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Cross-sectional studies indicate that normal aging is accompanied by decreases in brain
structure. Longitudinal studies, however, are relatively rare and inconsistent regarding
their outcomes. Particularly the heterogeneity of methods, sample characteristics and
the high inter-individual variability in older adults prevent the deduction of general
trends. Therefore, the current study aimed to compare longitudinal age-related changes
in brain structure (measured through cortical thickness) in two large independent
samples of healthy older adults (n = 161 each); the Longitudinal Healthy Aging Brain
(LHAB) database project at the University of Zurich, Switzerland, and 1000BRAINS
at the Research Center Juelich, Germany. Annual percentage changes in the two
samples revealed stable to slight decreases in cortical thickness over time. After
correction for major covariates, i.e., baseline age, sex, education, and image quality,
sample differences were only marginally present. Results suggest that general trends
across time might be generalizable over independent samples, assuming the same
methodology is used, and similar sample characteristics are present.
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INTRODUCTION

Normal aging can be accompanied by a decline in cognitive abilities (Hedden and Gabrieli, 2004)
and changes in brain structure (Sowell et al., 2003). Both phenomena show high inter-individual
variability, especially during later decades of life (Habib et al., 2007; Dickie et al., 2013). Results
derived from cross-sectional studies have revealed a negative relationship between age and brain
structure across adulthood, with differential effect sizes for specific brain regions (Fjell et al., 2009;
Jockwitz et al., 2019), depending on the functional properties of the brain region of interest as well
as the brain structure metric investigated (e.g., brain volume-based versus surface-based metrics
or cortical thickness versus surface area) (O’Sullivan et al., 2001; Sowell et al., 2003; Salat et al.,
2005; Walhovd et al., 2011; Ziegler et al., 2012; Dickie et al., 2013; Hogstrom et al., 2013; Fjell et al.,
2014a,b; Liem et al., 2015).

While the associations between brain structure and age are rather heterogenous across studies,
we recently showed consistent cross-sectional age associations for two different cohorts when
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applying the same analysis protocol [e.g., age range, processing of
the neuroimaging data (Jockwitz et al., 2019)]. At the same time,
cross-sectional studies inherit a potential problem concerning
the validity of inferences: Cross-sectional studies assess age-
related differences between individuals, which is not comparable
to age-related changes within individuals. One important
disadvantage of cross-sectional studies concerns interindividual
differences that might obscure intraindividual changes of aging
(Raz and Lindenberger, 2011).

Longitudinal studies are still relatively rare and inconsistent
with respect to their outcomes, preventing the deduction of
general trends of age-related changes in brain structure. When
comparing cross-sectional and longitudinal research designs,
different patterns were shown for structural brain aging (Hedden
and Gabrieli, 2004; Pfefferbaum and Sullivan, 2015). Large
between-study heterogeneity of designs and methods, differences
in sample characteristics and the generally larger inter-individual
variability in samples of older adults make it difficult to extract
general trends. However, general decreases in brain structure
have been reported, although to a lesser degree than those
reported in cross-sectional research designs [for a recent review,
see Oschwald et al. (2019)].

To extract general age trends for brain structure,
comparability between independent study samples is necessary.
A few studies have already performed comparability analyses of
cross-sectional age-related differences in brain structure metrics
(i.e., brain volume or cortical thickness) between different
samples, e.g., Fjell et al. (2009); Jockwitz et al. (2019). These
studies indicate that general associations between age and brain
structure are similar across independent samples, assuming that
the same methodology and analysis protocol was used. However,
such between study comparisons are lacking for investigations
of longitudinal aging trajectories, especially in the older adult
population, where inter-individual variability is particularly
high. With the growing trend of large imaging consortia, e.g.,
UK Biobank (Miller et al., 2016), ENIGMA (Thompson et al.,
2014), German National Cohort Study [NaKo; Bamberg et al.
(2015)], or ADNI [Alzheimer’s Disease Neuroimaging Initiative;
Jack et al. (2008)] which aim at pooling datasets from a variety
of study centers to increase sample size and statistical power, it
will be crucial to establish the validity of age-related changes in
brain structure. Therefore, the current study aimed to compare
longitudinal age-related changes in brain structure in two large
independent samples of healthy older adults: The Longitudinal
Healthy Aging Brain (LHAB) database project at the University
of Zurich (Switzerland; Zollig et al. (2011)] and 1000BRAINS at
the Research Centre Juelich (Germany; Caspers et al. (2014)].

