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Recent advances in neuroscience indicate that analysis of bio-signals such as rest

state electroencephalogram (EEG) and eye-tracking data can provide more reliable

evaluation of children autism spectrum disorder (ASD) than traditional methods of

behavior measurement relying on scales do. However, the effectiveness of the new

approaches still lags behind the increasing requirement in clinical or educational practices

as the “bio-marker” information carried by the bio-signal of a single-modality is likely

insufficient or distorted. This study proposes an approach to joint analysis of EEG and

eye-tracking for children ASD evaluation. The approach focuses on deep fusion of the

features in two modalities as no explicit correlations between the original bio-signals are

available, which also limits the performance of existing methods along this direction.

First, the synchronization measures, information entropy, and time-frequency features of

the multi-channel EEG are derived. Then a random forest applies to the eye-tracking

recordings of the same subjects to single out the most significant features. A graph

convolutional network (GCN) model then naturally fuses the two group of features

to differentiate the children with ASD from the typically developed (TD) subjects.

Experiments have been carried out on the two types of the bio-signals collected from

42 children (21 ASD and 21 TD subjects, 3–6 years old). The results indicate that (1)

the proposed approach can achieve an accuracy of 95% in ASD detection, and (2)

strong correlations exist between the two bio-signals collected even asynchronously,

in particular the EEG synchronization against the face related/joint attentions in terms

of covariance.

Keywords: autism spectrum disorder, EEG, eye-tracking, multi-modality fusion, graph convolution network

1. INTRODUCTION

Autism spectrum disorder (ASD) is an early-onset neurodevelopmental disorder characterized
by the impairments in social communication and repetitive behaviors (Lord et al., 2020), which
severely affects the daily activities of children and occurs with an increasing trend year by
year (Zwaigenbaum and Penner, 2018). In order to cater to the needs of the growing population of
children with ASD, the early screening/assessment acts as a critical strategy to find effective solution
to ensure that children with ASD and their families receive the imperative attention and achieve
systematically optimal treatment process (Zwaigenbaum et al., 2015), e.g., behavior measurement
(Bosl et al., 2018).
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Recent advances in neuroscience indicate that analysis of
bio-signals such as rest state electroencephalogram (EEG) and
eye-tracking data can provide more reliable evaluation of
children ASD than traditional methods of behavior measurement
relying on scales do. Typically, EEG measurement has applied
in monitoring atypical brain development and the extracted
EEG features have acted as effective early biomarkers to
distinguish children with ASD from those with typically
developing (TD) (Bosl et al., 2011, 2018). Later, as the
characteristics of children with ASD are mainly manifested in
the impairment of directional attention and joint attention to
eye gaze (Mundy and Newell, 2007), eye-tracking technology
can well measure those behavioral changes in early attention
in children with ASD (Wadhera and Kakkar, 2019), such
as eye movements and responses to verbal and non-verbal
cues (Duchowski, 2003).

In this paradigm, existing methods on children ASD
evaluation through bio-signal analysis fall into two categories,
i.e., single-modality analysis andmulti-modality fusion analysis:

• Single-modality analysis directly operates on single data
source (EEG or eye-tracking recordings). Specifically,
EEG-based methods routinely apply power spectrum
analysis (Coben et al., 2008), functional connectivity
analysis (Peters et al., 2013), and those based on information
theory (Hadoush et al., 2019; Zhang et al., 2020), while eye-
tracking recordings are conventionally processed by statistical
analysis (Fadi Thabtah, 2013) or machine learning-based
methods (Carette et al., 2019) to characterize the critical
biological ASD features. Then the extracted features are
individually fed into classifier like support vector machines
(SVM) (Bi et al., 2018) and decision tree (Thabtah and
Peebles, 2020) for ASD detection. However, the effectiveness
of the single-modality analysis may largely lag behind the
increasing requirement in clinical or educational practices as
the “bio-marker” information carried by the bio-signal of a
single-modality is likely insufficient or distorted;

• Multi-modality fusion analysis aims to investigate bio-
signals from multiple sources and theoretically enables
to capture more abundant biological information to
achieve the advantageous results over the single-modality
counterpart (Zhang et al., 2021). Taking ASD evaluation
via joint analysis of EEG & eye-tracking recordings for
instance, studies have shown that eye-tracking recordings
have strong correlation with EEG acquisitions making
it possible for the comprehensive analysis between
the behavioral characteristics (eye-tracking) and the
brain dynamics (EEG) (Elison et al., 2013). Along this
direction, existing methods mainly rely on feature-level
fusion (Thapaliya et al., 2018) or decision-level fusion (Kang
et al., 2020) to support the joint analysis. Nevertheless, these
simple kinds of fusion strategies may not make full use
of modality-cross information, thus the performances are
largely limited.

