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Goal: Brain functional networks (BFNs) constructed using resting-state functional
magnetic resonance imaging (fMRI) have proven to be an effective way to understand
aberrant functional connectivity in autism spectrum disorder (ASD) patients. It is still
challenging to utilize these features as potential biomarkers for discrimination of ASD.
The purpose of this work is to classify ASD and normal controls (NCs) using BFNs
derived from rs-fMRI.

Methods: A deep learning framework was proposed that integrated convolutional
neural network (CNN) and channel-wise attention mechanism to model both intra- and
inter-BFN associations simultaneously for ASD diagnosis. We investigate the effects of
each BFN on performance and performed inter-network connectivity analysis between
each pair of BFNs. We compared the performance of our CNN model with some
state-of-the-art algorithms using functional connectivity features.

Results: We collected 79 ASD patients and 105 NCs from the ABIDE-| dataset.
The mean accuracy of our classification algorithm was 77.74% for classification
of ASD versus NCs.

Conclusion: The proposed model is able to integrate information from multiple BFNs
to improve detection accuracy of ASD.

Significance: These findings suggest that large-scale BFNs is promising to serve as
reliable biomarkers for diagnosis of ASD.

Keywords: autism spectrum disorder, functional MRI, convolutional neural network, brain functional network,
classification

INTRODUCTION

Autism spectrum disorder (ASD) represents a complex developmental disorder characterized by
social deficits and restrictive or repetitive behaviors. Unlike other fields of medicine, psychiatry
disorders lack valid physiological diagnostic criteria based on validated biomarkers (American
Psychiatric Association, 2013). Mostly, ASD is diagnosed by subjective judgment of clinical
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symptoms and behaviors by clinicians. However, these methods
require doctors to have high level of professional knowledge,
and the diagnosis results are susceptible to doctors’ subjectivity.
To find a more objective biomarker for identification of ASD,
many researchers focus on deriving effective biomarkers such
as genetics, epigenetics, body metabolism, and neuroimaging
(Goldani et al., 2014). Neuroimaging is regarded as a promising
non-invasive technique to uncover latent patterns of human
brains. A human brain can be modeled as a complex system with
various regions performing different structures and functions
by using structural magnetic resonance imaging (sMRI),
functional magnetic resonance imaging (fMRI), and positron
emission tomography (PET) et.al. Previous neuroimaging studies
have revealed alternation in both structural and functional
connectivity of the brain among neurological or psychiatric
disease populations (Mueller et al., 2013). Among all kinds of
examination approaches, MR, especially resting state fMRI (rs-
fMRI) recoding the changes of blood oxygen level-dependent
(BOLD) signals, has been widely used for investigating mental
disorders such as Alzheimer’s disease (Qureshi et al., 2019b),
schizophrenia (Yan et al., 2019), and ASD (Abraham et al., 2017).

Functional magnetic resonance imaging data is organized in
a 4-D matrix format with high dimensionality (~1 million)
containing both spatial and temporal information. This makes
it a difficult task to directly utilize the original data as input
for classification algorithms. To address the high dimensionality
of the data, many dimensionality reduction technologies have
been proposed (Abdi and Williams, 2010; Suk et al., 2015;
Soussia and Rekik, 2018). Instead of using original fMRI
data, some have proposed brain function network analysis
characterizing the “relationship” between regions of interest
(ROIs). Based on the fact that the cerebral blood flow refreshes
the neural activity across regions of the brain, modeling
functional connectivity (FC) is helpful for understanding the
neural basis of mental disorder (Lindquist, 2008). The most
commonly used FC model is Pearson’s correlation, which can
be calculated using BOLD signals between two brain regions.
A brain functional network (BFN) is constructed based on the
strength of the FC of all locations predefined by an atlas. BEN
construction approaches explicitly reduced the dimensionality
from 4-D into a 1-D vector. Many machine learning (ML)
methods have been successfully employed in the automated
classification of altered BFNs related to ASD (Uddin et al,
2013; Abraham et al, 2017). Some methods adopted sparse
methods to implement implicit dimension reduction by adding
an extra sparse regularization term [e.g., Lasso (Tibshirani,
1996) or the Elastic Net (Zou and Hastie, 2005)] to the loss
function.

However, the commonly used correlation for describing FC
between ROIs just captures a linear relationship and is not
suitable for characterizing high-order or non-linear features
(Shojaee et al., 2019). Furthermore, collapsing the data into a
feature vector (Vectorization) discards the spatial information
of the brain regions (Kong et al., 2019). In addition, traditional
classification algorithms such as support vector machine (SVM)
(Cortes and Vapnik, 1995), Random Forest (Liaw and Wiener,
2002), and Naive Bayes (Rish, 2001) belong to a shallow

model, which limits their capacity to extract the structural
information hidden in BFNs.