MATERIALS AND METHODS

Participants included in the current research project were
recruited from two longitudinal studies investigating brain-
behavior relationships in older adults located in the larger Zurich
area (Switzerland) and in the Ruhr district (Germany).

The first sample comprised the ongoing LHAB database
project at the University Research Priority Program (URPP)

“Dynamics of Healthy Aging” of the University of Zurich (Zollig
et al., 2011). LHAB investigates age-related dynamics of brain-
behavior relationships in healthy older adults. A particular focus
is placed on assessing and explaining interindividual variability
in the observed aging trajectories. For this purpose, a broad
spectrum of factors assumed to influence such trajectories (e.g.,
lifestyle, sleep, and nutrition) is collected. In LHAB, older adults
from Zurich and surrounding areas are observed longitudinally
with between-measurement intervals of one to 2 years. Inclusion
criteria for study participation at baseline were age ≥ 64, right-
handedness, fluent German language proficiency, a score of
≥ 26 on the Mini Mental State Examination [MMSE; Folstein
et al. (1975)], no self-reported neurological disease of the central
nervous system and no contraindications to MRI. The study
was approved by the ethical committee of the canton of Zurich.
Participation was voluntary and all participants gave written
informed consent in accordance with the declaration of Helsinki.
The initial sample of LHAB was comprised of 232 participants
ranging from 64 to 87 years of age. Data acquisition in the
LHAB project started in 2011. Currently the dataset covers an
observation period of 7 years.

The second sample comprised 1000BRAINS at the Institute
of Neuroscience and Medicine, Research Centre Juelich.
1000BRAINS is a longitudinal population-based study that
assesses variability in brain structure and function during
aging with respect to various influencing factors (Caspers
et al., 2014). The 1000BRAINS sample is drawn from the
10-year follow-up cohort of the Heinz Nixdorf Recall Study,
an epidemiological population-based study of risk factors
for atherosclerosis, cardiovascular disease, cardiac infarction,
and death (Schmermund et al., 2002) and the affiliated
MultiGeneration study. In 1000BRAINS, adults aged 55 and older
(at baseline) from the Heinz Nixdorf Recall study and their
relatives (spouses and offspring; sampled from MultiGeneration
study) were recruited, and were examined two times over a
period of about 3 to 4 years. In contrast to the LHAB study,
inclusion in the study was only dependent on the eligibility
requirements for the MR acquisition based on the MR safety
guidelines (e.g., stents and heart pacemakers led to exclusion
from the study). The study protocol was approved by the
University of Duisburg-Essen. Participation was voluntary and all
participants gave written informed consent in accordance with
the declaration of Helsinki. The initial sample of 1000BRAINS
was comprised of 1,315 participants ranging from 18 to
87 years of age.

For the current study, we focused on two time points in both
samples (LHAB: baseline and 4-year follow-up; 1000BRAINS:
baseline and 3 to 4-years follow-up). Participants with missing
values for the brain data were excluded. In order to assure
comparability between the two samples, we matched them with
respect to baseline age and sex using propensity score matching
implemented in R (Stuart et al., 2011).

This resulted in 161 participants for each of the two final
samples with the following demographic characteristics: LHAB:
mean age = 69.9 ± 4.1; 85 females, mean interval = 4.2 ± 0.1;
1000BRAINS: mean age = 69.2 ± 4.6, 76 females, mean
interval = 3.7 ± 0.7. For an overview of demographic variables
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of the two samples at both timepoints, see Table 1. Education
was measured according to the international classification
of education (ISCED) and afterward divided into three
educational classes: 1. school and/or vocational training,
2. grammar school or vocational baccalaureate, specialized
secondary school/diploma, or commercial school degree, and 3.
Bachelor, Master, Doctorate or equivalent.