To this end, grand challenge remains to explore the relationship
between EEG and eye-tracking recordings and support the joint
ASD detection with high performance.

To address the above issues, this study proposes an approach
to joint analysis of EEG and eye-tracking for children ASD
evaluation (section 3). The approach focuses on deep fusion
of the features in two modalities as no explicit correlations
between the original bio-signals are available, which also limits
the performance of existing methods along this direction. First,
the synchronization measures, information entropy, and time-
frequency features of the multi-channel EEG are derived. Then,
a random forest applies to the eye-tracking recordings of the
same subjects to single out the most significant features. A graph
convolutional network (GCN)model then naturally fuses the two
group of features to differentiate the children with ASD from the
typically developed (TD) subjects.

Experiments have been carried out on the two types of the bio-
signals collected from 42 children (21 ASD and 21 TD subjects,
3–6 years old) (section 4) to evaluate the performance of the
proposed approach in ASD detection and relationship discovery
between the two bio-signals, e.g., EEG synchronization and the
face-related/joint attentions.

To summarize, the main contributions of this study are
as follows:

1. This study proposes a novel children ASD evaluation
approach via joint analysis of EEG and eye-tracking
recordings using graph convolution network with superior
performance achieved. The solution holds potentials in the
applications when concerning fusingmuchmore data sources.

2. This study highlights the functional relationship between
EEG and eye-tracking recordings, where strong correlation
is discovered between the two bio-signals even collected
asynchronously, especially for face-related/joint EEG
synchronous attention covariance.

2. RELATED WORK

This section introduces the most salient work closely related to
this study from the prospective of ASD detection and exploratory
relationship discovery between eye-tracking and EEG recordings.

2.1. ASD Detection
Existing methods concerning children ASD detection focus on
(1) single-modality EEG analysis and (2) multi-modality EEG &
eye-tracking fusion analysis. The most salient works along this
direction are recapped as the follows.

2.1.1. Single-Modality EEG Analysis
Kang et al. proposed amulti-feature fusionmethod using EEG for
ASD detection (Kang et al., 2018). The method first computed
power spectrum, bicoherence, entropy, and coherence features
from EEG signals, then applied the minimum redundancy
maximum correlation (mRMR) algorithm to choose to select the
representative features, which are fed into SVM for classification.
The results showed that the method could achieve 91.38%
accuracy in ASD detection with only nine features.

In Thabtah and Peebles (2020), Thabtah et al. improved
a novel Rules-Machine learning for ASD screening process
along with offering knowledge bases to understand the latent
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ASD mechanism. Empirical results on children EEG indicated
that Rules-Machine learning enabled to offer high classification
performance superior to traditional approaches like boosting,
bagging, and decision trees.

Wan et al. (2019) investigated the fixation times of 37 ASD and
37 TD children when watching a 10-s video of a female speaking.
It was discovered that children with ASD showed significant
reduction in fixation time at six areas of interest (AOI) and the
discriminant analysis revealed that fixation times at the mouth
and body could effectively discriminate ASD one from TD one
with classification accuracy, sensitivity, and specificity of 85.1,
86.5, and 83.8%, respectively.

2.1.2. Multi-Modality EEG and Eye-Tracking Fusion

Analysis
Thapaliya et al. (2018) jointly analyzed EEG and eye-tracking
recordings for children ASD detection, where SVM, deep
neural network, logistic regression, and naive Bayes were,
respectively, used for classification. The results presented that
logistic regression obtained the highest performance than other
classifiers and multi-modality analysis manifested superiority
over the single-modality sone.

