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Manned-Unmanned Teaming (MUM-T) can be defined as the teaming of aerial robots

(artificial agents) along with a human pilot (natural agent), in which the human agent is

not an authoritative controller but rather a cooperative team player. To our knowledge,

no study has yet evaluated the impact of MUM-T scenarios on operators’ mental

workload (MW) using a neuroergonomic approach (i.e., using physiological measures),

nor provided a MW estimation through classification applied on those measures.

Moreover, the impact of the non-stationarity of the physiological signal is seldom

taken into account in classification pipelines, particularly regarding the validation design.

Therefore this study was designed with two goals: (i) to characterize and estimate MW

in a MUM-T setting based on physiological signals; (ii) to assess the impact of the

validation procedure on classification accuracy. In this context, a search and rescue

(S&R) scenario was developed in which 14 participants played the role of a pilot

cooperating with three UAVs (Unmanned Aerial Vehicles). Missions were designed to

induce high and low MW levels, which were evaluated using self-reported, behavioral

and physiological measures (i.e., cerebral, cardiac, and oculomotor features). Supervised

classification pipelines based on various combinations of these physiological features

were benchmarked, and two validation procedures were compared (i.e., a traditional

one that does not take time into account vs. an ecological one that does). The main

results are: (i) a significant impact of MW on all measures, (ii) a higher intra-subject

classification accuracy (75%) reached using ECG features alone or in combination with

EEG and ET ones with the Adaboost, Linear Discriminant Analysis or the Support Vector

Machine classifiers. However this was only true with the traditional validation. There

was a significant drop in classification accuracy using the ecological one. Interestingly,

inter-subject classification with ecological validation (59.8%) surpassed both intra-subject

with ecological and inter-subject with traditional validation. These results highlight the

need for further developments to perform MW monitoring in such operational contexts.

Keywords: mental workload, pilot-UAV teaming, EEG, ECG, eye-tracking, ecological classification design

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2021.692878
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2021.692878&domain=pdf&date_stamp=2021-08-20
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gaganpreet.singh@isae-supaero.fr
https://doi.org/10.3389/fnhum.2021.692878
https://www.frontiersin.org/articles/10.3389/fnhum.2021.692878/full


Singh et al. MWKL Estimation for Pilot-UAV Teaming

1. INTRODUCTION

Manned-Unmanned Teaming (MUM-T) can be seen as a
cooperative teaming ofmultiple agents: several UnmannedAerial
Vehicles (UAVs) and possibly several manned aircrafts. The
MUM-T organization described by Strenzke and collaborators
contains multiple UAVs and a human operator present in a
manned aircraft along with a flying pilot (Strenzke et al., 2011).
However, our vision for the future of MUM-T missions is a
team of several agents, in which an agent could be an artificial
one—i.e., a UAV- or a human. Hence, in this context, the human
agent is not considered as an operator controlling the UAV
but rather as another team member participating equally as the
other artificial agents. The implementation of such a MUM-
T organization will require more cooperation and coordination
between the agents, that could increase the mental workload of
the human agent. However, there are immense advantages to this
approach as for instance: benefiting from the faster and more
calculative capabilities of the artificial agents, and for the human
agents’ better perception, judgment abilities and critical thinking
(de Souza et al., 2020), increasing mission achievement chances
while ensuring safety (Chanel et al., 2020b), or enabling a better
proximity and state awareness of the human agents (Strenzke
et al., 2011).

In human–multi-UAV interaction scenarios, interactivity is
currently derived from the concept of autonomy (David and
Nielsen, 2016). According to Goodrich and Schultz (2008), the
simplest way to consider autonomy is by defining the level at
which humans and robots interact and the scale to which each
one of them is independent from the other. Therefore, the more
autonomous and capable the artificial agents are to take decisions,
the more they are capable of having a peer-to-peer interaction
within a human-machine team. On the other hand, no autonomy
means that a continuous presence of a human agent is required
to drive a given machine.