To derive BFNs with both functional connectivity and spatial
information, independent component analysis (ICA) has been
widely used (Rajapakse et al., 2006; Nickerson et al., 2017).
ICA is a pure data-driven method, which can generate highly
reproducible large-scale brain networks (Damoiseaux et al.,
2006). However, the ICA components do not correspond
exactly to meaningful brain networks. Usually, these components
will be inspected by experienced clinicians or researchers
to remove artifact components. Here, we use an automatic
clustering algorithm (Beckmann et al, 2009; Filippini et al,
2009) to perform the selection of ICA components. The selected
meaningful components can be used for deriving each subject’s
subject-specific spatial maps by dual regression. Each individual
spatial map captures variabilities in both the shape and amplitude
of the corresponding resting state network between groups
(Nickerson et al., 2017). This kind of feature representation in
BFNs employs a 3-D functional rs-fMRI modality, which contains
more information than FC coefficients.

Recently, deep learning has gained much attention in various
computer vision tasks (Redmon et al., 2016; Krizhevsky et al.,
2017; Ledig et al., 2017). Deep learning has also been applied
in medical image analysis, such as lesion segmentation (Isensee
et al., 2018), MRI reconstruction (Schlemper et al., 2018), and
registration (Yang et al., 2017). The deep neural network (DNN)
is powerful for its capability to directly learn useful features from
raw data and eliminate the need to manually design features in
many other machine learning algorithms. Several studies have
used stacking auto-encoders to build a DNN for classification
of brain disorders such as Alzheimer’s disease (Suk et al., 2015),
autism (Heinsfeld et al., 2018) and schizophrenia (Kim et al.,
2016). In addition, recurrent neural network (RNN) and graph
convolutional neural network (GCN) are also used in the early
diagnosis of mental diseases. Dvornek et al. (2017) used long
short-term memory (LSTM) to classify the time series data of
resting-state fMRI, and the accuracy of cross-validation reached
68.5%. Yan et al. (2019) designed a multi-scale convolutional
neural network-gated recurrent unit (CNN-GRU) model to learn
the time series obtained from ICA and realized the classification
of schizophrenia based on multi-site data. Ktena et al. (2017) took
advantage of the spectral method of GCN to learn the similarity
of brain functional connectivity networks and applied it to the
early diagnosis of ASD. Unlike the methods mentioned above, 3-
D convolutional neural network (3-D CNN) takes 3-D images
as input rather than FC vector or time series data, capturing
hierarchical features by integrating multi scales of features with
different layers for spatial pattern representation and recognition
(LeCun et al, 2015). In recent years, 3-D CNN has been
successfully used in the classification of Alzheimer’s disease
(Qureshi et al., 2019b), schizophrenia (Qureshi et al., 2019a),
and early MCI (Kam et al., 2018), which achieved competitive
performance of approximately 74-98% accuracy compared to
traditional machine learning algorithms. Nevertheless, to date, 3-
D CNN has not been used to classify large-scale BFNs in ASD,
and the abnormal organization of the large-scale BFN in ASD
subjects is not well understood. For these reasons, in the present
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study, we take the group ICA features as input and build a 3-D
CNN architecture to model the differences in both “shape” (e.g.,
spatial activation patterns) and amplitude (e.g., the magnitude of
the BOLD activity) of one or more BFNs, and we investigate both
intra- and inter-BFN association changes to find a reliable and
objective biomarker for diagnosis.

The contributions of our work can be summarized in three
aspects. (1) We used group ICA and dual regression to derive
3-D functional network spatial maps as potential biomarkers
for identification of ASD. (2) We developed a variant of the
VGG network, which involves channel attention mechanism, to
integrate both intra- and inter-BFN association changes to find a
reliable and objective biomarker for diagnosis. (3) A systematic
comparison of our method with traditional machine learning
framework has also been implemented. Our proposed model can
improve detection accuracy of ASD.

MATERIALS AND METHODS

Figure 1 illustrates the overall framework for discrimination of
ASD. We first preprocessed all rs-fMRI data from the NYU site
using the C-PAC pipeline. The preprocessed data were used to
perform group ICA to generate 30 independent components.
The good components were filtered by clustering and template
matching, which would be used for further analysis (Figure 1A).
Second, we took the selected components to perform dual
regression for each subject. Eight subject-specific spatial maps
were generated and concatenated for each subject, which would
be used as input for classification (Figure 1B). We then randomly
split all subjects into training and validation sets. The subject-
specific spatial maps were fed into a 3-D CNN model. Finally, a
10-fold cross validation strategy was adopted for the classification

TABLE 1 | Demographics characteristics of the selected subjects.