Later, Kang et al. (2020) developed a joint analysis framework
to discriminate children with ASD from those with TD using
two-modality data sources (EEG and eye-tracking). In the
framework, power spectrum analysis was utilized to extract EEG
features while the face gaze analysis was applied to characterize
eye-tracking data, then the minimum redundancy maximum
relevance method and SVM were, respectively, employed for
feature selection and classification. The framework achieved
accuracy of 0.85 and AUC of 0.93 in joint ASD detection.

2.2. Exploratory Relationship Discovery
Between Eye-Tracking and EEG
Recordings
Literatures have long discussed that there exists strong
correlation between joint attention (JA) and neural activities
in children with ASD. The most closely research is introduced
as follows.

Studies in Elison et al. (2013) indicated a direct relationship
between increased frontolimbic neural circuit connectivity at 6
months and subsequent Responding to JA (RJA) abilities at 9
months in TD individuals. Later, Billeci et al. integrated EEGwith
eye-tracking recordings to explore the visual patterns of RJA and
the initiation of JA (IJA) (Billeci et al., 2017). It was found that
6-month treatment was accompanied by changes in eye-tracking
measures partially correlated with the EEG features.

Vettori et al. used eye-tracking and EEG recordings with
fast periodic visual stimulation to explore social communication
difficulties in ASD (Vettori et al., 2020). The results illuminated
that there was no interaction between group and stimulus
category for simultaneously recorded eye-tracking data, but eye-
tracking & EEG recordings were strongly correlated.

Lauttia et al. (2019) examined approach-motivation related
brain activity (frontal EEG asymmetry) in response to direct
and averted gaze in 3- to 6-year-old children with ASD, TD,
or intellectual disability (ID). The study found that direct gaze
elicited greater approach-related frontal EEG activity than did

downcast gaze for children with TD. In addition, the response to
eye contact in children might engage active-motivational brain
systems and a pattern of EEG activity repeatedly connected with
approach-related behavioral tendencies.

As a contrast to the above, this study focuses on the
joint analysis of eye-tracking and EEG recordings with the
following considerations: (1) measure the functional connectivity
relationship between EEG and eye-tracking recordings, and (2)
achieve multi-modality fusion between eye-tracking and EEG
features based on Graph theory and support effective ASD
detection task.

3. ASD EVALUATION VIA JOINT ANALYSIS
OF MULTI-MODALITY RECORDINGS

This section details the overall design of the proposed method
as depicted in Figure 1: (1) feature extraction of EEG and eye-
tracking recordings, (2) feature graph construction, and (3) GCN
with multi-modality feature fusion to discriminate children with
ASD or TD.

3.1. Feature Extraction
Extracting the robust and discriminative features is among the
most critical step for general bio-signal analysis (Chen et al.,
2019). This study mainly includes the feature extraction of EEG
and eye-tracking recordings.

Multi-domain features are captured to highlight the
characteristics of EEG signals, e.g., information entropy, time-
frequency analysis, and synchronization analysis. Specifically,
information entropy features are first obtained by measuring
the complexity of the original EEG signal individually along
each channel, e.g., approximate entropy (ApprEn, Meedeniya
et al., 2019), sample entropy (SampEn, Liu et al., 2017),
and permutation entropy (PermEn, Kang et al., 2019).
Then, the original EEG is processed by short-time Fourier
transforms (STFT) to capture the time-frequency representation,
e.g., entropy feature. In addition, in order to measure the
functional connectivity between different brain regions,
Pearson’s correlation coefficient (PCC) is computed
between each pair of EEG channels and later acts as the
channel-domain feature.

Eye-tracking recording can provide more objective and
accurate measurement of attentional patterns (e.g., measuring
duration or latency of attentional engagement with a stimulus
with millisecond-level precision), which is particularly suitable
for those experiencing difficulties with following verbal
instructions and handling complex social and cognitive
demands, such as children with ASD. In this study, eye-tracking
recordingmainly includes testing the difference between children
with ASD and those with TD in the observation of national or
exotic faces, the difference in joint attention, whether there is
gaze following, and difference in social interaction. Hence, the
eye-tracking features include the time when, respectively, fixed
on the face, eyes, body, and so on for the first time, which are
revealed by the AOI (Kang et al., 2020). The time information
like such as total fixation duration on certain AOI is recorded to
quantify each child’s engagement for each AOI, where a 60 ms
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FIGURE 1 | Overall design of the proposed method. The method mainly includes four parts: (1) data preprocessing for EEG data and eye-tracking data separately; (2)

feature extraction; (3) feature graph construction for each sample; (4) graph convolution network for ASD evaluation.

threshold is applied to avoid counting unconscious gazing. Note
that random forest algorithm (Meedeniya et al., 2019) is utilized
to filter out the most significant features.