Data Acquisition
For LHAB, anatomical T1-weighted images of both timepoints
were acquired on a 3.0 T Philips Ingenia scanner (Philips
Medical Systems, Best, The Netherlands). T1-weighted structural
brain images were measured per visits with: TR = 8.18 ms,
TE = 3.8 ms, Flip Angle = 8◦, FoV = 240 mm× 240 mm, isotropic
voxel size = 1 mm × 1 mm × 1 mm, 160 slices per volume.
For 1000BRAINS, anatomical T1-weighted images of both
timepoints were acquired on a 3.0 Tesla TIM-Trio MR scanner
(Siemens Medical System, Erlangen, Germany). The T1-weighted
structural brain images were scanned per visit with: TR = 2.25 s,
TE = 3.03 ms, flip angle = 9◦, FoV = 256 mm × 256 mm, voxel
resolution = 1 mm × 1 mm × 1 mm, 176 slices per volume.
In both studies, T1-imaging was part of a larger MR imaging
protocol [see Caspers et al. (2014); Zollig et al. (2011)].

Preprocessing
Anatomical images from both samples were preprocessed
using the same automated surface-based processing stream
for longitudinal analyses of the FreeSurfer Software package
[1000BRAINS: version 6.0.0; LHAB: FreeSurfer BIDS App v6.0.0-
2; Gorgolewski et al. (2017)]. A detailed description of this
pipeline is provided by Reuter et al. (2012); Dale et al. (1999),
Fischl et al. (1999) as well as on http://surfer.nmr.mgh.harvard.
edu. In short, first the cross-sectional surface reconstruction
pipeline was applied to every subject, which includes (a) the
segmentation of the structural brain images into gray matter,
white matter, and cerebrospinal fluid, (b) motion correction,
(c) intensity normalization, (d) transformation into Talairach
space, (e) tessellation of the gray/white matter boundary, and
(f) correction of topological defects. The gray/white matter
interface was then (g) expanded to create the pial surface
(boundary between gray matter and cerebrospinal fluid), which
finally consists of about 150,000 vertices per hemisphere with
an average surface area of 0.5 mm2. Afterwards, each subject
was preprocessed using the longitudinal surface reconstruction
pipeline (Reuter et al., 2012) in which, based on the results
of the cross-sectional preprocessing pipeline, a within-subject

TABLE 1 | Demographics of the two samples and group comparisons
(Independent T-test for continuous and Wilxon-Cox test for categorical variables)
with corresponding T/W and p-values.

1000BRAINS LHAB T/W (P-Values)

Age (TP1) 69.2 ± 4.6 69.9 ± 4.1 −1.39 (0.166)

Sex 0.53 ± 0.5 0.47 ± 0.5 13685 (0.317)

ISCED 3 2.0 ± 1.0 2.3 ± 0.8 11000 (0.010)

Age (TP2) 72.9 ± 4.7 74 ± 4.1 −2.28 (0.024)

Intervall (TP1 – TP2) 3.7 ± 0.7 4.2 ± 0.1 −8.02 (<0.001)

anatomical template was built across the two timepoints.
Subsequently, cortical thickness was calculated based on the
cross-sectional as well as longitudinal information from each
subject. This procedure has previously been shown to be more
sensitive in calculating surface-based brain metrics, since, due
to the common template for the two timepoints, within-subject
variability is reduced (Reuter et al., 2012). No manual correction
of the reconstructed surfaces (white matter and pial surface) was
performed in the two studies.

Regions of Interest
For the current study, we used the widely used Desikan-Killiany
atlas (Desikan et al., 2006) as implemented in FreeSurfer to
extract cortical thickness from left and right cortices. Specifically,
for each of the 68 regions of interest (ROIs), mean cortical
thickness was calculated as the average shortest distance between
the white matter surface and the corresponding vertex within the
respective ROIs on the pial surface.

Cognitive Performance
Participants from both LHAB and 1000BRAINS took part in
a large neuropsychological assessment consisting of tests in
the domains attention, executive functions, working memory,
episodic memory and language functions. For comparison
between the two samples, the following tasks were chosen: Trail
Making Test A: processing speed, B: concept shifting; Morris et al.
(1989), LPS50+ subtest three [reasoning; Sturm et al. (1993)] and
[Regensburger Wortflüssigkeitstest (RWT), semantic condition
(verbal fluency); Aschenbrenner et al. (2000)]. For descriptives of
cognitive tasks, see Table 2.