There are several ways autonomy is defined and used,
such as in the “adjustable autonomy” framework (Scerri and
Reed, 2001; Luck et al., 2003; Bradshaw et al., 2004; Durand
et al., 2009; Zieba et al., 2010) in which the division of
labor between humans and artificial agents is not fixed but
rather varying (Parasuraman, 2000). On the other hand, mixed-
initiative systems have a dynamic autonomy allocation (Chanel
et al., 2020c), in which the roles can or can not be determined
in advance. Indeed, in this framework the roles and autonomy
levels are derived with a flexible interaction strategy where each
agent (human and artificial) can take control of the tasks they
are best in Hearst et al. (1999). It can be seen as a teamwork-
centered approach of adjustable autonomy. But, to fine-tune the
interaction capabilities, themixed-initiative approach can be seen
as a hybrid of the teamwork-centered and predictive approach of
adaptive autonomy. In which, the tasks are shared between both
types of agents, and the authority to lead a task is negotiated based
on the state (e.g., current capabilities) of each agent (Chanel et al.,
2020b). The key idea of mixed-initiative systems is to let agents
workmore effectively, independently but cooperatively as a team.

1.1. Human Operator State
In order to design a mixed-initiative system, it is important
to know what influences the human operator’s (mental) state,
including their decision making capabilities, and as a result,
performance. Therefore, it is essential to know how to best
analyze and take into account this mental state. There are
several fundamental causes to every decision, sometimes it’s
more affected by either emotion (Angie et al., 2011), the level
of intelligence (Leslau, 2010), the experience (Brockmann and
Simmonds, 1997), or most important our evolution (Wilke
and Todd, 2010). Most of the decisions one takes are usually
unconsciously taken, even though one thinks of taking them
with precise calculation and critical thinking (Soon et al., 2008).
Within a human-machine interaction framework, the pendant
to decision making in critical settings is human error and
performance degradation in general. Human errors are one of the
major factors of aviation mishaps—responsible for almost 60% of
accidents depending on the system the human operator interacts
with (Williams, 2004; Murphy, 2014). In this context, the errors
are mostly linked to the automation design principles not being
in accordance with human ergonomic principles (Dehais et al.,
2015).

Human error is classically studied by means of behavioral
and subjective measures. Yet, subjective and behavioral measures
are known as overt measurements and are relatively limited
as they do not allow for an uninterrupted/continuous and
direct assessment of cognitive processes. However, physiological
measures are a promising means to perform mental state
monitoring in such a way (Mehta and Parasuraman, 2013).
The recent field of neuroergonomics advocates for “the study of
brain and behaviour at work” (Parasuraman, 2003), as it explores
humans at work and in ecological settings through the lens
of neuroscience. A promising venue would then be to exploit
physiological metrics in addition to behavioral and subjective
ones in order to improve our understanding of operators’ mental
state, through what is called physiological computing (Fairclough,
2008), but also to perform mental state monitoring (Roy et al.,
2020). Indeed, these physiological metrics could be used as
inputs to a system that would then adapt to the detected
operator mental state. When based on cerebral activity only,
these type of systems are called passive brain-computer interfaces
(pBCIs). These systems are designed to estimate an operator’s
mental state (e.g., affective and/or cognitive state) based on
their cerebral activity acquired through brain imaging methods
such as electroencephalography (EEG). A given mental state is
then estimated by applying machine learning methods onto the
acquired brain activity features to adapt a system accordingly
(George and Lécuyer, 2010; Zander and Jatzev, 2011). These
systems have been successfully used to estimate a variety of
cognitive and affective states such as attentional states, mental
fatigue, and mental workload in laboratory settings (Brouwer
et al., 2012; Roy et al., 2016a; Singh et al., 2018), but also, although
less often, in close to or in real life settings (Borghini et al., 2014;
Callan et al., 2015; Scholl et al., 2016; Verdière et al., 2018; Dehais
et al., 2019a,b).
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1.2. Mental Workload Assessment
Mental workload is defined as information processing capacity
that is required to meet a system demand (Xie and Salvendy,
2000); or the difference of total information processing capacity
and available information processing capacity at any given time
(Gopher and Donchin, 1986); or it could be understood as task
performance that leads to the reduction of capacity to perform
another task requiring similar resources (Kramer et al., 1987).
With regards to the previous section, mental workload could be
considered as a medium of understanding the human operator’s
capabilities at a given point in time by a mixed-initiative system
and use this knowledge to seize a given task if it favors mission
safety or performance. The mental workload experienced by
human pilots in MUM-T scenarios has already been thoroughly
studied in the past, yet only through subjective metrics (Donath
et al., 2010; Gangl et al., 2013a,b; Schulte et al., 2015) that do not
allow for a continuous assessment, nor for a direct measure of
the operator’s cognitive state (Galdi et al., 2008; Plassmann et al.,
2015; Bell et al., 2018).