3.2. Feature Graph Construction
Inspired by the exploratory relationship discovery between eye-
tracking and EEG recordings in section 2.2, this study considers
to fuse EEG features and eye-tracking features and enable joint
ASD analysis under graph theory.

Given EEG features and eye-tracking features of a sample,
an undirected graph can be defined as G = (V , E ,A), where V

represents the set of nodes (V = {vi}
n
i=1, n is the number of

nodes) and E is the set of edges connecting these nodes with
connection relationship (adjacency matrix) denoted as A ∈ R

n×n

(Kipf and Welling, 2016).

3.2.1. Nodes in the Feature Graph
The selected EEG features and eye-tracking features are defined
as nodes of the graph (e.g., information entropy and total fixation
duration on AOI) with corresponding attributes specified as the
values of each group of features, denoted as X = {xi}

n
i=1. The

number of nodes n in each feature graph is totally 14.

3.2.2. Edges in the Feature Graph
The covariance between features is first utilized to measure
the connectivity (edges) between nodes in graph. Then the
binary adjacency matrix A is obtained by a certain threshold
with covariance more than threshold set to 1 otherwise set to
0 [A(i, j) = 1: nodes vi, vj are connected, A(i, j) = 0: nodes vi, vj
are unconnected].

In this way, the constructed feature graph based on EEG
& eye-tracking features is shown in Figure 2, including nodes,
edges, and attribute values on each node.

3.3. GCN for ASD Detection
Graph network model has long been utilized for graph data
processing with irregular connections between nodes in a
graph (Kipf andWelling, 2016). The goal of this model is to learn
amapping function (linear or non-linear) from signals or features
on a graph G = (V , E ,A). Specifically, each graph convolutional
layer can be written as follows:

H(l+1) = f (H(l),A) (1)

where H(0) = X (input) and H(L) = Z (graph-level output) with
the number of layers L.

On the basis of the constructed feature graph in section 3.2,
a GCN model with 2 hidden layers is built to perform ASD
detection, where the features from multi-modality inputs are
implicitly fused. Note that the original feature matrices X are
concatenated sample by sample as X̂ while a sparse block-
diagonal matrix Â is obtained with each block corresponding to
the adjacency matrix A of one graph.

In graph convolution operation, the block-diagonal matrix Â

is first normalized as Ã = D̃− 1
2 ÂD̃− 1

2 , where D̃ denotes the
diagonal degree matrix of Â. The GCN model then takes the
simple form as follows:

Z = f (X,A) = softmax(ÃReLU(ÃXW0)W1), (2)
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FIGURE 2 | The constructed feature graph.

FIGURE 3 | Architecture of our graph convolutional network (GCN) model.

whereW0,W1 are weight matrices. The cross-entropy error acts
as loss function, which is computed over all examples as:

L = −
∑

l∈yL

F∑

f=1

Ylf lnZlf (3)

where yL is the set of node indices that have labels and F denotes
the number of feature maps.

In summary, the overall GCN model for ASD detection is
shown in Figure 3.

4. EXPERIMENTS AND RESULTS

To examine the effectiveness of the proposed approach for
children ASD detection, experiments have been carried out to
(1) evaluate the profit of introducing multiple modality (i.e.,
EEG and eye-tracking recordings) into the classification, and
(2) compare the performance of the proposed method with the
counterparts in ASD detection.