Statistical Analysis
The purpose of the current research project was to compare
intra-individual changes in brain structure (cortical thickness)
across the ROIs of two independent population-based cohort
studies. We calculated annual percentage changes to estimate
yearly changes in cortical thickness and cognitive performance.
Annual percentage changes were calculated as the following:
[(Value at last measurement occasion in the study/Value at
baseline)1/(totalyearsinstudy)

−1] × 100. Positive values represent
increases and negative values represent decreases. We next
identified outliers for all annual percentage changes (mean
annual percentage change± 3 SD) and excluded those values that
deviated more than 3 SD from the mean.

To examine whether the two samples showed similar changes
in cortical thickness over time, we first used a one sample
t-test to estimate general changes in cortical thickness for the
two groups separately. To investigate whether the two samples
differed concerning their variances, we conducted Levene’s test
for sample homogeneity. Finally, between sample differences
in cortical thickness annual percentage changes were assessed
using a General Linear Model (GLM) with cortical thickness
as the dependent variable and sample and sex as fixed factors.
Baseline age (TP1), education, and Euler number were included
as covariates of non-interest. Euler number represents a marker
of image quality that summarizes the topological complexity of
the reconstructed cortical surface (Rosen et al., 2018).
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TABLE 2 | Raw cognitive performance values for TP1 and 2, as well as the APC together with T and p-values for the APC (Sig. of APC; one sample T-test) and F and
p-values for sample homogeneity (Levene’s test).

1000BRAINS LHAB

Tp1 Tp2 APC Sig. of APC Tp1 Tp2 APC Sig. of APC Levene’s test

Processing speed 40.22 ± 12.46 41.12 ± 14.12 0.34 ± 7.06 0.61 (0.54) 37.16 ± 12.90 39.37 ± 16.15 1.07 ± 6.88 1.93 (0.056) 0.25 (0.614)

Concept shifting 93.20 ± 41.55 96.87 ± 43.33 0.84 ± 7.98 1.32 (0.188) 86.69 ± 33.86 94.22 ± 39.77 2.04 ± 6.83 3.63 (<0.001) 2.40 (0.122)

Verbal fluency 23.96 ± 6.67 22.81 ± 6.73 −1.31 ± 5.76 −2.81 (0.006) 26.06 ± 6.46 25.98 ± 5.83 0.17 ± 4.41 0.47 (0.633) 9.59 (0.002)

Reasoning 20.99 ± 4.65 20.56 ± 5.42 −0.13 ± 5.14 −0.31 (0.757) 24.02 ± 4.45 26.48 ± 4.75 2.35 ± 3.70 7.99 (<0.001) 10.66 (0.001)

Subsequently, we assessed the cortical thickness annual
percentage changes with the mentioned covariates (baseline age,
sex, education, and Euler number) separately for the two samples
to examine whether changes in cortical thickness would be driven
by one sample. Finally, we additionally assessed the relation
between annual percentage changes of cortical thickness and
cognitive performance for the two samples separately.

RESULTS

When matching the two samples for baseline age and sex, the
two samples did not differ in the respective variables (baseline
age: T = −1.39, p = 0.166; and sex: W = 13,685, p = 0.317).
However, we found significant differences in terms of education
(W = 11,000, p = 0.01), with participants included in LHAB
generally showing a higher formal education as compared
to participants included in 1000BRAINS. Furthermore, the
time intervals between the two measurements differed, with
a longer interval between measurements in the LHAB project
(1000BRAINS: 3.7± 0.7 years; LHAB: 4.2± 0.1 years; T =−8.02;
p < 0.001; for group differences, see Table 1). To address this
difference in time intervals we calculated annual percentage
changes of cortical thickness. Table 3 includes cortical thickness
values for the two hemispheres at both timepoints as well as
the annual percentage change in cortical thickness for the two
samples separately (for all ROIs see Supplementary Table 1).

Cortical Thickness
With respect to cortical thickness, the LHAB sample showed
slightly stronger annual percentage changes (i.e., decreases) in
cortical thickness over time as compared to 1000BRAINS (see
Figures 1A,B). On the other hand, we found 1000BRAINS to
generally show more variance between participants regarding the
annual percentage change in most of the ROIs (for Levene’s test,
Supplementary Table 1), although variances in mean CT did
not differ significantly between the two samples (see Table 3).
Figure 1C shows difference maps in terms of standard deviations
of the annual percentage changes. For example, one of the
most significant differences in standard deviations is observed
in the right postcentral gyrus (see Figure 1C for a density plot;
1000BRAINS: SD = 0.7, LHAB: SD = 0.5; Levene’s test: F = 14.64,
p < 0.001).