Autism spectrum disorder Normal control p-Value
N=79;11 F/68 M N =105;26 F/79 M

Age 14.52 £6.97 156.81 £ 6.25 0.039
Full 1Q 107.91 £16.62 1138.156 £13.12 0.022
Verbal 1Q 105.81 £16.13 113.13 £12.60 0.001
Performance 1Q 108.81 +£17.42 110.06 +13.67 0.600
ADOS total 11.30 £4.08
ADOS 3.54 £1.55
communication
score
ADOS social 7.76 £2.97
score

ADQS, autism diagnostic observation schedule.

Dataset

We ran our study on the Autism Brain Imaging Data Exchange
(ABIDE) (Di Martino et al., 2014), which is a publicly available
multi-site data repository. The first phase of ABIDE (ABIDE-I)
compiles a dataset of 1112 individuals from 17 sites and
consists of 539 individuals with ASD and 573 typical controls.
Since the scan parameters vary across sites, ABIDE is a highly
heterogeneous dataset. To avoid the impact of data heterogeneity,
we collected raw rs-fMRI data from the whole NYU site,
consisting of 79 ASD subjects and 105 normal controls (NCs).
Table 1 presents the complete demographic of the selected data.

Structural Data Acquisition

All participants were scanned with a Siemens 3 Tesla Allegra
scanner. An MPRAGE sequence was used with the following
parameters: TR/TE/TI = 2530/3.25/1100 ms, flip angle = 7°,

performance evaluation (Figure 1C). FoV read = 256 mm, slice thickness = 1.33 mm, voxel
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FIGURE 1 | lllustration of the proposed framework for ASD diagnosis. (A) All rs-fMRI data were preprocessed using the C-PAC pipeline. The independent
components were derived using Group-ICA, and further inspected to identify eight well defined brain function networks (BFNSs). (B) The selected BFNs were used to
extract subject-specific spatial maps using dual regression. Eight subject-specific spatial maps were then concatenated together as input to the classifier. (C) The
data were randomly spilit into training and validation sets. A total of 10-fold cross validation strategy was used for evaluating classification performance. The details of
3-D CNN model will be introduced later.
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size = 1.3 x 1.0 x 1.3 mm, matrix = 256 x 256 x 171,
bandwidth = 200 Hz/Px, and total scan time = 8:07 min.

Functional Data Acquisition

Resting state functional MRI data were acquired using a
2-D echo-planar imaging (EPI) acquisition type with the
following parameters: TR/TE = 2000/15 ms, flip angle = 90°,
FoV read = 240 mm, slice thickness = 4 mm, voxel
size = 3.0 x 3.0 x 4.0 mm, bandwidth = 3906 Hz/Px, and total
scan time = 6.00 min. During the rs-fMRI scan, most participants
were asked to relax with their eyes open and look at a cross-hair
on a black background screen. Data were also included for some
participants who were asked to keep their eyes closed.

Pre-processing of Functional MRI Data

We preprocessed the data using a widely adopted pipeline called
Configurable Pipeline for the Analysis of Connectomes (C-PAC)
(Craddock et al., 2013), which involves skull striping, slice timing
correction, realignment to correct for motion, and bandpass
filtering (0.01-0.1 Hz). The functional images were smoothed
with a 5-mm full width half maximum (FWHM) Gaussian
kernel, registered to a standard anatomical space (MNI152) and
resampled to 4 mm.

Independent Component Analysis

We used FSL Multivariate Exploratory Linear Optimized
Decomposition into Independent Components (MELODIC')
version 3.15 to perform group ICA. Preprocessed data were
concatenated and entered into a group ICA to identify large-scale
functional networks across the population. Usually, more than
20 components are necessary for identification of meaningful
components, whereas model orders >100 showed a decrease in
ICA repeatability (Abou-Elseoud et al., 2010). The number of
independent components was set to 30. Variance normalization
and thresholding were further used to fit a Gaussian and
2 Gamma mixture model to the intensity histogram of the
Z-transformed IC spatial maps.

Finally, MELODIC yielded 30 independent component maps
with the local false-discovery rate p < 0.5. Among the 30
independent components, we used an automatic clustering tool,
FSLNets?, to divide these independent components into good
networks and noise and/or artifacts. Second, we inspected the
power spectra graph for each good independent component. The
power spectrum of a typical network is in the low-frequency
range, whereas an artifact power spectrum shows a multipeak
pattern in the 0-0.1 Hz range. Furthermore, we used an FSL
utility, fslcc, to spatially correlate all 15 good components derived
by FSLNets to some set of reference networks. The reference
networks we used are from the Stanford Functional Imaging
in Neuropsychiatric Disorders Lab® (Shirer et al., 2012). The
names of reference networks are shown in Table 2. Finally, eight
functional networks were filtered as the output of group ICA.
Figure 2 shows all 30 components. The dendrogram contains

Uhttp://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
*https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
3http://findlab.stanford.edu/research

TABLE 2 | The names of reference networks.

