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The quality of arm movements typically improves in the sub-acute phase of stroke
affecting the upper extremity. Here, we used whole arm kinematic analysis during
reaching movements to distinguish whether these improvements are due to true
recovery or to compensation. Fifty-three participants with post-acute stroke performed
∼80 reaching movement tests during 4 weeks of training with the ArmeoSpring
exoskeleton. All participants showed improvements in end-effector performance, as
measured by movement smoothness. Four ArmeoSpring angles, shoulder horizontal
(SH) rotation, shoulder elevation (SE), elbow rotation, and forearm rotation, were
recorded and analyzed. We first characterized healthy joint coordination patterns by
performing a sparse principal component analysis on these four joint velocities recorded
during reaching tests performed by young control participants. We found that two
dominant joint correlations [SH with elbow rotation and SE with forearm rotation]
explained over 95% of variance of joint velocity data. We identified two clusters of
stroke participants by comparing the evolution of these two correlations in all tests.
In the “Recoverer” cluster (N = 19), both joint correlations converged toward the
respective correlations for control participants. Thus, Recoverers relearned how to
generate smooth end-effector movements while developing joint movement patterns
similar to those of control participants. In the “Compensator” cluster (N = 34), at
least one of the two joint correlations diverged from the corresponding correlation of
control participants. Compensators relearned how to generate smooth end-effector
movements by discovering various new compensatory movement patterns dissimilar to
those of control participants. New compensatory patterns included atypical decoupling
of the SE and forearm joints, and atypical coupling of the SH rotation and elbow joints.
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There was no difference in clinical impairment level between the two groups either
at the onset or at the end of training as assessed with the Upper Extremity Fugl-
Meyer scale. However, at the start of training, the Recoverers showed significantly
faster improvements in end-effector movement smoothness than the Compensators.
Our analysis can be used to inform neurorehabilitation clinicians on how to provide
movement feedback during practice and suggest avenues for refining exoskeleton robot
therapy to reduce compensatory patterns.

Keywords: motor recovery, motor compensation, stroke, joint synergy, upper limb, neurorehabilitation,
movement analysis

INTRODUCTION

Individuals with stroke-induced loss of sensorimotor
functionality in the upper extremity often experience some
degree of improvements in the 6-month period after stroke. Such
improvements have been observed in motor impairment (Broeks
et al., 1999; Duncan et al., 2000), in motor function (Wolf
et al., 2001; Yozbatiran et al., 2008; Kitago et al., 2013; Winstein
et al., 2016), and in measures of end-point kinematics, such as
movement smoothness, speed, or range (Rohrer et al., 2002; Van
Dokkum et al., 2014; Leinenga et al., 2016; Schweighofer et al.,
2018). Improvements in function and end-point kinematics can
be due to true recovery, defined here as the ability to perform
movements in the same manner as they were done before injury,
or due to compensation, which occurs when the movements are
performed in a new manner using alternate movement patterns,
or both (Levin et al., 2009; Jones, 2017). Indeed, individuals
post-stroke often learn to develop compensatory strategies
during upper extremity movements, such as leaning forward
(Roby-Brami et al., 2003; Bakhti et al., 2017) or elevating the
shoulder or the elbow (Steenbergen et al., 2000).

In previous work with individuals in the sub-acute phase post-
stroke (Schweighofer et al., 2018), we studied the changes in end-
point smoothness of reaching movements in 3D space during
4 weeks of training with the redundant ArmeoSpring exoskeleton
(Hocoma, Inc). We showed that changes in smoothness followed
an initial fast phase, which we attributed to learning to control the
device, and a slower phase that strongly correlated with reduction
in overall upper extremity impairment, as measured by the Upper
Extremity Fugl Meyer assessment (UEFM) (Fugl-Meyer et al.,
1975). However, because the ArmeoSpring is a redundant system
with more degrees of freedom (DOF) than those of the end-
effector in external space, it was unclear to what extent these fast
and slow improvements in end-point kinematics were due to true
recovery or to compensation.

A possibility to study true recovery in arm movements
is to limit reaching movements to the horizontal plane,
while allowing only shoulder horizontal (SH) rotation and
elbow rotation and constraining trunk movements. In this
case, the arm is not redundant and no compensation is
possible: only a single possible joint coordination pattern
can be used to perform a desired movement in task space.
Improvements in performance observed with this method can
therefore be attributed to true recovery (Cortes et al., 2017).

In particular, planar movements can be used to study the
change in atypical joint couplings post-stroke, or “atypical
synergies” (Fugl-Meyer et al., 1975; Reisman and Scholz, 2003;
Ellis et al., 2005), between SH rotation and elbow rotation
(Dipietro et al., 2007). During the initial recovery stage, patients
typically lose independent joint control (Dewald et al., 1995).
Later, they can move in any direction by regaining more
independent control of joints (Brunnstrom, 1970). Using planar
2D movements, Dipietro et al. (2007) showed that an initial
strong atypical coupling between horizontal shoulder rotation
and elbow flexion/extension at inclusion decreased following
robotic training.