4.1. Data Source
The dataset used in the experiments consists of 42 subjects (21

ASD and 21 TD children) aged between 3 and 6 years. No

statistical differences in age and gender are observed between
ASD and TD groups. At each subject, EEG is recorded lasting for
6 min in a shielded room. A 128-channel HydroCel Sensor Net
System (Electrical Geodesics, Inc.) was used for data recording.
EEG recordings were re-referenced to an ear-linked reference.
The EEG recordings are then filtered into the bands of [0.5, 45]
Hz and sampled at 256 points per second. The ICA approach
is adopted to remove the artifacts in EEG and visual inspection
is performed to reject these segments contaminated seriously
with noise. ICA decomposes observed signal into independent
components (ICs). Once ICs are extracted from original signals,
the clean signal reconstructed by discarding ICs contained
artifacts such as muscle activity, eye movement, and blink
artifacts. With the aid of EEGLAB toolboxes that support ICA-
based artifact removal from EEG, the artifact-corrected EEG
can be achieved. In order to reduce computational overhead, 8
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electrodes (F3,F4,T3,C3,C4,T4,O1,O2) were selected for analysis.
The signals are then divided into segments with length of 4 s
and no overlaps. The eye-tracking recording is recorded after the
EEG recording process by performing about 7 eye-tracking tests
for the subjects with sampling rate of 300 Hz. In this dataset,
eye-tracking data were recorded for 7 tests designed for different
purposes. The purpose of these different experiments mainly
includes testing the differences between children with autism
and normal children in the observation of national or exotic
faces (“Nativeface1,” “Nativeface2,” and “Exoticface”), testing the
differences in joint attention (“Joint Attention”), whether there is
gaze following (“ModJoint1” and “ModJoint2”), and differences
in social interaction (“SocialInteraction”). Before the formal
experiment, a five-point calibration program is performed and
the experiment proceeded after all 5 points are captured with
small error vectors. The children are presented with a series of
photos in sequence. Each type of photo appears 6 times and
lasts for 10 s each time. To explore the child’s engagement with
each AOI, cumulative fixation duration within the selected AOI,
defined as the time spent on that AOI, is analyzed, on which a
threshold of 60 ms is applied to rule out the invalid value caused
by unconscious looking.

4.2. Effectiveness of Multi-Modal
Information
To examine the effectiveness of introducing multi-modal data
for autism assessment, a number of experiments have been
performed to compare the proposed method with the methods
based on single modality. The baselines are constructed to,
respectively, process EEG or eye-tracking data. T-test is first
performed on the features of single modality to check the
difference between ASD and TD. It should be noted that since
the features used in the proposed method are consistent with
the baselines, their T-test results are also the same. The p-value
calculated shows that there existed significant difference between
these two groups of subjects against most of features. The results
of T-test are detailed in Table 1.

From the results of each feature in Table 1, it can be found
that (1) among the EEG features, the mean value feature (time-
domain feature), the approximate entropy feature, and the
wavelet entropy feature have the smallest P-value. This means
that these three features differ the most in children with ASD and
TD, and (2) among the eye-tracking features, ASD children and
TD children have the largest difference in the feature of strange
faces in their home countries, which coincides with previous
studies. Second, there are obvious differences in social interaction
between ASD and TD children, which is consistent with the
existing researches, that is, ASD is characterized by difficulties in
social communication and social interaction as well as repetitive
behaviors and restricted interests (Georgescu et al., 2019). The
proposed method used the adjacency matrix (see Figure 4) to
input of network structure and perform GCN model training,
where the ratio of training set against test samples is 8:2. The
experimental results are shown in Table 2.

As shown in Table 2, the results based on multi-modality data
for autism assessment are significantly better than the results

TABLE 1 | T-tests t-statistic values and corresponding p-value each feature.

Features T-test results (statistic/p-value)

Mean value −22.1978/p < 0.001

STFT 3.7538/p < 0.001

Pearson correlation coefficient −1.5973/p < 0.5

Approximate entropy −6.6065/p < 0.001

Sample entropy −2.6144/p < 0.01

Permutation entropy 0.1979/p < 1

Wavelet entropy −3.8290/p < 0.001

Exotic strange face −2.4775/p < 0.05

Social interaction −2.8989/p < 0.01

Joint attention −0.7883/p < 0.5

Mod joint1 −2.3232/p < 0.05

Mod joint2 −1.6238/p < 0.5

Native strange face1 −3.1576/p < 0.005

Native strange face2 −4.7105/p < 0.001

based on single modality. The more interesting result is that the
results based on eye-tracking recording for autism assessment are
better than those based on EEG recording. There are two possible
reasons: On the one hand, EEG recording records the inner
complex neuron activity, while the eye tracking data records the
outer behavior, so it can portray the behavioral characteristics
of children with ASD and TD more intuitively; On the other
hand, the feature maps corresponding to the two types of multi-
modality data are different, and the feature maps corresponding
to the eye tracking recoding have more connections, so that more
information can be used in model training.