Number Reference network

1 Anterior insula/dorsal ACC (anterior salience network)

2 Auditory network

3 Basal ganglia network

4 PCC/MPFC (dorsal default mode network)

5 Higher visual network

6 Language network

7 Left DLPFC/parietal (left executive control network)

8 Sensorimotor network

9 Posterior insula (posterior salience network)

10 Precuneus network

11 Primary visual network

12 Right DLPFC/parietal (right executive control network)
13 Retrosplenial cortex/medial temporal lobe (ventral default mode network)
14 Intraparietal sulcus/frontal eye fields (visuospatial network)

two major branches representing good functional networks (in
blue and green color) and noise and/or artifacts (in red color).
All these functional networks served as templates to generate
subject-specific brain function networks in the next step.

Dual Regression

To evaluate individual differences in BENs, we applied the
dual regression (Beckmann et al., 2009; Nickerson et al., 2017)
approach in FSL v6.0.1*. This method has been widely used
in comparing large-scale BENs between groups (Filippini et al.,
2009; Nickerson et al., 2017). Dual regression decomposes
each subjects 4-D fMRI data into a set of spatial maps and
corresponding time courses. Dual regression is an effective
approach to investigate network shape and amplitude in
functional connectivity analyses (Nickerson et al.,, 2017). Dual
regression analysis proceeds in two steps. First, for each subject, a
set of template networks is regressed into the subject’s 4-D spatial-
temporal dataset. This results in a set of subject-specific time
courses, corresponding to each IC template. Second, the network-
specific time courses are used as predictors in a multivariable
multiple linear regression into the same 4-D dataset, resulting in
a set of subject-specific 3-D spatial maps. The template network
can be derived using FSLs group ICA, from an atlas, or using
functional localizers. Based on these 3-D spatial maps of BENs for
each subject, we build a 3-D CNN model to learn sophisticated
feature representation for classification.

3-D CNN Architecture for Classification

In the present study, we implemented stratified 10-fold cross
validation to evaluate the effectiveness of our algorithm. This
method of splitting data ensures that the proportion of ASDs and
NCs was the same across all folds.

Backbone Structure

A variant of VGG-net (Simonyan and Zisserman, 2014) was used
for our task. VGG-net is a popular convolution network model
that has been used in many studies (Qureshi et al.,, 2019a,b;

“http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression
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FIGURE 2 | Automated clustering dendrograms of the independent component-based brain functional networks acquired through Melodic ICA. The right branch
depicted in red line represents noise or artifacts. The left branch contains good components that will be further inspected via power spectrum.

Duc et al., 2020). Instead of using 2-D convolution in vanilla
VGG, 3-D convolution was adopted in our network. Batch
Normalization (Ioffe and Szegedy, 2015) and Leaky Rectified
Linear Unit (LeakyReLU) (Maas et al., 2013) were used as
activation functions. Because CNN is a highly non-convex
function, poor initialization strategy may induce the CNN into
a local sub-optimal solution, resulting in bad generalization
performance. To alleviate this problem, we initiated our 3-D
CNN with the initialization strategy proposed by He et al. (2015).
The overview of our proposed CNN is shown in Figure 3.

Channel Attention Module
Vanilla VGG achieved good performance in image classification
by stacking a series of convolution layers with the same kernel
size of 3 x 3 x 3 and interleaved with non-linear activation
and max-pooling layers. This kind of hierarchical architecture
can capture local spatial patterns along all input channels. To
model the independencies between channels, channel switching,
combination (Zhang et al., 2017, 2018) or using reinforcement
learning to reorganize the network paths (Ahmed and Torresani,
2017), channel-wise attention was proposed to bias the allocation
of resources to the most informative channels (Hu et al., 2018).
The squeeze and excitation (SE) module is an efficient component
that can be added to any CNN model easily. The key point of
SE module is that it can calibrate the feature map and emphasize
important channels by learning a channel-specific descriptor. We
integrated several SE blocks into the variant VGG structure to
boost classification performance.

The SE module consists of two parts, squeeze and excitation.
A diagram of an SE building block is depicted in Figure 4. Let us
assume that U = [uy, uy, ..., up] is an input feature map, where

ufe]RH * WD s a single channel withsize H x W x D.H, W
and D are the spatial height, width, and depth, respectively.
Channel squeeze is performed via a global average pooling layer,
productor vector zeR! * 1 X 1 X F yyith the f-th element given by:

1 H w D
7 = Hx W xD Z z z [uf]i,j,k (1)
h=1w=1d=1

This operation embeds the global spatial information into vector
z. To make full use of the information hidden in z, an excitation
operation is designed. Two fully connected layers, the ReLU (Nair
and Hinton, 2010) function § and a sigmoid activation function
o(-), are used to transform z:

s = 0 (W1d(W22)) )

E F

where WieRT X, W,eRF * 7 and r is the reduction ratio to
limit the model complexity and aid generalization. s encodes the

channel-wise dependencies and is used to excite or recalibrate U
to:

U= mle(uf,sf) = sf~uf,forf= 1,2,---,F  (3)
where F. e (uf, éf) for the channel-wise multiplication between
the feature map ufeRH * WD and the scalar sr. The importance
of the i-th channel is indicated by sy € [0, 1].