To study compensation, we need to analyze the joint patterns
made with a redundant arm. For instance, assuming that
arm movements in 3D space made with the ArmeoSpring
exoskeleton are restricted at the wrist, scapula, and trunk,
there are four DOFs, and therefore one extra DOF: (i): arm
flexion/extension; (ii) arm adduction/abduction; (iii) arm
internal(medial)/external(lateral) rotation; and (iv) elbow
flexion/extension (Maciejasz et al., 2014). Whereas the healthy
motor system makes use of this redundancy to adjust joint
coordination to optimize movements (Todorov and Jordan,
2002), the redundancy allows individual post-stroke to
accomplish the reaching tasks despite the atypical synergies
by recruiting other joints. Comparison of the changes in joint
patterns during reaching between non-disabled controls and
individuals post-stroke can thus shed light on compensation
vs. true recovery.

Here, we therefore dissociated true recovery from
compensations by analyzing both end-effector and joint
kinematic data from a sub-group of participants who received
4 weeks of training with the ArmeoSpring, with two sessions
per day. We examined data from ∼80 arm reaching tests, one
before and one after each training session. In addition, we
tested a group of 11 control participants who took part in 10
training sessions over 1 week, with 20 tests. We compared
the evolution of joint coupling patterns over time for the
stroke participants to the corresponding patterns for the
control participants at the end of training. We hypothesized
that we would identify two clusters of stroke participants:
Recoverers, with joint coupling patterns that converge toward
those of the control participants, and Compensators, with
at least one joint coupling pattern that deviates from those
of the controls.
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MATERIALS AND METHODS

Participants
We examined arm kinematic data obtained from a sub-cohort
of participants from the experimental group of the REM-AVC
clinical trial (NCT01383512), a multi-center RCT of mechanized
arm therapy post-stroke (Rémy-Néris et al., 2021). The goal
of this RCT was to evaluate the medico-economic benefits
in post-acute stroke of 4 weeks of standard care and motor
arm therapy with ArmeoSpring vs. standard care and self-
rehabilitation. The inclusion criterion for the RCT were: age
between 18 and 81 years, diagnosis of hemorrhagic or ischemic
stroke 3 weeks to 3 months prior to inclusion, and a UEFM
score between 10 and 40 points. Exclusion criteria included
(1) pain in the affected shoulder >3/10 on a visual analog
scale (VAS), (2) a Boston Diagnostic Aphasia Examination
(BDAE) score ≤ 3 points, (3) fatigue or visual impairment
that would prevent participation in an additional daily hour
of therapy, and (4) incapability to sit independently. For the
present study, we had access to ArmeoSpring kinematic data
and to clinical data of 53 participants with a single stroke
in the territory of the middle cerebral artery (MCA) (30
males, 19 females, 4 gender not available; 59.3 ± 13.9 years
old; baseline UEFM 24.7 ± 9.1, final UEFM 37.2 ± 15.1,
days since stroke 56 ± 21 days – all reported values are
mean ± SD). UEFM scores, which were unavailable for
three participants, were measured by trained physical or
occupational therapists.

In REM-AVC, the participants were scheduled to receive
training with the more affected arm on the ArmeoSpring,
twice/day, 5 days/week, for a total of 40 sessions over a
period of 4 weeks. Each training session lasted 30 min.
A session consisted of several different video games (selected
by the therapist and the patient in each session), and the
ArmeoSpring vertical reaching tests “Ladybug” test (Figure 1A;
see below for details) given at the beginning and at the
end of each session, for a scheduled total of 80 tests
(4 weeks × 5 days × 2 sessions × 2 tests). During these
tests, joint and end-effector kinematics (see below) were
recorded. We also analyzed the changes in UEFM from the
week before training (initial UEFM) to the week following
training (final UEFM).

In addition, to quantify normative reaching performance
in both task and joint space, we recruited 11 young non-
disabled participants (four females, 23.5 ± 2.0 years) as a
control group for this study. These participants performed
10 video-game training sessions for 5 days. As with stroke
participants, Ladybugs performance tests were also given
before and after each training session (thus, for a total of
5× 2× 2 = 20 tests).

The part of the study including participants post-stroke was
approved by the IRB of the University Hospital of Brest (CPP
Ouest 6), Brest, France. The part of the study including non-
disabled participants was approved by the IRB of the University of
Montpellier, France. All participants read and signed an informed
consent for participating in the study.

The ArmeoSpring Device
The ArmeoSpring exoskeleton, based on the T-WREX device
(Sanchez et al., 2006), has six DOF, summarized in Figure 1B.
Two adjustable springs compensate for gravity at the upper arm
and at the forearm, respectively (Cortés et al., 2016). Segment
lengths can be adjusted to adapt to the user’s arm length. Users
must move their arms to actively guide exoskeleton movement
as none of the joints are assisted with motors. The user’s arm
and forearm are attached to the exoskeleton with Velcro straps.
The device records all joint angles and calculates the end-effector
location in real-time through the exoskeleton’s forward kinematic
model (developed by Hocoma, Inc.).

