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Mismatch negativity (MMN) is the electroencephalographic (EEG) waveform obtained

by subtracting event-related potential (ERP) responses evoked by unexpected deviant

stimuli from responses evoked by expected standard stimuli. While the MMN is thought

to reflect an unexpected change in an ongoing, predictable stimulus, it is unknown

whether MMN responses evoked by changes in different stimulus features have different

magnitudes, latencies, and topographies. The present study aimed to investigate

whether MMN responses differ depending on whether sudden stimulus change occur

in pitch, duration, location or vowel identity, respectively. To calculate ERPs to standard

and deviant stimuli, EEG signals were recorded in normal-hearing participants (N = 20;

13 males, 7 females) who listened to roving oddball sequences of artificial syllables. In

the roving paradigm, any given stimulus is repeated several times to form a standard,

and then suddenly replaced with a deviant stimulus which differs from the standard.

Here, deviants differed from preceding standards along one of four features (pitch,

duration, vowel or interaural level difference). The feature levels were individually chosen

to match behavioral discrimination performance. We identified neural activity evoked by

unexpected violations along all four acoustic dimensions. Evoked responses to deviant

stimuli increased in amplitude relative to the responses to standard stimuli. A univariate

(channel-by-channel) analysis yielded no significant differences betweenMMN responses

following violations of different features. However, in a multivariate analysis (pooling

information from multiple EEG channels), acoustic features could be decoded from the

topography of mismatch responses, although at later latencies than those typical for

MMN. These results support the notion that deviant feature detection may be subserved

by a different process than general mismatch detection.

Keywords: electroencephalography, mismatch negativity, predictive coding, auditory processing, multivariate

decoding

INTRODUCTION

Neural activity is typically suppressed in response to expected stimuli and enhanced following novel
stimuli (Carbajal and Malmierca, 2018). This effect is often summarized as a mismatch response,
calculated by subtracting the neural response waveform to unexpected deviant stimuli from the
response to expected standard stimuli. Auditory deviance detection has been associated with a
human auditory-evoked potential, the mismatch negativity, occurring at about 150–250ms from
sound change onset (Naatanen, 2007; Garrido et al., 2008). The principal neural sources of the
MMN are thought to be superior temporal regions adjacent to the primary auditory cortex, as

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2021.613903
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2021.613903&domain=pdf&date_stamp=2021-02-01
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wschnupp@cityu.edu.hk
mailto:rikismo@gmail.com
https://doi.org/10.3389/fnhum.2021.613903
https://www.frontiersin.org/articles/10.3389/fnhum.2021.613903/full


An et al. Feature Dependency of Mismatch Responses

well as frontoparietal areas (Doeller et al., 2003; Chennu et al.,
2013). Initially, the MMN was interpreted as a correlate of pre-
attentive encoding of physical features between standard and
deviant sounds (Doeller et al., 2003). However, more recent
studies have led to substantial revisions of this hypothesis, and
currently, the most widely accepted explanation of the MMN is
that it reflects a prediction error response.

An important theoretical question remains whether mismatch
signaling has a domain-general or domain-specific (feature-
dependent) implementation in the auditory processing pathway.
A recent study using invasive recordings from the cortical
surface (Auksztulewicz et al., 2018) demonstrated that neural
mechanisms of predictions regarding stimulus contents (“what”)
and timing (“when”) can be dissociated in terms of their
topographies and latencies throughout the frontotemporal
network, and that activity in auditory regions is sensitive to
interactions between different kinds of predictions. Additionally,
biophysical modeling of the measured signals has shown
that predictions of contents and timing are best explained
either by short-term plasticity or by classical neuromodulation,
respectively, suggesting separable mechanisms for signaling
different kinds of predictions. However, these dissociationsmight
be specific to predictions of contents vs. timing, which may have
fundamentally different roles in processing stimulus sequences
(Friston and Buzsaki, 2016).