Here, we inserted three SE blocks into the 3-D VGG net. The
reduction ratio was set to 16. Details of our model are presented
in Table 3.
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FIGURE 3 | Modified VGG-Net 3-D CNN architecture with SE module integrated.
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FIGURE 4 | Architecture of squeeze and excitation (SE) module.

Performance Evaluation RESULTS

For performance evaluation, we adopted accuracy (ACC),
precision, recall, and F1 score as quantitative metrics. TP, TN,
FP, FN, PPV, and NPV denote true positive, true negative, false
positive, false negative, positive predictive value, and negative
predictive value, respectively. These metrics are defined as below:

TP + TN
ACC =
TP + TN + FP + FN
. TP
Precision = ———
TP + FN
TN
Recall = ————
TN + FP
2 x Precision x Recall
F1 =

Precision + Recall

Large-Scale Brain Functional Networks

In total, eight components (Figure 5) were identified as BFNs
from group ICA. The eight selected resting state functional
networks included the primary visual network (PVN), dorsal
default mode network (dDMN), ventral default mode network
(VDMN), precuneus network (PCUN), sensorimotor network
(SMN), anterior salience network (SN), left central executive
network (LCEN), and right central executive network (RCEN).
They were used to perform dual regression to generate subject-
specific time courses for connectivity analysis and spatial maps
for classification.

Network Configuration

We applied PyTorch (Paszke et al., 2019) 1.0 framework to
implement our model. Training and testing of this model used
one NVIDIA RTX 2080Ti graphical processing unit (GPU).
During the training phase, an ADAM (Kingma and Ba, 2014)
optimizer was used with an initial learning rate of 0.0005. The
initialization strategy proposed by He et al. (2015) was adopted
to initiate the 3-D CNN model. The learning rate was decayed
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TABLE 3 | Details of the proposed MCSE-VGG architecture.

Layer Feature map  Stride Kernel Activation structure
Convolution 32 1 x1x1 3x3x3 Conv

SE block

Convolution 32 1x1x1 3x3x3 BN + LRelLU + Conv
Max-pooling 2 x2 x2 2x2x2

SE block 32

Convolution 64 1 x1x1 3x3x3 BN + LRelLU + Conv
Convolution 64 1 x1x1 38x3x3 BN + LRelU + Conv
Max-pooling 64 2 x2 x2 2x2x2

SE block

Convolution 128 1 x1x1 38x3x3 BN + LRelLU + Conv
Convolution 128 1 x1x1 3x3x3 BN + LRelLU + Conv
Convolution 128 1x1x1 3x3x3 BN + LRelLU + Conv
Max-pooling 2 X2 x2 2x2x2

Convolution 256 1 x1x1 3x3x3 BN + LRelLU + Conv
Convolution 256 1x1x1 3x3x3 BN + LRelLU + Conv
Convolution 156 1 x1x1 3x3x3 BN + LRelLU + Conv
Max-pooling 2 x2x2 2x2x2

Convolution 256 1x1x1 3x3x3 BN + LRelLU + Conv
Convolution 256 1x1x1 3x3x3 BN + LRelLU + Conv
Convolution 256 1 x1x1 3x3x3 BN + LRelLU + Conv
Convolution 2048 1 x1x1 3x3x38 Dropout + Conv + LRelLU
Convolution 1024 1 x1x1 1x1x1 Dropout+ Conv + LRelLU
Dense 2

MCSE-VGG, multi channel squeeze and excitation VGG-net; LRelLU, Leaky
Rectified Linear Unit.

by 0.1 if the validation loss did not decrease after 10 epochs. The
batch size was set to 12, and the negative slope LeakyReLU was
set as 0.01. We used L2 norm regularization on the convolution
kernel parameters with a weight of le-5. Dropout was set as 0.7.
The cross-entropy loss function is applied to the output units to
predict the probability of a subject belonging to the NC or ASD
group. The results of the validation set of each fold will be shown
in the next section.

Performance Evaluation

Baseline

First, we padded subject-specific spatial maps of each BEN into
48 x 56 x 48 and then concatenated them into a 4-D tensor of
8 x 48 x 56 x 48 for each subject. The first dimension represents
the number of selected BFNs. All eight selected components are
associated with high-level recognition functions, which include
the primal visual network, PCUN, default mode network (DMN),
SN, executive control networks and SMN. We took this 4-D
tensor as input to train a vanilla VGG model as baseline.