We note here that while there are similarities between
ArmeoSpring DOFs and anatomical DOFs of the human arm,
they are not identical. SH rotation in the device corresponds
to anatomical shoulder adduction-abduction. Shoulder elevation
(SE) on the device corresponds to anatomical shoulder flexion-
extension. Elbow rotation on the device corresponds to
anatomical elbow flexion-extension. However, forearm rotation
on the ArmeoSpring is a combination of anatomical elbow
flexion/extension, elbow pronation/supination and shoulder
rotation. Finally, wrist rotation and wrist pronation/supination
correspond to human movements. The ArmeoSpring joint
rotations are demonstrated in Figure 1C.

Exoskeleton Kinematic Testing
The Ladybug test (developed by Hocoma) is a two-dimensional
pointing task in the frontal plane. Users were instructed to
perform fast and accurate pointing movements to catch Ladybug
targets that appeared sequentially on the screen by moving the
cursor to target locations. The position of the cursor on the 2D
screen depended on the position of the ArmeoSpring end-effector
in the vertical plane. The sequence of target locations was fixed
in each test. The user had to catch the Ladybug under a time-
constraint (<10 s). Once a Ladybug was caught or the time limit
was reached, the Ladybug disappeared, and the next Ladybug
appeared at a new screen-location. The test had four possible
difficulty levels, modulated both by the number of targets and by
the workspace size. Each test session was separated into trials to
parse out movement trajectories between consecutive targets. For
participants in the stroke group, the therapist adjusted the test
difficulty based on the participant’s performance and motivation.
If a participant could catch more than 90% of the lady bugs
in two consecutive sessions, then the therapist would increase
the difficulty level. If the participant did not maintain this 90%
success rate, the difficulty level was decreased. In the control
group, difficulty was set to the highest level. Note that this
study only analyzed end-effector trajectory and joint angle data
from the Ladybug tests, but not from the training games in
between the tests.

Movement Data Processing
We used a second-order low-pass Butterworth filter
(Butterworth, 1930) to filter the raw data (end-effector trajectory
and joint angle trajectories) with a cutoff frequency of 5 Hz.
We calculated end-effector velocities for each session by finding
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FIGURE 1 | The ArmeoSpring device (A) Participant performing the Ladybug test. (B) The ArmeoSpring exoskeleton with the six possible angles. Note that in our
study, movements in the wrist and pronation/supination joints were either immobilized or negligible and were therefore not analyzed. See text. (C) Illustration of
angles demonstrating movements of the four different exoskeleton joints used in the analysis.

the derivatives of the end-effector displacement trajectories.
We then calculated the number of peaks in the end-effector
tangential velocity profiles for each trial. A peak was defined at
any point where the velocity value was higher than the previous
time-point and higher than the next time-point. End-effector
performance in each test was assessed by the mean number of
peaks using all trials in the test. We also measured smoothness
in arm movements using a more robust metric, the spectral
arc-length, which has been proposed as an alternative method
to evaluate task space performance (Balasubramanian et al.,
2012). We found that the mean number of peaks per trial and the
mean spectral arc-length metric per trial were highly correlated
in the stroke participant (r = −0.91). Thus, we reported the
mean number of peaks to be consistent with our previous study
(Schweighofer et al., 2018) (Note that task-space results slightly
differ between this current study and this previous study because
here we selected all trials, not only the successful trials).

We calculated the angular velocities across six joint angles
by finding the derivatives of the respective joint angular
displacements. We removed data from the first trial for
every session because this trial often showed unrealistic high
velocities caused by initial adjustment of cursor position at
the beginning of sessions. We further removed data from
337 trials out of a total of 100,422 trials (0.3%) in which
recording errors led to any of the following issues: the maximum
angular velocities for any joint being higher than 10 rad/s
at any point in a trial; the maximum angular velocities for
any joint being less than 0.01 rad/s throughout a whole
trial; or a trial lasting longer than 20 s. When more than
half the data were removed for a session, we treated the
session as a missing data-point for any further analysis.

Nineteen out of a total of 3916 sessions (0.5%) were removed
for this reason.

We analyzed angular velocity data instead of angular
displacement data to remove any differences in starting
positions across sessions from our analysis. Based on our
visual observations of the participants performing the task,
we suspected a negligible contribution of wrist movements
to the overall movements. Indeed, the mean variance across
the participants post-stroke for the angular velocities for the
wrist and pronation/supination joints were much smaller than
that of any of the other joints by a factor of at least 8. The
mean session variance for angular velocities of the wrist and
pronation/supination joints were 0.00163 and 0.00917 (rad/s)2,
respectively, whereas the minimum mean session variances for
any of the other joints were 0.0426 (rad/s)2. We therefore
analyzed velocity data from four ArmeoSpring joints: SH
rotation, SE rotation, Forearm rotation, and Elbow rotation.