Interestingly, an earlier magnetoencephalography (MEG)
study (Phillips et al., 2015) provided evidence for a hierarchical
model, whereby violations of sensory predictions regarding
different stimulus contents were associated with similar response
magnitudes in auditory cortex, but different connectivity patterns
at hierarchically higher levels of the frontotemporal network.
This result is consistent with the classical predictive coding
hypothesis in which reciprocal feedforward and feedback
connections at the lower levels of the hierarchy are thought to
signal prediction errors and predictions regarding simple sensory
features, but hierarchically higher levels are thought to signal
more complex predictions and prediction errors, integrating over
multiple features (Kiebel et al., 2008). Several studies, however,
reported independent processing of prediction violations along
different acoustic features or sound dimensions. An earlier
study (Giard et al., 1995) investigated the neural correlates
of mismatch processing across three different acoustic features
(frequency, intensity, and duration). Mismatch responses to
each feature were source-localized by fitting equivalent current
dipoles to EEG signals, and the results indicated that violations
of different features can be linked to dissociable sources,
suggesting the involvement different underlying populations.
Similar conclusions have been reached in another set of studies
(Schroger, 1995; Paavilainen et al., 2001), which quantified the
additivity of MMN to changes along different acoustic features,
either in isolation or by combining two or more features. In
these studies, the MMN response to violating two features
could largely be reproduced by adding the MMN responses
to violating two single features, suggesting that the latter are
mutually independent. A more recent study has combined these
two approaches (source localization and additivity analyses),
demonstrating partial independence of three different timbre

dimensions (Caclin et al., 2006). The notion that mismatch
responses to violations of different features are mediated by
independent mechanisms is also supported by studies showing
that MMN (as well as the later P3a component) typically
decreases following two identical deviants presented in direct
succession, but remains stable following two deviants which vary
from the standard along different features (for a review, see
Rosburg et al., 2018).

However, in most previous studies (Giard et al., 1995;
Schroger, 1995; Paavilainen et al., 2001; Phillips et al., 2015;
Rosburg et al., 2018), physical differences between deviants
and standards were not behaviorally matched across different
features or participants, raising the possibility that differences
in mismatch-evoked activity might to some extent be explained
by differences in stimulus salience (Shiramatsu and Takahashi,
2018). This was also the case in the more recent studies on
MMN responses to multiple acoustic features (Phillips et al.,
2015) or in previous roving paradigms (Garrido et al., 2008).
Interestingly, a recent study investigating the MMN to acoustic
violations along multiple independent features in the auditory
cortex of anesthetized rats (An et al., 2020) revealed that the
topography of MMN signals was highly diverse across not only
acoustic features but also individual animals, even though several
sources of inter-subject variability (e.g., electrode placement)
were better controlled than in typical non-invasive studies,
suggesting that the spatial resolution of non-invasive methods
such as EEG or MEG might not be sufficient for mapping more
subtle differences between mismatch responses to violations of
different features. The few EEG studies that did use behaviourally
matched deviant sounds across different features either used
very small sample sizes (N = 8; Deouell and Bentin, 1998) or
were limited to relatively specialized perceptual characteristics
(e.g., different timbre features; Caclin et al., 2006). In contrast,
our study used a larger sample size (N = 20) and manipulated
relatively general sound dimensions (location, pitch, duration,
and syllable identity). Our primary goal was to test whether
mismatch responses to violations of different features differ in
magnitude or latency, in an attempt to replicate previous studies
(Deouell and Bentin, 1998). However, in addition to testing the
effects of acoustic feature on the MMN time-course in a mass-
univariate analysis (i.e., on an electrode-by-electrode basis), we
also aimed at decoding acoustic features from differences in
MMN topography in a multivariate analysis (i.e., pooling signals
from multiple electrodes).

MATERIALS AND METHODS

Participants
Twenty volunteers (13 males and 7 females; mean age 23.9
years old) enrolled in the study upon written informed consent.
All participants self-reported as having normal hearing and
no history of neurological disorders, and all but two were
right-handed. All participants but one were native Hong Kong
residents, and their mother tongue was Cantonese. A musical
training questionnaire indicated that 16 participants had no
musical training, and the remaining participants had <4 years’
experience in playing a musical instrument. Participants were
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FIGURE 1 | (A) Schematic representation of the stimulation sequences. The first stimulus in each train (solid circles) represents a deviant sound, while the last

(hatched circles) represents a standard sound. (B) The range of each acoustic feature used to construct stimuli in the EEG experiment. Red line indicates the median

value of each feature (across participants), blue bars and black whiskers represent mean and SD of upper and lower ranges across participants.

seated in a sound-attenuated and electrically shielded room in
front of a computer screen. They were instructed to fixate on
a fixation cross displayed on the screen during the acoustic
stimulation. All experimental procedures were approved by the
Human Subjects Ethics Sub-Committee of the City University
of Hong Kong.