Channel Attention Based 3-D CNN

Here, we conducted two kinds of 3-D CNN integrated with the
SE module. One consists of taking each BFN separately into
SE-VGG to construct a single channel SE-VGG (SCSE-VGG)
diagnosis model. Figure 6 shows the ability to discriminate ASD
from NC based on spatial maps corresponding to each of the
8 functional networks for each subject using SE-VGG. Another

option is to concatenate 8 BFNs as multi-channel input to SE-
VGG (MCSE-VGG). In Table 4, we summarize the performance
of our proposed method. Our experiments showed that the
MCSE-VGG model outperformed other models by achieving
a mean accuracy of 77.74%, which significantly boosted the
performance of the baseline model by ~8%. Compared to various
SCSE-VGG models using only one BEN, the proposed MCSE-
VGG improved the accuracy by ~4-12%. The results showed that
our proposed method could effectively capture the relationship
within multiple BFNs. In addition, the SE block could assist the
3-D CNN learning from multiple BENs and effectively model the
channel-interdependencies information. Among all 8 SESE-VGG
models, SESE-VGG with the PCUN, dDMN, and SN showed
higher accuracy than those with other BFNs. This indicated
that these three networks might play an important role in the
development of ASD.

Compared Methods

We compared the proposed SCSE-VGG with several state-of-
the-art methods including both traditional machine learning
algorithms and deep learning methods. We extracted the mean
time series for ROI defined by the CC200 functional parcellation
atlas of the brain. The functional connectivity was calculated
by Pearson correlation between each pair of brain regions and
generated a correlation matrix. The upper triangle values of the
correlation matrix were vectorized as features and fed into an
Autoencoder and Multilayer Perceptron (AE-MLP) model. We
modified the code from Heinsfeld et al. (2018) and implemented
three algorithms, e.g., deep neural network (Heinsfeld et al,
2018), SVM (Cortes and Vapnik, 1995) and random forest (RF)
(Liaw and Wiener, 2002), on the NYU dataset. Bengs et al.
(2020) used the 4-D fMRI image data and modeled the spatial-
temporal information by 3-D convolutional GRU and 3-D CNN.
We reported their experimental results on the NYU dataset. We
show the results from these models in Table 5.

Deep learning-based classification frameworks (including AE-
MLP, convGRU-CNN3D, and our proposed model) showed
better performance than traditional machine learning-based
frameworks (including SVM and RF). The results showed that
our proposed model (MCSE-VGG) outperformed other models
by achieving a mean accuracy and F1 score of 77.74 and 75.33%,
respectively, which surpassed previous studies by ~9-17 and ~1-
8%. This improvement may be due to the ability of 3-D CNN to
make use of the features hidden in both inter- and intra-BEN. 3-D
convolution kernel is powerful for extracting spatial information
within each BFN, and the channel attention mechanism can
further recalibrate the importance of spatial features extracted by
convolution layers.

Inter-Network Connectivity Analysis

Although our experiments have shown good performances
compared to existing methods, the deep learning framework
lacks interpretability. To further validate the effectiveness of our
selected BFNs to serve as reliable imaging biomarkers for ASD
diagnosis, we performed an inter-network analysis on the basis
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of the dual regression results using the FSLNets package®. The
time courses derived by stage one of the dual regression were

>http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets

used as input for the modeling network. Artifactual components
were regressed out over the corresponding time courses, and only
the selected eight components were preserved and considered
for subsequent statistical analysis. We took ridge regression
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TABLE 4 | Classification results comparison of different network architectures
using 10-fold cross-validation.

Method Functional ACC Precision Recall F1
network (%) (%) (%) score
Baseline All 69.58 69.43 65.54 67.43
SCSE-VGG PVN 65.21 68.10 50.54 50.02
PCUN 74.01 71.76 77.32 74.44
dDMN 71.18 73.38 68.57 70.89
vDMN 68.49 64.22 65.54 64.87
LCEN 68.53 70.67 56.96 63.08
RCEN 68.68 66.62 89.82 76.50
SN 71.16 77.06 61.96 68.69
SMN 69.57 71.19 64.82 67.86
MCSE-VGG All 77.74 76.74 78.57 75.33

The baseline and MCSE-VGG models use all the eight brain functional networks.
MCSE-VGG and SCSE-VGG models are inserted with SE module. SCSE-VGG
models are evaluated for each brain functional network.

TABLE 5 | Performance comparison of the proposed and previous methods.

Method ACC (%) F1 score
AE-MLP 68.56 73.87
SVM 62.97 74.24
Random forest 60.62 71.37
convGRU-CNN3D (Bengs et al., 2020) 67.00 71.00
VGG (ours) 69.58 67.43
MCSE-VGG (ours) 77.74 75.33

The results of convGRU-CNNSD were reported on the paper (Bengs et al., 2020).

partial correlation (PC) as a measure of direct connections
(Smith et al., 2011) between each pair of components. The
correlation coefficients were then transformed into Z-values via
the standard Fisher’s transform. The PC matrices were used
as input to the general linear model (GLM) analysis, and an
unpaired nonparametric test with 5000 permutations was run to
test differences in connection strength between ASD and NC.