Sparse Principal Component Analysis of
Joint Velocities of Control Participants
We then determined “healthy” normative joint coordination
patterns by performing sparse principal component analysis
(SPCA) on the four joint velocities concatenated from the last
four test sessions performed by the young control participants
(Zou et al., 2006). Previous studies have used Principal
Component Analysis (PCA) for analysis of joint kinematics
(Reisman and Scholz, 2003; Crocher et al., 2012; Van Kordelaar
et al., 2012). SPCA is a variation of this method which allows
for better interpretability for the principal components (PCs), as
SPCA sets the weights of the joint velocities with small variance
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to be zero. Such a parsimonious model is obtained via a sparsity
promoting regularizer.

Specifically, we pooled the velocity data from the last four
sessions for each control participant (comprising all test data
from their last day of training) and performed SPCA on the
pooled joint angular velocities. Before performing SPCA, we
scaled the joint velocities to unit variance to ensure joints with
varying magnitudes of mean angular velocities were equally
influential in determining PCs. We retained the number of PCs
necessary to account for more than 90% of the variance in
the pooled data. We then determined patterns of coordinated
movements from the PC weights by observing which joint
correlations explained the variance in the retained PCs. Joint
velocities with weights of the same sign in a PC indicated that
positively correlated velocities across these joints accounted for
the variation explained by that PC. Joint velocities with weights
of opposite signs in a PC indicated the same for negatively
correlated velocities across those joints. For this analysis, we used
the SPCA function in R (version 4.0.2) from the “sparsepca”
package, which uses a combination of lasso (L1) and ridge (L2)
regression (Erichson et al., 2020).

Determining the Correlations of Interest
Based on Sparse Principal Component
Analysis
We examined the PC weights for all control participants
and identified the SH-Elbow and SE-Forearm correlations as
the two correlations of interest (see section “Results”). We
therefore computed these two correlations of interest in the
stroke group in each test using all the joint kinematic data.
The Fisher z-transform was applied to distributions for both
correlations to normalize the distributions. For the control
group data, we then extracted 99% confidence intervals for each
z-transformed distribution and defined these intervals as the
respective control correlation ranges. Correlations within these
ranges were defined as healthy joint coordination patterns. We
defined any correlations outside these ranges as atypical joint
coordination patterns.

Nonlinear Mixed-Effects Models of
Correlations of Interest and End-Effector
Smoothness
We then modeled the changes in joint space performance
(as measured by the z-transformed correlations of interest)
and in end-point performance (as measured by movement
smoothness) across test sessions for the participants in the
stroke group via exponential mixed-effects models. We have
previously shown that such mixed-effects models can account for
the high variability across participants in performance, change in
performance, and in responsiveness to therapy post-stroke (Park
et al., 2016; Schweighofer et al., 2018).

Each correlations of interest was modeled with:

P (i; j) =

(
A i × e−

j
τi

)
+ D i + εi,j,

where P (i; j) is the estimated correlation for each participant
(i = 1: 53) and each test session (j = 1: N, with N maximum = 86),
A i the approximate change in performance over the course
of training for each participant, Di the asymptotic value of
performance reached at the end of training, τi the time constant
for the participant’s rate of change, and εi,j is a normally
distributed noise term. P(i; j), Ai, and Di were expressed in units
of z-transformed correlations, and τi was expressed in units of
sessions and were all assumed to be normally distributed to
reflect the inter-subject variability. The initial performance was
estimated by Ai + Di.

We then modeled the change in the mean number of velocity
peaks per trial for each session, using a double-exponential
mixed effect model, as in our previous work (Schweighofer et al.,
2018). In this model, the first exponential corresponds to a
fast component, and second exponential to a slow component.
Both joint and end-effector performance mixed models were
fitted using the “nlmefitsa” function in MATLAB 2020a,
which estimates the parameters using a stochastic Expectation-
Maximization algorithm. We used Root Mean Square Error
(RMSE) to measure the goodness of fit.

Examining Change in Task Space
Performance
Based on our previous study (Schweighofer et al., 2018), we
expected that all stroke participants improved their task space
performance over the 4 weeks of training. To confirm this,
we performed two-sample unequal variances t-test between the
initial and final values for the number of peaks per trial for
all participants.

Clustering Recoverers and
Compensators
In contrast to task space performance, which was expected to
improve for all participants, we hypothesized that changes in joint
space performance would vary across participants. We clustered
participants as “Recoverers” or “Compensators” based on the
definition of true recovery: If over the 1 month of training
both correlations of interests converged towards the mean
correlations of the control subjects, we classified the participant
as a “Recoverer.” In contrast, if at least one of the two correlations
of interest deviated away from its respective control mean, we
classified the participant as a “Compensator.” Specifically, for
each participant, and both correlations of interest, we compared
the difference between the fitted correlation and the control mean
correlation at the end of training to the difference in the first
trial. If there was a decrease in this difference, there was an
improvement in the joint space during training. If a participant
showed such improvements for both correlations of interest,
we classified this participant as a Recoverer, with recovery in
both task space and joint space. Alternatively, if at least one
correlation of interest deviated away from its respective control
correlation mean, we classified the participant as a Compensator,
as the participant developed increasingly more atypical joint
coupling(s) during training while still recovering in task space.
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FIGURE 2 | Representative performance for one individual in the control group (left panels) and for one individual in the stroke group (right panels) for the same trial.
The first row (A,E) illustrates the trajectories of the cursor on the screen from t1: starting point to t2: end point. The second row (B,F) illustrates the corresponding
end-effector velocity profiles; the triangles indicate the velocity peaks. The last two rows (C,G) and (D,H) show the corresponding joint velocity profiles. Note the
longer movement duration and the less smooth performance for the participant with stroke, in both end-effector space and joint space.