Stimuli
The present study employed a roving oddball paradigm in
which auditory deviants could differ from preceding standards
along one of four independent acoustic features. Specifically,
we manipulated two consonant-vowel (CV) syllable stimuli, /ta/
and /ti/ (Retsa et al., 2018), along the following independent
acoustic features: duration, pitch, interaural level difference (ILD)
or vowel (An et al., 2020). Prior to the EEG recording, per
participant, we estimated the feature interval yielding ∼80%
behavioral performance by employing a 1-up-3-down staircase
procedure. In each staircase trial, two out of three stimuli,
chosen at random, were presented at a mean level of a given
feature (e.g., a 50/50 vowel mixture or a 0 dB ILD) while the
third stimulus was higher or lower than the mean level by
a certain interval. Participants had to indicate which stimulus
was the “odd one out.” Following three consecutive hits, the
interval decreased by 15%; following a mistake, the interval
increased by 15%. Each participant performed 30 staircase trials
for each feature (Figure 1B). For the roving oddball stimulus

sequences, the stimulus duration was set to 120ms and the inter-
stimulus intervals (ISIs) were fixed at 500ms. Stimuli formed
a roving oddball sequence: after 4–35 repetitions of a given
stimulus (forming a standard), it was replaced with another
(deviant) stimulus, randomly drawn from the set of 5 possible
levels (Figure 1A). Roving oddball sequences corresponding to
different features were administered in separate blocks, in a
randomized order across participants. The total number of
stimuli in each block was ∼2,000, including 200 deviant stimuli
and 200 corresponding (immediately preceding) standards.

Experimental Procedure
We recorded signals from 64 EEG channels in a 10–20 system
using an ANT Neuro EEG Sports amplifier. EEG channels were
grounded at the nasion and referenced to the Cpz electrode.
Participants were seated in a quiet room and fitted with
Brainwavz B100 earphones, which delivered the audio stimuli via
a MOTU Ultralite MK3 USB soundcard at 44.1 kHz. EEG signals
were pre-processed using the SPM12 Toolbox for MATLAB.
The continuous signals were first notch-filtered between 48 and
52Hz and band-pass filtered between 0.1 and 90Hz (both filters:
5th order zero-phase Butterworth), and then downsampled
to 300Hz. Eye blinks were automatically detected using the
Fp1 channel, and the corresponding artifacts were removed
by subtracting the two principal spatiotemporal components
associated with each eye blink from all EEG channels (Ille
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et al., 2002). Then, data were re-referenced to the average of
all channels, segmented into epochs ranging from −100ms
before to 400ms after each stimulus onset, baseline-corrected
to the average pre-stimulus voltage, and averaged across trials
to obtain ERPs for deviants and standards for each of the four
acoustic features.

Data Analyses
First, to establish the presence of the MMN response, we
converted the EEG time-series into 3D images (2D spatial
topography × 1D time-course) and entered them into a
general linear model (GLM) with two factors (random effect
of mismatch: deviant vs. standard; fixed effect of participant),
corresponding to a paired t-test. Statistical parametric maps
were thresholded at an uncorrected p < 0.005, and the resulting
spatiotemporal clusters of main effects were tested for statistical
significance at the family-wise error corrected threshold pFWE
< 0.05, taking into account the spatiotemporal correlations and
multiple comparisons across channels and time points.