Next, we again used GLMs to examine sample differences in
annual percentage changes in cortical thickness with age, sex,
education and Euler number as covariates (for all significant

influences, see Table 4 and Supplementary Table 2). Overall,
after correcting for the different covariates and for multiple
comparisons, only very few sample differences in terms of annual
percentage change were present, i.e., inferior frontal gyrus pars
triangularis (lh: F = 13.67, rh: F = 16.54) and inferior frontal gyrus
pars opercularis (rh: F = 21.43) and transverse temporal gyrus (rh:
F = 20.47).

In addition, after correcting for the above-mentioned
variables, only a few regions showed significant intercepts (i.e.,
main effects of time), age effects or relations to sex, education
or the Euler number (almost no effects did survive correction
for multiple comparisons). Figure 2 shows age-related annual
percentage changes in cortical thickness for left and right
hemispheres. As one can see in the two plots, the annual
percentage change was not significantly related to baseline age for
the left hemisphere (F = 2.41; p = 0.121) but was at trend level for
the right hemisphere (F = 4.95; p = 0.027). The plots also show
that the relationship between age and annual percentage change
follows a linear, rather than a non-linear trend.

For a better understanding of the regional specificity of sample
differences in the cortical thickness annual percentage changes,
we projected the effect sizes (partial eta squared) of the sample
differences onto the brains surface (Figure 3). Effect sizes ranged
from 0 to 0.06, being interpreted as small to medium effects.
Regarding the covariates, we only found sporadic effects on
cortical thickness annual percentage change. After correcting
for these subtle, mostly non-significant influences, and even the
intercepts (i.e., main effects of annual percentage change) became
non-significant. To verify that these influences were not driven by
only one of the two samples, we further calculated the GLMs for
the two samples separately (see Supplementary Table 3).

Finally, we assessed the relation between annual percentage
changes of cortical thickness and cognitive performance for
the two samples separately, which, after correcting for multiple
comparisons, revealed non-significant results (see Tables 2, 5 and
Supplementary Table 4).

DISCUSSION

Generalizability and replicability of age effects on brain and
behavior are vital requirements to understand major aging
mechanisms in our older adult population. The complexity of the
aging process, in which the effect of single contributing factors,
i.e., lifestyle or genetics, is assumed to be highly individual and
rather small. To unravel even subtle brain-behavior relationships
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TABLE 3 | Cortical thickness values for TP1 and 2, as well as the annual percentage change (APC) together with T and p-values for the APC (Sig. of APC; one sample
T-test) and F and p-values for sample homogeneity (Levene’s test).

1000BRAINS LHAB

Tp1 Tp2 APC Sig. of APC Tp1 Tp2 APC Sig. of APC Levene’s test

Mean CT left 2.46 ± 0.09 2.45 ± 0.09 −0.15 ± 0.45 −4.17 (<0.001) 2.4 ± 0.08 2.37 ± 0.09 −0.29 ± 0.45 −8.21 (<0.001) 0.17 (0.677)

Mean CT right 2.46 ± 0.09 2.45 ± 0.10 −0.14 ± 0.40 −4.49 (<0.001) 2.41 ± 0.08 2.38 ± 0.09 −0.3 ± 0.42 −9.07 (<0.001) 0.19 (0.664)

FIGURE 1 | Annual percentage changes (APC) in cortical thickness for (A) 1000BRAINS and (B) LHAB. Differences in SD between the two samples is shown in (C)
together with a corresponding density plot (D) showing the variance in cortical thickness for 1000BRAINS and LHAB within the postcentral gyrus.

TABLE 4 | F and p-values derived from general linear models assessing annual percentage changes in cortical thickness in relation to sample, age, sex, education, and
data quality (Euler number).