We then examined whether there were further differences
between the two clusters (Recoverer and Compensator)
by performing two-sample unequal variances t-tests for
the following measures: initial UEFM score, final UEFM
score, UEFM score change between pre- and immediately
post-training, overall change in the mean number of
peaks estimated from the double exponential fits, and
time constants of the fast and slow components from
the double exponential fits to the number of peaks. We
checked normality using the Shapiro–Wilk normality test.
If any of the measures was not normally distributed, we
first log-transformed the distributions for both clusters.
Normally distributed data were expressed as mean ± SD
of the corresponding mean. Non-normally distributed
data were expressed as median with interquartile range
(IQR) (25% IQR, 75% IQR). Significance was set at the
p < 0.05 level.

RESULTS

Figure 2 shows examples of hand paths during similar trials,
and corresponding velocity profiles in both task space (cursor
velocity) and joint space (joint angular velocities) for a control
group participant and for a participant with stroke (UEFM
baseline = 34). Note that the control participant’s cursor trajectory
was closer to being a straight line, and the velocity profiles
showed fewer velocity peaks and were smoother than those for
the stroke participant.

Improvements in End-Effector
Smoothness
Stroke participants completed a mean of 74 ± 13 test
sessions (range of 33–86) and 36% of them performed at
least the scheduled 80 tests. All participants in the control
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FIGURE 3 | Representative evolution of the mean number of velocity peaks per trial during test sessions during training for six stroke participants. The red line
represents the summed effects of fast and slow components in a double exponential mixed effect model. The black line represents the effect of the slow component
for each individual. Note that the distinction between (A) Recoverers and (B) Compensators was made based on the analysis of changes in joint correlations (see
text).

FIGURE 4 | Results of the Sparse Principal Component Analysis (SPCA) for control participants. From left to right: weights from PCs 1, 2, 3, and variance accounted
for by each PC (mean ± SE). We performed SPCA on each control participant, using the joint velocity data from the last four testing sessions (see text). Note how
covariation of either the Forearm and SE joints (PC1) or of the Elbow and SH joints (PC2 and PC3) explain over 90% of the variance of the data.

group completed 20 test sessions. Figure 3 shows the mean
number of velocity peaks per trial in each test and the
double exponential model fits for six representative stroke

participants (all participants’ data and model fits are in
Supplementary Figure 1). The mean number of velocity peaks
per trial improved for all participants post-stroke, with a decrease
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FIGURE 5 | Representative evolution of the horizontal and vertical synergies, as defined by correlations in joint velocities, during Ladybug tests during 4 weeks of
training; same post-stroke participants as in Figure 3. (A) Recoverers improved for both correlations, which were closer to the respective mean correlations in the
control participants toward the end of training compared to the beginning of training. (B) Compensators deviated further from the respective correlation values for
control participants for at least one of the correlations. The red dots represent the z-transformed SH-Elbow joint correlation; the blue dots represent the
z-transformed SE-Forearm joint correlations. The black curves represent model fits. The blue shaded and red shaded areas represent the 99% CI range for the
z-transformed SE-Forearm and SH-Elbow correlations, respectively, for control participants. The dashed black lines represent the mean values for the correlations for
control participants.

of 4.90 ± 2.41 peaks on average (as assessed by the model fit;
two-sample unequal variances t-test [t(86) = 9.2, p < 0.0001]).
Consistent with our previous study, the slow component was
approximately linear, while the fast component decayed much
faster (Schweighofer et al., 2018). The slow component had a
median time constant of 222 tests (IQR = 153, 493) and the fast
component a median time constant of 5.7 tests (IQR = 2.0, 11).

Sparse Principal Component Analysis of
the Control Participants
Sparse principal component analysis was performed on pooled
velocity data from the last four tests [last day of training
from each control participant (see section “Materials and
Methods” and Figure 4)]. PC1 explained 51.8 ± 4.3% of
the variance, PC2 explained 29.4 ± 4.5% of the variance,