Instantaneous Self Assessment (ISA) is a subjective mental
workload assessment technique designed to get immediate
subjective rating while performing a primary task (Tattersall
and Foord, 1996). Whereas, behavior markers are the features
obtained from the interaction of the participant and the system.
They mostly comprises key strokes, response time, clicks, and
performance scores (Chanel et al., 2020a). In which mental
workload has an inverted U-shape effect on performance shown
by Bruggen (Bruggen, 2015), and performance of working
memory decline with higher difficulty level (Taylor et al., 2005;
Gateau et al., 2015, 2018). Where as reaction time decreases
with and increase in task difficulty (Sternberg, 1969; Gomarus
et al., 2006). Moreover, a variety of physiological metrics
can be used to evaluate an operator’s mental workload, for
instance derived from the following sensors (Heard et al., 2018):
electroencephalography (EEG), electrocardiography (ECG),—
that respectively record cerebral and cardiac activity, and
eye-tracking (ET) that records oculo-motor behavior. Hence,
regarding cerebral activity measures, the power modulations of
different EEG frequency bands (e.g., θ : 4–8 Hz, α: 8–12 Hz, β :
13–30 Hz, and γ : 30–45 Hz) can be used for mental workload
estimation (Roy et al., 2016a,b; Heard et al., 2018). Ratios of
the power in these bands have been shown to be impacted
by workload, such as the Engagement Index (EI) developed by
Pope and collaborators (Pope et al., 1995; Berka et al., 2007;
Chaouachi and Frasson, 2012) which is computed as follows:
EI = β/(α + θ).

EEG’s theta power tends to increase with increase in task

demand, fatigue, focused attention, time pressure, sustained
attention, and multi-tasking. It also increases with a decrease

in vigilance (Borghini et al., 2014). Whereas, alpha power
decreases with an increase in task demand, sustain attention, and
multi-tasking. But it increases with an increase in fatigue and
drowsiness, and a decrease in vigilance (Borghini et al., 2014).
On the other hand, an increase in beta power is associated with
the problem solving, judgement, and decisionmaking capabilities
of the human mind (Kumar and Bhuvaneswari, 2012). Beta
power tends to increase with alertness and decrease with fatigue

(Borghini et al., 2014). Likewise, increased gamma power is
associated with a state of hyper alertness and integration of
sensory inputs (Kumar and Bhuvaneswari, 2012).

As regards peripheral physiological measurements, ECG
features in both the temporal and the frequency domains can
be used for mental workload assessment. For instance, in the
temporal domain, Heart Rate (HR) increases and Heart Rate
Variability (HRV) decreases with an increase in mental workload
(Heard et al., 2018). HRV can also be computed in the frequency
domain however it cannot be computed on short windows and
therefore is less useful for online mental state estimation in
critical settings. Moreover, several ET features can also be used
formental workload estimation, such as blink frequency (number
of blinks per minute) that is associated with cognitive and visual
workload, blink latency (the amount of time between two blinks)
that increases with mental workload, fixation duration (the
amount of time the eyes fixated at a particular area) also increases
with mental workload, and finally pupil dilation that also shows
an increase with an increase in mental workload (Heard et al.,
2018). Others sensor-related metrics have been suggested by
Heard et al. (2018) that seem to be relevant to mental workload
assessment. Interested readers can consult (Table 1 of Heard
et al., 2018), for instance.