4.3. Evaluation of Overall Performance
Two methods are introduced here to evaluate the overall
performance of the proposed method. The structures are detailed
as follows.

Kang et al. proposes a framework based on feature engineering
for ASD detection (Kang et al., 2018). Features are extracted from
EEG and eye-tracking recordings separately. Specifically, EEG
features are collected by computing relative power of multiple
sub-bands including delta (1–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), beta (13–30 Hz), and gamma (30–45 Hz) bands over
all electrodes are calculated. And for eye-tracking recording,
eight AOI are selected for face photo analysis consisting of
background, body, face, eyes, right eye, left eye, mouth, and nose.
Analysis index is computed to quantify the child’s engagement
for each AOI, which is defined as the percentage of fixation time
in the AOI vs. the total fixation time (fixation time in AOI/total
fixation time). The minimum-redundancy-maximum-relevance
(MRMR) method is then utilized to select proper features. SVM
is employed for final classification.

Deep residual networks, or ResNets for short, are presented
to alleviate the problem that deeper neural networks are more
difficult to train. In this study, ResNet18 is introduced to classify
EEG and eye movement data. At first, features from EEG and
eye-tracking data are cascaded to perform feature-level fusion.
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FIGURE 4 | The constructed adjacency matrix. The blue block means there is a connection between two nodes, and the beige block means there is no connection

between the two nodes.

TABLE 2 | Comparison between the proposed method against the methods

based on electroencephalogram (EEG) or eye-tracking data.

Evaluation metrics Accuracy Precision Recall F1

Method using EEG recording 0.7368 0.7500 0.9231 0.8276

Method using Eye-tracking data 0.7895 0.8000 0.9230 0.8571

Proposed method 0.9500 0.9500 0.9500 0.9500

Subsequently, the fused features are sent to ResNet18 for the
classification of autism. Specifically, the ResNet18 contains 8
Res blocks, where the number of channels is configured as 64-
64-128-128-256-256-512-512. Each Res Block mainly contains
two convolutional layers, so the total number of convolutional
layers is 8 ∗ 2 = 16. A residual module of skip connection is
added between every two neighboring blocks. Finally, the fully
connected layer are following to perform the final classification.
The overall architecture of ResNet18 is shown in Figure 5.

4.3.1. Analysis of T-Test Results
It should be noted that the proposed method and the method
based on ResNet18 have the consistent T-test results as they
shares the same features. The resultant p-value shows that there
exists significant difference between ASD and TD for most of the
selected features. The results of T-test are specifically presented
in Table 1. Similar results can be observed from T-test in Kang
et al. (2018), which are shown in Table 3. Among EEG features,
the p-value of theta and beta band are the smallest, that is,
children with ASD and TD have greater difference in these two
bands. The results are conforming to previous studies, which
demonstrates a reduced increase of theta power (Yeung et al.,

2016) and stronger beta band (Buard et al., 2018) in ASD
children. Among the eye-tracking features, children with ASD
and TD had the largest difference in the two characteristics of
eyes and body, which is also consistent with the existing research
(Falck-Ytter et al., 2013).

4.3.2. Comparison of Overall Performance
Table 4 gives the comparison between the proposed method
with the counterparts discussed above. From the result, it turns
out that the proposed method is superior to Kang et al. (2018)
algorithm in terms of diagnostic performance. By analyzing the
details of the two methods, it can be found that the proposed
method cannot only find the feature relationships between and
within different modalities but also use these relationships to fuse
features from different modalities. Finally, the proposed method
makes good use of the complementary or supportive information
of different modalities, and achieves a higher classification
accuracy (95.00%), while Kang et al. (2018) simply concatenates
the features of different modalities. In addition, the proposed
approach achieves the highest classification precision (0.9500)
compared with the ResNet18-based methods (0.8050). Although
ResNet18 structure has a deeper level, it cannot achieve better
diagnosis performance from the experiment. The possible reason
is that simply and rudely cascading EEG and eye-tracking
recordings cannot make good use of multi-modality information.