and PC3 accounted for 15.9 ± 4.5% of the variance. PCs
1, 2, 3 explained more than 95% of the variance in joint
velocities. The mean values of PC weights showed that
PC1 was explained by positively correlated velocities in the
Forearm and SE joints. PC2 was explained by positively
correlated velocities of the SH and Elbow joints. In contrast,
PC3 was explained by negatively correlated velocities of the
SH and Elbow joints. In terms of anatomical movements,
PC1 mostly corresponded to correlated velocities of shoulder
flexion/extension with elbow flexion/extension for end-effector
movement in the vertical plane. PCs 2 and 3 corresponded to
correlated velocities of shoulder horizontal abduction/adduction
and elbow flexion/extension for end-effector movement in the
horizontal plane. The SE-Forearm correlation was therefore
defined as the vertical synergy and the SH-Elbow correlation was
defined as the horizontal synergy.
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FIGURE 6 | Histograms of evolution of the horizontal and vertical synergies, as defined by correlations in joint velocities, over training for the recovers and the three
sub-clusters of compensators. For each panel, the horizontal axis represents the changes in correlation over training, with positive values indicating participants
moving closer to control group synergies (recovery) and negative values indicating moving further away from control group synergies (compensation). The different
patterns of change for the horizontal synergies (right panels) and for the vertical synergies (left panels) results in four possible clusters. (A) Recoverers (N = 19):
improved in both synergies. (B) Vertical compensators (N = 7): improved in horizontal synergy but worsened in vertical synergy. (C) Horizontal compensators
(N = 18): improved in vertical synergy but worsened in horizontal synergy. (D) Worsened in both synergies (N = 9).

The z-transformed SE-Forearm and SH-Elbow correlation
were 1.31 (99% CI = 1.18, 1.44) and 0.15 (99% CI = −0.06, 0.36),
respectively. Z-transformed correlation values of 1.31 and 0.15
correspond to correlation values of 0.86 and 0.15, respectively.
These values indicated that, when performing the Ladybug tests,
the control participants showed strong coupling between SE and
Forearm, i.e., the vertical synergy, while also showing decoupling
between SH and Elbow, i.e., joints whose coupling would account
for the horizontal synergy.

Nonlinear Mixed-Effects Model for Joint
Correlations
Figure 5 shows the z-transformed SE-Forearm and SH-Elbow
correlations for each session and the corresponding mixed-effect
exponential model fits for six participants post-stroke (same
participants as in Figure 3; all participants’ data and model fits are
in Supplementary Figure 2). The models provided overall good
fits to the participants joint (z-transformed) correlation data.
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TABLE 1 | Statistical evaluation of the Recoverer and Compensator clusters.

Recoverer (N = 19) Compensator (N = 34) t df p-Value

Change in SE-Forearm
correlations relative to
control correlation
meana

0.27, IQR = (0.15, 0.4) 0.07, IQR = (−0.13, 0.34)

Change in SH-Elbow
correlations relative to
control correlation
meana

0.15, IQR = (0.081, 0.19) −0.18, IQR = (−0.26, −0.045)

Initial UEFM 26.3 ± 10.3 22.8 ± 8.9 1.2 30 p = 0.240

Final UEFM 40.3 ± 16.4 35.6 ± 14.3 1.03 31 p = 0.310

Changes in UEFMa 14.1 ± 9.3 12.8 ± 9.5 0.47 36 p = 0.639

Change in number of
peaksa,b

5.1, IQR = (4.2, 5.8) 4.7, IQR = (3.2, 6.2) 0.51 49 p = 0.617

Fast componentb 2.8, IQR = (1.3, 5.9) 9.1, IQR = (3.2, 14.3) −3.49 49 p = 0.00105

Slow componentb 200.2, IQR = (142.5, 291.0) 235.4, IQR = (152.8, 493.7) −1.2 38 p = 0.240

aChange refers to change between the beginning and the end of training. b Indicate log transformed before performing unequal variance t-test. Bold text indicates that the
p value was significant for inter-cluster differences.

RMSE was 0.13 (IQR = 0.12, 0.16) for the SE-Forearm correlation
and 0.17 (IQR = 0.14, 0.19) for the SH-Elbow correlation.

Next, we compared the fitted values for SE-Forearm
and SH-Elbow correlations for all stroke participants both
at the beginning and the end of training to the healthy
joint coordination patterns, i.e., the 99% CIs of the control
participants’ correlations. At the beginning of the training,
we found atypical SH-Elbow coupling, i.e., atypical horizontal
synergy, in 38 participants, and atypical SE-Forearm coupling,
i.e., atypical vertical synergy, in all participants except for one
(52 participants). At the end of the training, we found atypical
SH-Elbow coupling in 44 participants, and atypical SE-Forearm
coupling in 47 participants. None of the participants were in
the control correlation ranges for both synergies both at the
beginning and end of training.

Recoverers and Compensator Clustering
We identified two clusters based on whether the participant’s
final fitted correlation values were closer to the control mean at
the end of training than at the beginning. Nineteen participants
were in the Recoverer cluster as they showed improvements
in both the vertical and horizontal synergies (Figure 6A).
In contrast, 34 participants were in the Compensator cluster.
Within the Compensator cluster, we identified three sub-
clusters (Figure 6 and Table 1). The first sub-cluster comprised
seven participants whose SH-Elbow velocity correlation moved
closer to the control mean during training, but their SE-
Forearm velocity correlation deviated further from the control
mean, indicating that they improved in the horizontal synergy
but worsened in the vertical synergy (Figure 6B). The
second sub-cluster comprised 18 participants whose SE-Forearm
velocity correlation moved closer to the control mean during
training, but SH-Elbow velocity correlation deviated further
from the control mean, indicating that they improved in
the vertical synergy but worsened in the horizontal synergy
(Figure 6C). The third sub-cluster comprised nine participants

with both correlations deviated further from the healthy means,
indicating that they worsened in both horizontal and vertical
synergies (Figure 6D).