In an additional control analysis, we have tested whether
the mismatch responses observed in this study were modulated
by adaptation effects, which have been shown to be especially
prominent in the N1 range (Baldeweg et al., 2004). To
this end, per standard stimulus (i.e., the last stimulus in a
sequence of identical stimuli), we have calculated the number
of stimuli separating it from the preceding deviant (i.e., the
first stimulus in a sequence of identical stimuli). If our
results were indeed confounded by adaptation, the difference
between responses evoked by deviants vs. standards should be
modulated by the number of stimuli preceding each deviant.
To test this hypothesis, we have regressed out the number of
preceding stimuli from single-trial standard-evoked responses
(using two regressors: a linear regressor, coding for the actual
number of preceding stimuli, and a log-transformed regressor,
approximating empirically observed adaptation effects; (e.g.,
Baldeweg et al., 2004), and subjected the residuals to the
remaining univariate analysis steps (i.e., averaging the single-trial
responses to obtain ERPs, and performing statistical inference
while correcting for multiple comparisons across channels and
time points).

Then, to test whether MMN amplitudes differed between
stimulus features, ERP data were entered into a flexible-factorial
GLM with one random factor (participant) and two fixed
factors (mismatch: deviant vs. standard; feature: pitch, duration,
ILD, and vowel), corresponding to a repeated-measures 2 × 4
ANOVA. Statistical significance thresholds were set as above.

Finally, to test whether mismatch responses can be used to
decode the violated acoustic features, we subjected the data
to a multivariate analysis. Prior to decoding, we calculated
single-trial mismatch response signals by subtracting the EEG
signal evoked by each standard from the signal evoked by the
subsequent deviant. Data dimensionality was reduced using PCA
(principal component analysis), resulting in spatial principal
components (describing channel topographies) and temporal
principal components (describing voltage time-series), sorted
by the ratio of explained variance. Only those top components
which, taken together, explained 95% of the original variance,

were retained for further analysis. In decoding acoustic features,
we adopted a sliding window approach, integrating over the
relative voltage changes within a 100ms window around each
time-point (Wolff et al., 2020). To this end, per channel and
trial, the time segments within 100ms of each analyzed time-
point were down-sampled by binning the data over 10ms bins,
resulting in a vector of 10 average voltage values per component.
Next, the data were de-meaned by removing the component-
specific average voltage over the entire 100ms time window
from each component and time bin. These steps ensured that
the multivariate analysis approach was optimized for decoding
transient activation patterns (voltage fluctuations around a zero
mean) at the expense of more stationary neural processes (overall
differences in mean voltage) (Wolff et al., 2020).

The binned single-trial mismatch fluctuations were then
concatenated across components for subsequent leave-one-
out cross-validation decoding. Per trial and time point, we
calculated the Mahalanobis distance (De Maesschalck et al.,
2000) (scaled by the noise covariance matrix of all components)
between the vector of concatenated component fluctuations
of this trial (test trial) and four other vectors, obtained from
the remaining trials, and corresponding to the concatenated
component fluctuations averaged across trials, separately for each
of the four features. The resulting Mahalanobis distance values
were averaged across trials, separately for each acoustic feature,
resulting in 4× 4 distance matrices. These distance matrices were
summarized per time point and participant as a single decoding
estimate, by subtracting the mean off-diagonal from diagonal
terms (Figure 3A).

In a final analysis, since we have observed univariate
mismatch responses as well as multivariate mismatch-based
feature decoding at similar latencies (see Results), we have
tested whether these two effects are related. To this end, we
performed a correlation analysis between single-trial decoding
estimates (i.e., the relative Mahalanobis distance values between
EEG topography corresponding tomismatch responses following
violations of the same vs. different features), and single-trial
MMN amplitudes.We calculated Pearson correlation coefficients
across single trials, per channel, time point, and participants.
The resulting correlation coefficients were subject to statistical
inference using statistical parametric mapping (one-sample t-
test; significance thresholds as in the other univariate analysis,
corrected for multiple comparisons across time points and
channels using family-wise error).

RESULTS

Taken together, in this study, we tested whether auditory
mismatch responses are modulated by violations of independent
acoustic features. First, consistent with previous literature
(Doeller et al., 2003; Garrido et al., 2008), we observed
overall differences between the ERPs evoked by deviant stimuli
vs. standard stimuli, in a range typical for MMN responses
as well as at longer latencies (Figure 2A). Specifically, the
univariate ERP analysis confirmed that EEG amplitudes differed
significantly between deviants and standards when pooling over
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FIGURE 2 | (A) The topography (left) and time-course (right) of the mismatch response. The highlighted topography cluster represents the significant difference

between deviants and standards. Based on this cluster, the average waveform of the evoked response is plotted separately for auditory standards (blue) and deviants