1.3. Physiological Signal Non-stationarity
and Classification Methodology
Mental workload estimation using EEG has several advantages,
although time has a notable effect on it. This phenomenon is
mostly known as non-stationarity effect of EEG (Raza et al.,
2019). In particular, the EEG signal even from same person can
present different behavior with time. An instability in the raw
wave form is noted by Shakhnarovich et al. (2007) in experiments
spanning from hours to days. Alongside, large variations in signal
amplitude was noted by Suner et al. (2005) within a day of
recordings. Therefore, it eventually increases the difficulty in
EEG-based mental workload classification as detailed by Roy
et al. (2013, 2016b). In their studies, the accuracy using a Linear
Discriminant Analysis on spectral features from a task-irrelevant
800-ms window decreased from 60 to 50% when training and
testing datasets were separated with respect to time.

But in most BCI and pBCI research, the validation
procedure of the classification pipelines tend to combine all
the data and randomly select samples for training and for
testing, irrespective of where they fall in the timeline of the
experiment. As discussed earlier, time-on-task is one of the many
factor of physiological signal non-stationarity. Therefore, this
usual, or “traditional” classification validation procedure gives
optimistic results with usually good offline mental workload
estimation accuracy that usually exceeds 80% of accuracy
on task-related windows (Brouwer et al., 2012; Dijksterhuis
et al., 2013; Borghini et al., 2014). In these studies, the
accumulated data from the whole experiment comprising all
the conditions of a participant (in intra-subject classification)
are divided into training and testing sets (Brouwer et al.,
2012; Liu et al., 2017; Singh et al., 2018). However, in order
to move towards the implementation of pBCIs in operational

Frontiers in Human Neuroscience | www.frontiersin.org 3 August 2021 | Volume 15 | Article 692878

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Singh et al. MWKL Estimation for Pilot-UAV Teaming

TABLE 1 | Comparison of different features and classifiers for traditional and ecological validation designs (mean accuracy and standard deviation).