Figure 7 shows scatter plots of joint velocities for each synergy
for a representative control participant at the last test session,
and for representative Recoverer and Compensator participants
in the first test and in the last test. For the control participant
(Figure 7A), the SH-Elbow correlation was close to 0. The SE-
Forearm correlation was close to 1, indicating that these two
joints were strongly coupled. For the representative Recoverer
(Figure 7B), the SE-Forearm correlation increased from r = 0.37
in the first test to r = 0.80 in the last test, indicating increased
coupling. The SH-Elbow correlation decreased from r =−0.53 in
the first test to r = −0.09 in the last test, indicating decoupling
(Figure 7B). For the representative Compensator (Figure 7C),
the SE-Forearm correlation decreased from r = 0.69 in the first
test to r = 0.27 in the last test, indicating atypical decoupling. The
SH-Elbow correlation decreased from r =−0.29 in the first test to
r =−0.47 in the last test, indicating atypical coupling (Figure 7C).

Finally, we investigated whether the Recoverer and
Compensator clusters showed differences in UEFM scores,
in changes in the number of peaks, in motor learning as
estimated via the fast component in the change number of
peaks, or in reduction in impairment as estimated via the slow
component in the change in the number of peaks (Schweighofer
et al., 2018). There were no significant differences between
the clusters in UEFM score changes [t(36) = 0.47, p = 0.639],
initial UEFM scores [t(30) = 1.199, p = 0.240] and final UEFM
scores [t(31) = 1.033, p = 0.310] (Table 1). However, we found
significant differences in the log-transformed fast time constant
[t(49) = −3.49, p = 0.00105]. The median time constant for
the fast component was much lower for the Recoverers (2.8,
IQR = 1.3, 5.9) than the Compensators (9.1, IQR = 3.2, 14.3),
indicating that the Recoverers learned faster in the task space.
In contrast, there were no significant differences between the
log-transformed slow time constants [t(38) = −1.20, p = 0.240]
or the change in mean number of peaks [t(49) = 0.50, p = 0.617].
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FIGURE 7 | Illustration of changes in correlations from the first test (left panels)
to the last test (right panels) for two representative participants. Each panel is
a scatter plot of the velocities contributing to each synergy (red, horizontal
synergy; blue, vertical synergy). (A) Typical control joint velocities from a
control participant at the end of training: only the velocities contributing to the
vertical synergy are strongly correlated. (B) The horizontal and vertical
synergies of the Recoverer became close to those of the control participant
pattern after training. (C) The horizontal and vertical synergies of the
Compensator deviated further away from those of the control participant after
training.

DISCUSSION

We characterized changes in both end-effector performance
and joint coordination patterns in individuals with post-acute
stroke during 4 weeks of exoskeleton training. By performing
a SPCA on joint velocities of control participants, we identified
two main joint correlations, SH-Elbow and SE-Forearm. We
defined the correlations as the horizontal synergy and vertical
synergy, respectively. We then analyzed changes in these

two correlations for all stroke participants via mixed-effect
exponential models. By comparing the evolution of these
two correlations to the corresponding correlations of control
participants, we identified two clusters of individuals post-
stroke. In the Recoverer cluster (N = 19), both correlations
converged toward the respective mean correlations for control
participants during training. In the Compensator cluster
(N = 34), at least one correlation diverged from the respective
means for control participants. Thus, Recoverers relearned
how to generate smooth end-effector movements while
developing synergies similar to those of control participants.
In contrast, Compensators developed compensatory synergies
dissimilar to those of control participants while still improving
end-point performance. The compensatory patterns were
varied, however, as they included atypical decoupling of
the SE and Forearm joints, and atypical coupling of the SH
and Elbow joints.

However, most stroke participants (51 out of 53), including
most Recovers, did not reach the control correlation ranges
at the end of training. This finding is consistent with
previous studies that found stroke survivors exhibit atypical
joint synergies compared to control participants (Cirstea and
Levin, 2000). Although precise control in the gravity field
remains difficult for people with stroke (Beer et al., 2007),
the majority (37 out of 53) of the participants in our study
developed more typical vertical synergies over the course of
training. However, the horizontal synergy became more atypical
for 27 post-stroke participants even with the counter gravity
assistance of the ArmeoSpring. This atypical coupling of the
SH and the elbow rotation joints is consistent with previous
findings regarding synergy changes in chronic stroke patients
(Dipietro et al., 2007).

There were no significant inter-cluster differences for initial
and final UEFM scores, or UEFM score changes. This
may suggest that while Compensators become as capable of
independent joint control as Recoverers, the former learned to
perform the task by learning new compensatory joint synergies.
Thus, future studies should examine whether stroke participants
who develop atypical compensatory joint synergies retain the
capability of utilizing normal synergies. Additionally, since our
study only included 4 weeks of training/test for early post-
stroke, further extensive studies may be needed to track the
long-term motor recovery for Recoverers and Compensators
and determine if adopting compensatory strategies impair motor
recovery assessed, for example, using UEFM.

