decisions for winning profits, so each person had to
make high-demanding decisions for profitable outcomes. Thus,
it is expected that NP decision-making tasks would result in an
increase in Lp.

Link Between Functional Activation and
Network Connectivity in the Human Brain
The human brain acts as one cohesive complex network,
connecting all brain regions and sub-networks collectively
into one intricate system. Brain network provides valuable
information about the local and global functional connectivity
(Petsche et al., 1997) and incorporates information and
interaction capability (Bullmore and Sporns, 2009; Kong et al.,
2015; Geng et al., 2017; Hu et al., 2019; Wanniarachchi et al.,
2020). Graph theory has been used commonly to examine such
brain networks at resting state. In the field of NIRS, task-
driven brain activations and GTA-derived network connectivity
are often studied separately (Niu et al., 2012; Niu and He,
2014; Li et al., 2018). A recent study revealed that resting-state
properties and task-evoked networks in the human brain can
have significant correlations with the activation of brain regions
during tasks of executive functions (Hu et al., 2019). In our study,
we demonstrated that the NP decision making not only triggered
significantly the prefrontal activation of 1[HbO] in DLPFC
and OFC+FPA (Figure 4) but also increased significantly local
efficiency, clustering coefficients, and path length (Figure 7).
Our findings supported an association between NP-evoked brain
activation and brain dynamic network metrics. Since cortical
regions of DLPFC and OFC+FPA are involved for making NP
decisions, we expect that localized increases in blood oxygenation
(i.e., 1[HbO]) are necessary for information processing and
decision making. In the meantime, we also expect that NP
decisions would perturb/change brain networks in these cortical
regions dynamically with enhanced local network efficiency
and clustering coefficients for delivering an optimal decision
most effectively. Consequently, an increase of network clustering
coefficient would lead to an increase in path length due to
more information processing locally within a local network
region. Putting both aspects of cortical activation and local
network enhancement together, our findings exhibited that NP
decision making triggered local cortical stimulations in DLPFC

and OFC+FPA, which concurrently gave rise to increases in
(i) efficient communication between network nodes (Eloc), (ii)
network segregation (Cp), and (iii) average number of the
shortest path length between all pairs of nodes within the
given network.

Summary of New Findings in This Study
While we have revealed and discussed multiple new findings
and new knowledge learned in this study, it would be helpful to
summarize several key results and novel aspects with respect to
previous reports.

First, the specialty of NP is to consider whole business
management scenarios, not just one element, for the best
decision-making outcome. The NP setting is sensitive to context
(Mirko et al., 2010), which often results in significantly different
decision-making behaviors (Platt and Huettel, 2008). One
novelty of this study was to utilize NP as the experimental
protocol. Second, because of the novel NP protocol, we were
able to create risk decision-making treatments under two distinct
levels of stress, which permitted us to better associate regional
cortical activities (i.e., L-DLPFC, R-DLPFC, andOFC+FPA) with
profitable decision-making outcomes. Third, with this unique
experimental design, we observed a linear correlation between
1[HbO] activation vs. performance outcome in the R-DLPFC,
but the same 1[HbO] response would be highly deactivated
under high stress. On the other hand, the L-DLPFC would be
always activated during theNP decision-making regardless of any
stress. Fourth, GTA can be used to analyze dynamic functional
connectivity when the human brain switches from the rest to
a decision-making phase by implementing a three-trial, 60-s
moving window to achieve adequate time resolution for each
subject. Fifth, with the multi-trial moving window approach, we
were able to analyze and determine significant increases of brain
network metrics, such as Eloc, Cp, and Lp. All these parameters
reflect the enhancement of local activation, communication,
and information exchange within local cortical areas during the
dynamic transition in the human brain from a resting phase
to a decision phase. Last, further exploration or validation is
needed to quantify direct association between task-based network
properties vs. performance outcome in a larger sample size.

Limitations of the Study and Future Work
First, due to limited coverage and spatial resolution, we could not
separate 1[HbO] signals from OFC and FPA; more optodes to
be placed on the forehead can be a solution for this drawback.
Second, even though the focused and detected areas of brain
activation byNPwere DLPFC andOFC+FPA at the cortical level,
multiple other brain regions beyond the cortex were involved
in the complex NP decision-making processes, but they are
challenging to be reached by fNIRS. Third, since the 27 subjects
had to be split into the LM and HM groups, each sample
size was statistically small. It is appropriate in future studies
to validate the findings of this study with a larger sample size.
Last, the dynamic brain network properties or metrics were
obtained using PCC with a relatively short period of time for
both rest (∼15 s) and NP (∼ maximum of 60 s) task phases.
Such a short period is perhaps not adequate to provide stable
or physiologically meaningful results (Geng et al., 2017). More
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rigorous and appropriate algorithms for quantifying dynamic
functional connectivity of the human brain at both rest and
task-evoked phases need to be further explored and applied in
the future.

CONCLUSION

In conclusion, this study showed that NP-based decision-making
stimulated vital brain areas, such as DLPFC and OFC, for high-
level cognitive functions based on 77-channel, wide field-of-view,
hemodynamicmeasurements with fNIRS from 27 human control
subjects. The study observed that there were multiple regions
activated and deactivated in response to the tasks. Explicitly,
DLPFC and OFC+FPA were significantly evoked by NP tasks
vs. baseline regardless of treatment types. Significant deactivation
in R-DLPFC was observed and attributed to the challenging
stress created by the LM with respect to HM. Furthermore,
NP decision-making altered global brain network properties
from the resting phase such that Eloc, Cp, and Lp were all
increased. All these alterations in network properties together
enhanced better communications among sub-regions or local
segmentations to achieve NP-evoked decision tasks. Overall, this
study supported our hypotheses: (1) that NP stimulates both
DLPFC and OFC+FPA significantly in the human prefrontal
cortex, and that more challenging NP results in deactivation in
the right-DLPFC in addition to activation of left-DLPFC, and (2)
that the local efficiency, cluster coeffcient, and path length of the
brain network are increased when a person switches from resting
phase to the NP decision-making phase.
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