(red). The horizontal bars (black) indicate time points with a significant difference between deviants and standards. Shaded areas denote SEM (standard error of the

mean) across participants. (B) The average response to acoustic standards (blue) and deviants (red) for different feature conditions, extracted from the same cluster

as in (A). No interaction effects were significant after correcting for multiple comparisons across channels and time points.

all the acoustic features tested. This effect was observed over
two clusters: the central EEG channels showed a significant
mismatch response between 115 and 182ms (cluster-level pFWE
< 0.001, Tmax = 3.94), while posterior channels showed a
significant mismatch response between 274 and 389ms (cluster-
level pFWE < 0.001, Tmax = 5.46), within the range of a
P3b component. A control analysis, in which we controlled for
single-trial adaptation effect to the standard tones, yielded a
virtually identical pattern of results as the original analysis (two
significant clusters of differences between responses to deviants
vs. standards: an earlier cluster between 130 and 143ms over
central channels, cluster-level pFWE< 0.001, Tmax= 15.48, and
a later cluster between 317 and 327ms over posterior channels,
cluster-level pFWE < 0.001, Tmax= 17.48).

Although the ERP time-courses differed between deviant
and standard stimuli when pooling over violations of different
acoustic features, a univariate (channel-by-channel) analysis
revealed no significant differences in the amplitudes or time-
courses of mismatch responses between independent stimulus
features (Figure 2B). These results are consistent with a previous
study (Phillips et al., 2015) which found that multiple deviant
stimulus features (frequency, intensity, location, duration, and
silent gap) were not associated with differences in activity in the

auditory regions, but instead were reflected in more distributed
activity patterns (frontotemporal connectivity estimates).

The resulting decoding time-courses of each participant
were entered into a GLM and subject to one-sample t-tests,
thresholded at an uncorrected p < 0.05 and correcting for
multiple comparisons across time points at a cluster-level
pFWE < 0.05. In this analysis, significant acoustic feature
decoding was observed between 247 and 350ms relative to tone
onset (cluster-level pFWE = 0.000, Tmax = 2.77) (Figure 3B).
Thus, when pooling information from multiple EEG channels,
acoustic features could be decoded from the topography of
mismatch responses, although at later latencies than typical
for MMN.

Since we have observed both univariate mismatch responses
and multivariate mismatch-based feature decoding at late
latencies (univariate: 274–389ms; multivariate: 247–350ms),
we have performed an additional single-trial correlation
analysis to test whether these two effects are related. This
analysis (Figure 3C) has yielded no significant clusters
of correlation coefficients between single-trial mismatch
amplitudes and decoding estimates, while correcting for
multiple comparisons across channels and time points
(Tmax= 3.74, all pFWE > 0.005).

Frontiers in Human Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 613903

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


An et al. Feature Dependency of Mismatch Responses

FIGURE 3 | (A) Decoding methods. Left panel: for each trial, we calculated the Mahalanobis distance, based on multiple EEG components (here shown schematically

for two components), between the mismatch response in a given (test) trial (empty circle) and the average mismatch responses based on the remaining trials (black

circle: same feature as test trial; gray circles: different features). Right panel: after averaging the distance values across all trials, we obtained 4 by 4 similarity matrices

between all features, such that high average Mahalanobis distance corresponded to low similarity between features. Based on these matrices, we summarized feature

decoding as the difference between the diagonal and off-diagonal terms. (B) Multivariate analysis. The average time course of the decoding of acoustic features

based on single-trial mismatch response. The gray-shaded area denotes the SEM across participants, and the horizontal bar (black) shows the significant time

window. (C) Decoding vs. MMN correlation analysis. Plot shows the time-series of mean correlation coefficients between single-trial decoding estimates and

single-trial MMN amplitudes, calculated for Cz/Cpz channels and averaged across participants (shaded areas: SEM across participants). No significant correlations

were observed when correcting for multiple comparisons across channels and time points.