As shown in our previous study, the change in the number
of velocity peaks in task space can be modeled with a fast and
slow component, with the fast component attributing to motor
learning for using the exoskeleton (Schweighofer et al., 2018).
Here, we showed that the time constant of the fast component was
significantly smaller for the Recoverers than for Compensators
(p = 0.00105). There were no significant inter-cluster differences
for the slow component time constants (p = 0.240), which highly
correlated with the reduction in impairment (Schweighofer et al.,
2018). These results indicate that the compensators adapted more
slowly to the dynamics of the device. A previous study has
shown that learning a new muscle synergy pattern to perform
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a force-producing task is slower than learning muscle-force
mapping similar to that of natural movement (Berger et al.,
2013). Therefore, the slower learning rate in the task space that
we observed for individuals in the Compensator cluster may be
because compensators needed to form a new mapping between
novel joint couplings and end-effector movement, which slowed
down the motor learning rate in task space.

Limitations
A first limitation of our study was that we did not use a motion
capture system to collect the actual upper-limb kinematics
during the clinical trial, but used a commercially available
exoskeleton. An advantage to this set-up is the simplicity
and reliability of data collection across the multiple sites who
participated in the REM-AVC clinical trial. A disadvantage
is that we recorded, and analyzed, exoskeleton angles, and
there is no clear/direct mapping between these angles and
anatomical angles for all joints. SH and SE were similar
to anatomical shoulder abduction/adduction and shoulder
flexion/extension, respectively, but the Elbow and Forearm
angles were a combination of elbow flexion/extension and
shoulder rotation. However, the exoskeleton joint angles
allowed us to decompose the movements to joint synergies
either aligned with or perpendicular to the gravitational
field. Although the ArmeoSpring counteracted the forces of
gravity, studies on how gravity affects movement synergy could
benefit from our findings on how participants learned to
perform different movements that are usually either affected by
gravitational forces or independent of them (Beer et al., 2007;
Ellis et al., 2009).

A second, and related, limitation is that we used a reaching
test, the Ladybug test, for which the difficulty level was not
constant, but was set for each session by the therapist based on
the participant’s performance. Thus, the number and position of
targets varied within and across the participants. To test whether
difficulty level affects session joint correlations, we identified
all participants (N = 6) who performed the Ladybug tests
with the difficulty sequentially alternating between two difficulty
levels for stretches of ten or more sessions, and performed
linear mixed effect regression analysis between difficulty level
and the two correlations of interest separately (in this analysis,
we did not include participants for whom difficulty gradually
changed since this would be confounded with time since
stroke or motor recovery). We found no significant effects
of difficulty level on the SH-Elbow (p = 0.6) or SE-Forearm
(p = 0.7) correlations. Therefore, we did not adjust the correlation
values by regressing out the effects of session difficulty. An
additional reason for not adjusting correlation values was that
it would remove the interpretability of correlation values, with
corrected correlation values outside the −1 to 1 range lacking
interpretability.

A third limitation is that our synergy and clustering analysis
requires a motion capture system for the whole arm. However,
while a gravity-compensating exoskeleton like the ArmeoSpring
device may not be available to every rehabilitation center, a video-
based motion capture system, including the inexpensive Kinect
or equivalent systems, could be used to perform 3D joint level

analysis in people post-stroke (Huber et al., 2015; Mobini et al.,
2015; Bakhti et al., 2018).

A final limitation is that we compared the movement data
of the stroke participants to those from a group of young
non-disabled controls and not from a group of age-matched
controls. We reasoned that the trajectories at the end of a week
of training for young participants would be close to human
“normative” trajectories. However, such movements may not
be an accurate representation of what individuals post-stroke
would have used prior to brain injury. Indeed, older non-disabled
participants could use motor synergies different from young
non-disabled adults during reaching tasks due to age-related
changes in the neuromuscular system and the brain structure
(Sleimen-Malkoun et al., 2013; Vernooij et al., 2016).

CONCLUSION

To summarize, we found that while all participants with stroke
recovered in the task space, only about a third relearned to move
in joint space using patterns more similar to those of control
participants during a month of kinematic training. These results
are consistent with the proposal that post-stroke individuals
become adept in new compensatory movements by performing
repetitive movements through robotic training without receiving
correction at the joint level (Crocher et al., 2012). The reason
behind the emergence of different compensatory patterns could
be subtle differences in residual force generation in individual
muscles, and muscle weakness that are not detected by the
UEFM (Jonkers et al., 2003; Mccrea et al., 2005). Another
intriguing possibility is that individual differences in exploration
in joint space could result in differences in learning compensatory
movement patterns (Singh et al., 2016). Thus, additional studies
are needed to understand how between-subject variability affects
learning of different compensatory patterns. In any case, our
analysis can be used to inform therapists on whether they should
aim to reduce specific compensatory movements, and if so, what
compensatory movements should be targeted. It can also be used
to inform exoskeleton robots on where and how to add torques
during therapy to affect compensatory patterns, if reduction of
compensatory patterns are desired (Brokaw et al., 2011; Crocher
et al., 2012).
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