We selected the most significant network edges (p = 0.05)
from the GLM output and created boxplots for the two groups as
illustrated in Figure 7. As a result, the strengths of connectivity
were significantly increased between the SN and dDMN in ASD
patients compared to controls. A similar result was also found
between the SN and LCEN. Furthermore, a reduced connective
strength was obtained between the PCUN and dDMN.

DISCUSSION

In this study, we proposed a novel framework to model inter- and
intra-associations of multiple large-scale BFNs derived from rs-
fMRI by using a 3-D CNN deep learning architecture for ASD
diagnosis. Instead of using 1-D time-series information, we used
subject-specific BFN spatial maps to capture the spatial patterns
via 3-D convolution. Channel attention blocks were integrated
into our CNN model to fuse the deep features of multiple
BFNs. We evaluated our proposed method on a public dataset
and achieved the best performance compared with previous

classifications (Heinsfeld et al., 2018; Bengs et al., 2020). Our
proposed framework can be easily generalized to the diagnosis
of other mental illnesses such as Alzheimer’s, schizophrenia and
depression.

Our results showed a mean test accuracy of 77.74% in
a 10-fold cross validation experiment using the MCSE-VGG
deep learning algorithm. In our proposed algorithm, the input
data is multi-channel tensor, and each channel corresponds to
one subject-specific BFN. Convolutional layers extract the most
important spatial information from these BFNs in a hierarchical
way with different layers. The SE module can further integrate
and recalibrate these spatial features from different BFNs before
they are fed into the next transformation. The introduction of
the SE module improves the accuracy of the VGG model by
~8%. Heinsfeld et al. (2018) proposed to use deep autoencoder
network for the classification of ASD. They built a multilayer
perceptron (MLP) and applied the encoder weights to the MLP.
Only the last layer of MLP was adjusted to output the expected
classes. They used functional connectivity features calculated
by correlation between each pair of ROIs, which was different
from our input features. Some works also used 3-D BFNs as
features and developed a 3-D CNN for discrimination of mental
illness, e.g., Alzheimer’s dementia (Qureshi et al., 2019b) and
schizophrenia (Qureshi et al., 2019a). These studies treated every
BEN equally and did not model the contribution of different brain
networks to classification results.

The ultimate goal of our proposed framework is to identify
a collection of reliable biomarkers for ASD diagnosis. Although
deep learning has shown great potential in classification, the
lack of interpretability restricts its application in the clinic. To
determine the effect of each BFN on the neural network, we
used each individual BFN as input features to train a SCSE-VGG
model. The results showed that dDMN, PCUN, and SN achieved
better accuracies than others. These three brain networks might
be the most important features that can boost the performance
of MCSE-VGG significantly. Table 6 lists Brodmann areas
of these networks.

Both dDMN and PCUN are subnetworks of the DMN
comprising the posterior cingulate cortex (PCC), precuneus,
medial prefrontal cortex (MPFC), temporoparietal junction
(TPJ), and hippocampus (Raichle et al., 2001; Buckner et al.,
2008). The DMN is engaged in a range of social cognitive
processes including self-referential and autobiographical
processing and mentalizing and theory of mind (Padmanabhan
et al,, 2017). In particular, the PCC and MPFC, the two most
notable nodes of the DMN, are involved with social cognition
(Schilbach et al., 2008; Spreng et al., 2009; Mars et al., 2012). The
PCC is considered to be the core functional node with a high
basal metabolic rate (Raichle et al.,, 2001). The PCC is mainly
engaged in both self-relevant and other-relevant processing
and evaluating and processing mental states of others (Gusnard
and Raichle, 2001; Schiller et al., 2009; Spreng et al., 2009;
Kuzmanovic et al., 2012). The MPFC is linked to monitoring
of the mental state of both oneself and others (Gusnard and
Raichle, 2001; Schilbach et al., 2008). There is a large amount of
literature indicating that abnormal DMN organization is related
to social deficits in individuals with ASD (Lynch et al., 2013;
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FIGURE 7 | Box plot of the connectivity differences in ASD versus NC. Connectivity strength is shown for the brain functional networks (BFN) between (A) anterior
salience network (SN) and dorsal default mode network (dDMN) and (B) SN and left central executive network (LCEN), and (C) precuneus network (PCUN) and
dDMN.

Yerys et al., 2015; Ypma et al., 2016). Increased within-network
connectivity between the PCC and the MPFC was commonly
observed in childhood ASD, while no consistent evidence

TABLE 6 | Anatomical labels of the identified brain functional networks.