4.4. The Explanation of Feature Graph
Edges
In probability theory and statistics, covariance is used to measure
the joint change degree of two random variables. By calculating
the covariance between every two features and performing
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FIGURE 5 | The structure of ResNet18 model.

TABLE 3 | T-tests t-statistic values and corresponding p-value each feature.

Features T-test results(Statistic/p-value)

Delta (1–4 Hz) 2.0912/p < 0.05

Theta (4–8 Hz) 5.9232/p < 0.001

Alpha (8–13 Hz) −2.1672/p < 0.05

Beta (13–30 Hz) −6.1456/p < 0.001

Gamma (30–45 Hz) 1.8713/p < 0.1

Background 2.0025/p < 0.05

Body 2.4132/p < 0.05

Face 1.2096/p < 0.5

Eyes 1.8219/p < 0.1

Right eye 1.3180/p < 0.5

Left eye 2.2252/p < 0.05

Mouth 1.8355/p < 0.1

Nose 2.0168/p < 0.05

TABLE 4 | Experimental results of our method and the compared methods.

Evaluation metrics Accuracy Precision Recall F1

Our method 0.9500 0.9500 0.9500 0.9500

Kang et al., 2018 0.8100 0.8100 0.8100 0.8100

ResNet18 0.7000 0.8050 0.7150 0.6800

threshold processing, the adjacency matrix of the feature map is
obtained, and the visualization is shown in Figure 4.

The following information can be inferred from the
adjacency matrix:

• Within EEG features, not every feature has a correlation
with all of other EEG features. Specifically, mean value is
related to other features except STFT. In addition, STFT is
independent to sample entropy and wavelet since entropy
based features are calculated tomeasure the complexity of time
series while STFT is a localized process in time and frequency
domains. Approximate entropy has nothing to do with sample
entropy. Approximate and sample entropy are both important
indicators to quantify the complexity of time series, but sample

entropy had relative consistency with respect to approximate
entropy. The sample entropy is also not related to sorting
and wavelet entropy. However, in the modal of eye tracking,
features are related to each other from the results.

• Between the two modes, mean value from EEG is related to
all other eye-tracking features, which can be interpreted as the
mean value of EEG related to the fluctuation of eye-tracking
data; STFT is related to the 10th and 12th feature because both
of them represent joint attention features. Synchronization
feature is related to exotic face, the 11th and 12th features
(joint attention, whether there was gaze following), and the
13th feature (native strange face 1). Sample entropy is related
to the 8, 9, 11, 13, and 14th features. That is, entropy-
based features are related to face features, joint attention,
and social interaction features. Sorting entropy is related to
joint attention. Finally, wavelet entropy is related to all other
eye-tracking features except social interaction.

From the above analysis, it can be seen that, the way of
representing the feature as the node and the covariance
among features as the edges can provide a richer intra- and
inter-modality information, so as to perform multi-modality
fusion better.

5. CONCLUSIONS

Aiming at the grand challenges for reliable relationship discovery
between multi-modality data sources and the joint children ASD
auxiliary detection, this study proposes an approach to joint
analysis of EEG and eye-tracking for children ASD evaluation.
The approach focuses on deep fusion of the features in two
modalities as no explicit correlations between the original bio-
signals are available, which also limits the performance of
existing methods along this direction. First, the synchronization
measures, information entropy, and time-frequency features of
the multi-channel EEG are derived. Then a random forest applies
to the eye-tracking recordings of the same subjects to single out
the most significant features. GCNmodel then naturally fuses the
two group of features to differentiate the children with ASD from
the TD subjects.

Experimental results indicate that (1) the proposed approach
can achieve an accuracy of 95% in ASD detection, and (2)
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strong correlations exist between the two bio-signals collected
even asynchronously, in particular the EEG synchronization
against the face related/joint attentions in terms of covariance. In
conclusion, the solution holds potentials in the applications when
concerning fusing much more data sources.
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