DISCUSSION

In this study, since a univariate analysis of interactions between
mismatch signals and acoustic features might not be sensitive
enough to reveal subtle and distributed amplitude differences
between conditions, we adopted a multivariate analysis aiming at
decoding the violated acoustic feature from single-trial mismatch
response topographies. This demonstrated that acoustic features
could be decoded from the topography of mismatch responses,
although at later latencies than typical for MMN (Figure 3B).
An earlier oddball study (Leung et al., 2012) examined ERP
differences to violations of four features (frequency, duration,
intensity, and interaural difference). The study found that
frequency deviants were associated with a significant amplitude
change in the middle latency range. This result indicated that
deviant feature detection may be subserved by a different process
than general mismatch detection. Consistent with this notion,

another study has used magnetoencephalography to identify
mid-latency effects of local prediction violations of simple
stimulus features, and contrasted them with later effects of global
prediction violations of stimulus patterns (Recasens et al., 2014).
Taken together, these studies would suggest that, in paradigms
where multiple acoustic features vary independently (such as
here), a plausible pattern of results would be that independent
feature predictions should be mismatched at relatively early
latencies, since an integrated representation is not required. Here,
however, we found feature-specificity in the late latency range,
rather than in the mid-latency range. The discrepancy between
our results and the previous studies might be explained by
different stimulus types. While the previous studies used simple
acoustic stimuli, here we used complex syllable stimuli, possibly
tapping into the later latencies of language-related mismatch
responses, as compared to MMN following violations of non-
speech sounds.
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Speech sounds have been hypothesized to be processed
in separate streams which independently derive semantic
information (“what” processing) and sound location (“where”
processing) (Kaas and Hackett, 2000; Tian et al., 2001; Schubotz
et al., 2003; Camalier et al., 2012; Kusmierek and Rauschecker,
2014). In most animal studies, the hierarchical organization of
the auditory cortex has been linked to a functional distribution
of stimulus processing, such that core (hierarchically lower)
regions respond preferentially to simple stimuli, whereas belt
and other downstream (hierarchically higher) regions respond
to more complex stimuli such as band-passed noise and speech
(Rauschecker et al., 1995; Recanzone et al., 2000; Rauschecker
and Tian, 2004; Kusmierek and Rauschecker, 2009; Rauschecker
and Scott, 2009). This is supported by evidence functional
magnetic resonance imaging (fMRI) studies in humans (Binder
et al., 2000) showing that earlier auditory regions (Heschl’s gyrus
and surrounding fields) respond preferentially to unstructured
noise stimuli, while progressively more complex stimuli such
as frequency-modulated tones show more lateral response
activation patterns. In that study, speech sounds showed
most pronounced activations spreading ventrolaterally into the
superior temporal sulcus. This result supports a hierarchical
model of auditory speech processing in the human auditory
cortex based on complexity and integration of temporal and
spectral features. Based on this notion, the relatively long latency
of neural responses compared to previous studies using pure
tones might be partially explained by the fact that we used
spectrally and temporally complex speech stimuli.

However, our results can also be explained in terms of
a hierarchical deviance detection system based on predictive
coding (Kiebel et al., 2008). On this account, neural responses
supporting the lower and higher hierarchical stages communicate
continuously through reciprocal pathways. When exposed to
repetitive stimuli, the bottom-up (ascending) sensory inputs
can be “explained away” by top-down (descending) connections
mediating prediction signaling, resulting in weaker prediction
error signaling back to the hierarchically higher regions.
Substituting the predicted standard with unpredicted deviant
results in a failure of top-down suppression by prior predictions.
This leads to an increased prediction error signaling back to
higher regions, providing an update for subsequent predictions.
As a result, the later and more distributed activity patterns
might reflect higher-order prediction errors, signaled to regions
integrating multiple stimulus features and representing the entire
range of stimuli likely to appear in a particular context.

In conclusion, the present study identified functional
dissociations between deviance detection and deviance feature
detection. First, while mismatch responses were observed at
latencies typical for the MMN as well as at longer latencies,
channel-by-channel analyses revealed no robust differences
between mismatch responses following violations of different
acoustic features. However, we demonstrate that acoustic features
could be decoded at longer latencies based on fine-grained
spatiotemporal patterns of mismatch responses. This finding
suggests that deviance feature detection might be mediated
by later and more distributed neural responses than deviance
detection itself.
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