Intercept Age (TP1) Sex Education Euler Sample

Mean CT left 1.83 (0.177) 2.41 (0.121) 0.00 (0.966) 0.10 (0.756) 0.94 (0.334) 7.5 (0.007)

Mean CT right 4.35 (0.038) 4.95 (0.027) 0.44 (0.508) 0.95 (0.331) 0.32 (0.572) 8.85 (0.003)

during aging (Button et al., 2013; Wiseman et al., 2019) there
is an upcoming trend of data pooling approaches to increase
statistical power. However, data pooling procedures, particularly

in imaging consortia, require proof of generalizability of observed
age-related brain changes. The present study set out to meet
this need and assessed age-related changes in brain structure
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FIGURE 2 | Mean thickness annual percentage changes for the left (A) and right (B) hemispheres. With increasing age, there are slightly decreasing annual
percentage changes for both samples.

FIGURE 3 | Effect sizes of sample differences using partial eta square.

(measured by global and regional cortical thickness) in two
closely matched samples of older adults over an average time
period of three to four years. Despite significant differences
in demographics between the two independent samples, we
observed highly similar patterns of age-related changes in brain
structure, when using the same methodology and analysis.

Cross-sectional age-related atrophy patterns have been
reported by many previous studies (Walhovd et al., 2011; Storsve

et al., 2014; Jancke et al., 2015). From those studies we would have
expected to see a pattern of small but consistent cortical thickness
decline in our two studies.

Overall, this decrease was found for both studies (cf. Figure 1)
with participants included in the LHAB study showing a
slightly more pronounced decline in cortical thickness. Highest
annual percentage changes were found for pre- and postcentral
gyri together with medial and lateral temporal and parietal
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TABLE 5 | F and p-values derived from general linear models assessing the relation between annual percentage changes in cortical thickness with annual percentage
changes in cognitive performance, calculated separately for the two samples, corrected for age, sex, education, and data quality (Euler number).

Processing speed Concept shifting Verbal fluency Reasoning

1000BRAINS LHAB 1000BRAINS LHAB 1000BRAINS LHAB 1000BRAINS LHAB

Mean CT left 0.21 (0.651) 5.45 (0.021) 1.27 (0.263) 0.31 (0.581) 0.26 (0.609) 0.00 (0.997) 2.40 (0.124) 1.03 (0.311)

Mean CT right 1.55 (0.215) 2.63 (0.107) 0.03 (0.864) 0.00 (0.971) 0.45 (0.505) 0.41 (0.522) 0.49 (0.484) 3.50 (0.063)

brain regions in both samples. In turn, the anterior cingulate
cortex showed slight increases in cortical thickness over time.
Importantly, the results are in line with previous longitudinal
studies on cortical thickness investigating the whole adult lifespan
(Storsve et al., 2014). Further, sample inhomogeneity testing
revealed a higher between-subject variance for 1000BRAINS as
compared to the LHAB study.

When adjusting the longitudinal effects of time for sex,
education, baseline age and data quality (Euler number), only
sporadic brain areas exhibited significant sample effects in annual
percentage changes, i.e., left and right inferior frontal gyrus,
pars triangularis, right inferior frontal gyrus pars opercularis and
the right transverse temporal gyrus. Here, participants included
in the LHAB study showed a more pronounced decrease over
time. Based on sample characteristics, e.g., higher education in
the LHAB sample, one would expect 1000BRAINS to show a
more pronounced cortical thinning. However, especially for the
inferior frontal gyrus (i.e., Broca’s region involved in language
functions), it has been shown that a higher brain reserve, in terms
of higher gray matter volume, may diminish during the aging
process, i.e., at older ages (Heim et al., 2019). If this holds true,
then it might be the case that participants of the two samples
assimilate during older ages in terms of brain structure. However,
further research is necessary to unravel this complex relationship
of age and brain structure.

Thus, the analysis of cortical thickness in two samples of
healthy older adults revealed only marginal changes over time
and only minimal sample differences. We are aware that our
models include more covariate variables (age, sex, education,
and data quality) than previous studies [e.g., Walhovd et al.
(2011); Storsve et al. (2014); Thambisetty et al. (2010)]. We
deliberately decided to include this set of variables since we
know from previous research that cross-sectionally, the factors
age, sex, education and data quality have an impact on brain
structure (Sowell et al., 2003; Jancke et al., 2015; Jockwitz et al.,
2019). Interestingly, when examining “raw annual percentage
changes,” these changes were partly in accordance with previous
studies investigating changes in cortical thickness over time
(Walhovd et al., 2011; Storsve et al., 2014). For example,
Storsve found a mean annual percentage change of −0.35
in a sample ranging from 23 – 87 years and Fjell et al.
(2014b) reported a mean annual percentage change of −0.59
in a sample of older adults. While we found a mean annual
percentage change of−0.29 for the LHAB study, in 1000BRAINS
this was slightly less pronounced, i.e., −0.15. In addition,
we showed that the investigated covariates, i.e., baseline age,
sex, education, and image quality, might be important in the