BFN Anatomical location Brodmann areas

of functional ROIs

PCC/MPFC (dDMN) Medial prefrontal
cortex, anterior
cingulate cortex,

orbitofrontal cortex

9, 10, 24, 32, 11

Right superior frontal 9
gyrus

Posterior cingulate
cortex, precuneus

23,30

Midcingulate cortex 23
Left and right angular 39
gyrus

Left and right thalamus

Left and right
hippocampus

N/A
20, 36, 30
PCUN Midcingulate cortex, 23
posterior cingulate
cortex
Precuneus 7,19
Left and right angular 7,40

gyrus
Insula/dACC (SN) Left middle frontal gyrus 9, 46
48, 47

23,32,8,6

Left and right insula
Anterior cingulate
cortex, medial
prefrontal cortex,
supplementary motor
area

Right middle frontal
gyrus

Left lobule VI, crus | N/A

Right lobule VI, crus | N/A

was found for DMN connectivity across a whole ASD cohort
(Doyle-Thomas et al., 2015).

In addition to the DMN and PCUN, the SN has achieved
higher classification accuracy at 71.16%. The SN is identified
as an intrinsic network that guides behaviors to internal and
environmental stimuli (Seeley et al., 2007). The SN exhibited
hyper connectivity in children with ASD (Uddin et al., 2013).
The anterior insula (AI) and dorsal anterior cingulate cortex
(dACC) serve as the two most notable hubs of the SN. The AI
is linked to emotion processing and is hypo-activated in ASD
cohorts when performing a series of social cognitive tasks (Di
Martino et al., 2009). The dACC has showed reduced cognitive
control over behavior in ASD (Agam et al., 2010). Restrictive
and repetitive behaviors in ASD may be due to the dysfunction
of the salience network, which atypically allocates attention to
extraneous sensory stimuli rather than relevant social stimuli
(Uddin et al,, 2013). Our experiments on each individual BEN
suggest that the dDMN, PCUN, and SN are highly different
between ASD and NC, which is consistent with previous studies.
These three most significant brain networks have the potential to
be reliable biomarkers for the identification of ASD.

To further validate that our proposed method can capture
the interaction between different BFNs, we also considered
the relationship between BFNs. A quantitative measure of
the connectivity strength value was calculated between each
pair of BENs. The results of statistical analysis suggested that
there were significant differences in three pairs of BENs (at a
p-value < 0.05). The SN-dDMN and SN-LCEN pairs showed
increased connectivity strength in ASD, and hypo-connectivity
was observed in the PCUN-dDMN pair of ASD. The SN is
thought to play a role in detecting and coordinating a response
to salient interoceptive and exteroceptive stimuli, including
modulating the DMN and CEN as necessary (Menon, 2011),
while aberrant interactions between these networks may lead
to various mental illnesses. The enhanced connectivity between
the SN and DMN and between the SN and CEN in ASD
compared to NC may suggest the aberrant function of the
SN, resulting in abnormal saliency mapping of internal mental
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events and external stimuli. Our work is consistent with the
evidence implicating SN dysfunction in psychopathology in ASD
(Uddin, 2015; Burrows et al., 2017). Both the PCUN and dDMN
include brain regions previously regarded as being part of the
DMN (Broyd et al., 2009). The decreased connectivity within the
DMN has also been found in previous literature (Assaf et al.,
2010). Our findings support the under-connectivity hypnosis in
autism proposed by Just et al. (2004). Although no significant
differences were found in other pairs of BFNs, the proposed
MCSE-VGG is potentially able to capture the interactions among
these BFNs, which take both inter- and intra-BFN information
into consideration.

Our work still has a few limitations. First, a separate
validation dataset is unavailable. The dataset we used is a
part of the ABIDE-I dataset, which contained the largest
samples with the same scan parameters. However, ABIDE-I is a
highly heterogeneous dataset in which the scanning parameters,
especially TR and the total scan time of each site, are different
from each other. This leads to difficulty in performing group-
ICA and dual regression. Yan et al. (2019) developed an RNN
framework for discriminating schizophrenia using multi-site
fMRI data. However, in their study, the scan protocols were
set up by the same experts across all sites, which overcomes
the heterogeneity over multi-sites. Therefore, we evaluated our
framework only in the NYU dataset and showed ten-fold cross-
validation results. Data augmentation has been widely used in
many other computer vision tasks, but it is not suitable for
neuroimaging data. We do not think synthesized data and real
data have the same distribution. Second, motion effects can
mimic amplitude effects and may have an impact on the results
of dual regression (Nickerson et al., 2017). Motion effects may
still remain even though we performed motion correction in
the preprocessing procedures. ICA-based denoising technology
was proposed to derive reproducible group-level resting state
network spatial maps (Pruim et al., 2015), which we will
consider using in the preprocessing stage. Another limitation is
that deep learning-based classification framework is lacking in
interpretation but is important, especially in the medical field.
To overcome this issue, we statistically analyzed the differences
between each pair of BFNs between ASD and NC. In the
future, we will pay more attention to developing a framework
integrating both structural and functional MRI data to achieve
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