EEG ECG ET
EEG EEG ECG EEG,

and ECG and ET and ET ECG, and ET

Tr
a
d
iti
o
n
a
l

In
tr
a

KNN 66.0 ± 13.6 70.2 ± 11.4 53.5 ± 10.4 67.8 ± 12.0 54.4 ± 10.0 53.2 ± 11.0 65.7 ± 13.4

DT 62.1 ± 13.5 70.4 ± 12.2 51.6 ± 10.7 71.4 ± 12.7 61.9 ± 12.8 68.6 ± 13.1 61.6 ± 13.9

AB 64.9 ± 12.6 70.3 ± 12.4 52.3 ± 11.2 74.1 ± 11.9 65.7 ± 12.3 69.1 ± 12.7 65.1 ± 12.8

GNB 62.6 ± 14.0 69.0 ± 10.9 54.3 ± 13.3 65.9 ± 13.2 62.5 ± 13.6 63.6 ± 13.2 62.6 ± 14.0

LDA 67.9 ± 13.4 68.9 ± 10.4 55.8 ± 12.0 74.8 ± 11.8 67.0 ± 13.2 68.9 ± 11.4 74.6 ± 10.6

QDA 62.4 ± 12.0 69.9 ± 10.8 55.2 ± 10.7 63.8 ± 11.1 59.3 ± 11.1 59.4 ± 14.7 62.4 ± 12.1

SVM 68.2 ± 12.5 73.7 ± 11.4 56.6 ± 10.8 74.1 ± 10.9 66.0 ± 11.8 69.2 ± 10.6 71.2 ± 10.8

In
te
r

KNN 51.4 ± 3.2 50.9 ± 6.1 52.6 ± 3.1 51.7 ± 4.5 52.6 ± 3.7 52.5 ± 4.9 52.3 ± 3.8

DT 50.5 ± 4.9 51.3 ± 7.7 51.2 ± 3.3 51.3 ± 6.7 51.3 ± 4.7 52.1 ± 7.8 51.6 ± 6.2

AB 52.4 ± 5.5 54.0 ± 10.7 52.7 ± 3.2 52.2 ± 9.6 52.9 ± 5.2 53.4 ± 10.2 52.9 ± 9.1

GNB 52.9 ± 4.7 53.2 ± 11.2 53.7 ± 2.3 52.6 ± 4.2 53.5 ± 3.5 54.3 ± 4.1 53.5 ± 3.3

LDA 54.2 ± 5.3 57.3 ± 11.9 54.4 ± 3.8 54.4 ± 5.8 55.3 ± 5.3 56.0 ± 10.1 55.1 ± 5.8

QDA 53.1 ± 5.2 55.6 ± 12.1 53.9 ± 2.8 53.0 ± 4.8 53.2 ± 4.2 53.9 ± 5.9 52.6 ± 3.7

SVM 52.1 ± 5.2 55.1 ± 12.5 53.9 ± 3.3 50.8 ± 5.4 54.5 ± 5.5 54.8 ± 9.2 53.1 ± 5.8

E
c
o
lo
g
ic
a
l

In
tr
a

KNN 54.9 ± 9.2 56.9 ± 12.1 49.4 ± 6.1 54.9 ± 8.5 49.6 ± 6.1 49.3 ± 6.2 49.6 ± 6.1

DT 50.9 ± 8.1 55.9 ± 10.7 50.1 ± 5.9 52.7 ± 8.6 51.5 ± 8.9 54.0 ± 8.5 52.8 ± 8.6

AB 52.7 ± 9.1 56.8 ± 11.9 49.7 ± 5.5 52.7 ± 8.7 52.3 ± 9.2 55.3 ± 9.8 53.2 ± 7.8

GNB 52.8 ± 8.1 59.7 ± 12.6 51.0 ± 5.4 53.3 ± 9.2 52.0 ± 8.6 54.5 ± 6.5 52.4 ± 8.3

LDA 51.1 ± 8.3 56.9 ± 16.4 51.9 ± 8.9 53.3 ± 10.9 52.3 ± 10.4 54.2 ± 12.9 52.5 ± 10.5

QDA 53.1 ± 7.6 57.8 ± 12.8 49.7 ± 5.5 53.0 ± 8.9 50.4 ± 6.0 52.4 ± 7.2 49.8 ± 5.7

SVM 52.4 ± 10.3 59.4 ± 12.3 49.9 ± 5.9 54.2 ± 9.3 52.0 ± 9.5 55.8 ± 10.0 53.7 ± 8.8

In
te
r

KNN 54.4 ± 7.3 52.1 ± 9.0 52.7 ± 4.3 55.2 ± 6.6 55.2 ± 7.7 51.5 ± 6.1 55.0 ± 5.7

DT 50.8 ± 7.6 52.3 ± 12.7 50.5 ± 4.6 52.0 ± 7.9 50.7 ± 7.5 53.7 ± 8.7 53.1 ± 7.7

AB 52.3 ± 6.1 55.9 ± 18.3 52.2 ± 4.3 53.8 ± 9.7 52.8 ± 6.5 54.4 ± 15.4 53.7 ± 10.3

GNB 52.3 ± 4.2 54.3 ± 16.0 51.9 ± 4.1 51.4 ± 3.7 53.6 ± 4.8 53.8 ± 4.1 52.8 ± 4.5

LDA 52.6 ± 5.5 59.8 ± 18.6 53.0 ± 4.5 55.3 ± 9.1 54.3 ± 6.1 56.5 ± 12.9 56.1 ± 8.7

QDA 52.5 ± 4.4 58.3 ± 17.6 53.3 ± 5.4 52.8 ± 4.5 53.4 ± 4.9 52.9 ± 7.0 53.3 ± 5.3

SVM 52.6 ± 5.9 57.2 ± 18.8 52.1 ± 5.1 54.5 ± 7.6 53.8 ± 6.4 53.5 ± 10.7 55.6 ± 8.7

Bold: Best accuracy per feature type and validation method.

settings such as in MUM-T scenario, this factor has to be
taken into account. Hence, the most ecological (i.e., close to
real life implementation) way of creating and validating a
classification pipeline best suited for real world scenarios, is
to consider time and separate training and testing data based
on time.