investigation of longitudinal changes of brain structure. As
an example, we found slightly negative relationships between
baseline age and annual percentage changes in cortical thickness
for the right hemisphere, which supports previous results (e.g.,
Fjell et al., 2009).

Finally, it has to be mentioned that neither of the two studies
showed significant relations between annual percentage changes
in cortical thickness and cognitive performance (i.e., processing
speed, concept shifting, verbal fluency, and reasoning). First,
these results complement previous results of our research
group. In this cross-sectional study, no relation between cortical
thickness and cognitive performance could be established in
neither of the two study samples (Jockwitz et al., 2019).
Likewise, other studies also revealed no associations between
cognitive performance and particularly cortical thickness (in
contrast to, e.g., brain volume [Cox et al., 2019], or white
matter [Ziegler et al., 2012]). Furthermore, research regarding
changes in both, brain structure and cognitive performance
is quite heterogeneous. In the literature review of Oschwald
et al. (2019) half of the studies revealed no association between
changes in brain structure and cognitive performance, which
fits to the current observation. In turn, those studies showing a
significant association between changes in particularly cortical
thickness and cognitive performance, differed from the current
study. First, other cognitive functions were investigated, such
as episodic memory or composite scores of executive functions
(Fjell et al., 2014b; Möller et al., 2016; Sala-Llonch et al.,
2017) and second, the above-mentioned studies included less
or no covariates. Thus, when correcting for major confounding
effects, cortical thickness changes were not related to cognitive
performance changes over time. This is also well in line with
the idea that in healthy older adults, correlations between
changes in brain structure and simultaneous changes in
cognitive performance are expectedly small and accompanied
by high amounts of variability due to potential compensation
mechanisms (Oschwald et al., 2019).

Methodological Considerations
The current study assessing longitudinal changes in brain
structure has several advantages as well as limitations that
we would like to address. With respect to the brain metric
used in the current study, we chose cortical thickness, since it
represents a prominent brain metric that seems to be sensitive
to the aging process. However, it should also be mentioned that
other metrics might be useful when comparing effects of aging,
i.e., brain volume or gray matter density (Jäncke et al., 2019).
Also, future studies may adopt Deformation-Field Morphometry
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methods, such as Tensor-based morphometry (TBM), in order to
compute longitudinal change in structural MRI data (Hua et al.,
2008). Furthermore, with regard to the atlas used in the current
study, i.e., Desikan-Killiany atlas, it needs to be stressed that
other atlases might be more sensitive to functionally dependent
changes in brain structure, such as the cytoarchitectonic Juelich
Brain Atlas (Amunts et al., 2020) or functionally derived brain
parcellations (Schaefer et al., 2018). In addition, future studies
should also investigate longitudinal changes in brain structure
and function with samples that are matched not only for age and
gender, but also education or cognitive abilities. In the current
study, we showed that covariates, such as age and education
might explain small parts of the changes seen over time. Future
studies should elaborate on these influencing factors to explore
intra-individual aging processes.

CONCLUSION

Taken together, the current study showed that age-related
changes in cortical thickness are relatively small, when adjusting
for the most common influencing factors. This effect was seen
in both independent studies, suggesting that general patterns
of longitudinal changes in brain structure may be generalizable
if the same methods are used and similar study populations
with similar age and sex distributions are selected. However,
fine-grained change patterns differ and the question whether
results can be generalized over different samples cannot easily
be answered because of the between-study differences regarding
demographics (e.g., age ranges and education) or methodology
(e.g., time intervals, different brain metrics, and such as brain
volume versus cortical thickness). Furthermore, differences in
covariates often hamper the extraction of generalizable age trends
in different samples. With our study, we contribute to the field by
showing that patterns of age-related changes in brain structure in
two independent cohorts of older adults are highly similar when
using the same methodological approach.
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