Based on this review of the literature, this study was
designed to address two lacks and has the following
objectives: (i) to characterize and estimate mental workload
in a MUM-T setting with a search and rescue mission
scenario; (ii) to assess the impact of the validation
procedure on classification accuracy by comparing the
results obtained for the traditional and the ecological
methods; the ecological one was expected to yield
lower accuracy.

In the next sections of this paper, the materials and
methods section details the experimental protocol put in
place in order to elicit two levels of mental workload
within a MUM-T scenario, as well as the data acquisition
and data processing steps. Then the results are presented,

and lastly they are discussed along with recommendations
and perspectives.

2. MATERIALS AND METHODS

2.1. Participants
The experiment was performed on 14 healthy volunteers (6
females, 8 males; 24.4 y.o. ± 1.95). Before the experiment
took place, all participants gave their written consent for data
collection, storage and processing in an anonymous manner. The
experiment was validated and authorized by the local ethical
committee (CER Toulouse Id number: 2019-137).

2.2. Experimental Protocol
The experiment was divided into four blocks of 8 min each,
each block corresponding to a S&R mission (i.e., there were four
8-min missions). Two blocks corresponded to the low mental
workload condition (L), and the remaining two were for the
high mental workload condition (H). Their order was pseudo-
randomly changed between H-L-H-L and L-H-L-H for each
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FIGURE 1 | Experimental protocol timeline.

participant. Each workload condition was separated by a 1 min
break. Figure 1 illustrates the experimental protocol timeline.
After having given their informed consent, and before starting
the experiment, the participants were properly trained for the
piloting task, and were also familiarized with a dummy session
that included all the sub-tasks. This training was performed in
order to familiarize the participants with the whole system and
tasks to perform.

When they were comfortable with the simulator and the
related sub-tasks, the instruction page was shown in the
application screen to formally detail the experiment, its tasks,
and the level of importance of each sub-task. Then, they
were then told to press the start button whenever they were
ready to start. In the very beginning of each break, the
participants were asked to answer an interactive version of the
Instantaneous Self Assessment (ISA) questionnaire (Tattersall
and Foord, 1996) displayed in the application screen. The
ISA questionnaire was shown with a slider that could be
moved between 5 standard ISA options. Participants took
6 s in average to answer this questionnaire. After that,
and for the remaining of the rest period, all four screens
showed a black screen, except for screen 2 and 4 which
showed a white dot on a black background. The participants
were instructed to focus on the white dot in screen 4
during this phase. Therefore, the whole experiment lasted
for 90 min.

2.3. Search and Rescue Mission
The task performed in this experiment was a search and
rescue mission (S&R mission). During the mission, the
participants had to perform a pilot flying task using a flight
simulator (displayed in the first 3 screens in Figure 2) while
interacting with the UAVs through the U-track application
(see the 4th screen in Figure 2, or the Figure 3). The
flight simulator that was used was the Aerofly FS2 flight
simulator1. This flight simulator is commercially available,
and possesses several functionalities such as: an advanced
flight dynamics, a wide selection of aircraft, customizable

1https://www.aerofly.com/

flight conditions, highly detailed 3D cockpits, and options
to add 3D structures in the environment. This functionality
allowed us to create wrecked zones with destroyed 3D building
inside the simulation. The main S&R mission task was
composed of three sub-tasks: a detection and identification
one, a working memory one, and a flying sub-task as
detailed below:

• Detection and identification sub-task: simulated the process
of UAV requests in the form of pop-ups in the U-track
application (see Figure 2 screen 4, which corresponds to Area
of Interest (AOI) 4.2 in Figure 4). A beep sound initiated the
requests and the human pilot had to search if there was any
human present in a group of 9 gray scale images (extracted
from the Norb database LeCun et al., 2004), and had to answer
with Yes or No. This was the highest priority sub-task, i.e.,
of priority level 1. The detection and identification request
was an event-based sub-task with 15 identifications to be
performed for each experimental condition. Note, the time
interval between two requests was randomly chosen between
21 and 24 s.

• Working memory sub-task: consisted in Air Traffic Control
(ATC) instructions played in the form of audio messages
of headings to be followed by the pilot and communication
channels for UAVs. In this task, the pilot was required
to memorize communication channel values for the
UAVs and to recall them in the U-track application
using a numpad. This sub-task had the least priority,
i.e., it was of priority level 3. Each ATC command
was played with an time interval randomly chosen
between 80 and 82 s. There were 6 ATC commands per
experimental condition.

• Pilot flying sub-task: this sub-task was related to the continuous
compliance with the ATC heading instructions. In other
words, the human agent had to remember the ATC heading
instructions and maintain that heading of the plane in
the Aerofly simulator using the joystick while avoiding the
restricted zones (in red in Figure 3). Maintaining the heading
was of priority level 2 and avoiding the restricted zones was
of priority level 1, equivalent to detection and identification
sub-task’s priority.
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FIGURE 2 | Aerofly simulatior and U-track application screens setup.

FIGURE 3 | Zoom on the UAV application U-track used by the flying pilot to interact with UAVs.

The mental workload level was varied by modifying the working
memory and the flying sub-tasks. Indeed, the low mental
workload (L) and high mental workload (H) conditions were

different in: (i) the number of communication channel inputs
(i.e., 1 vs. 2 randomly selected UAVs) and their value (i.e., the
heading value plus 100 for one UAV communication channel in
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FIGURE 4 | Pre-processing, feature extraction, and classification pipeline.

L vs. random values for the 2 UAVs communication channels in
H), and, (ii) the placement of the restricted zones with respect
to the plane’s path (i.e., far from the path in L vs. close o the
path in H). Additionally, the selected path (the sequence of ATC
heading instructions) for the low mental workload condition
comprised less sharper turns as compared to the high mental
workload conditions.

2.4. Data Acquisition
Physiological and behavioral data from the participants were
recorded thanks to three Lab Streaming Layer (LSL) streams that
were created and published in a local network to be effectively
recorded with LabRecorder, an LSL-based software2.

• The first LSL stream was devoted to electroencephalography
(EEG), electro-oculography (EOG) and electrocardiogram
(ECG) recordings. The EEG Biosemi system was used at 2,048
Hz, with 32 electrodes positioned following the standard 10/20
layout. Additionally, two electrodes were positioned below the
right eye and at the outer canthi of the right eye to perform
the EOG recordings. Lastly, two electrodes were placed on the
participants’ torso to perform the ECG recordings: 1 on the
plexus and one on the left 5th intercostal.

• The second LSL stream was used to collect data from the
Tobii glasses eye-tracker (ET). An application was developed
to collect the raw data at 100 Hz and the image data at 25 Hz
from the Tobii glasses using WiFi (Singh et al., 2020). This
application synchronizes and processes, in real-time, image
frames from image data and the raw gaze data to determine the
gaze location with respect to specific Areas of Interest (AOIs),
(see the “ET AOI processing module” shown in Figure 4). Note,
this ET LSL stream contained almost 29 data fields, in which
27 were fed with Tobbi glasses raw data (e.g., timestamp, 2D
gaze position, and pupil dilation of each eye), AOI number
with gaze, and also the list of all Aruco codes visible in the
image frame that help identifying AOIs. The image processing
of AOIs using Aruco codes has been explained in detail in a
previous work (Singh et al., 2020). Up to 7 AOIs were defined

2LabStreamingLayer (LSL) library version 1.13, see documentation at https://

labstreaminglayer.readthedocs.io/index.html.

for this experiment, three AOIs for the Aerofly-related screens
(one AOI per screen 1, 2, and 3 of Figure 2), three other AOIs
concerning the U-track application (see Figure 5), and one
AOI tagged as no-screen.

• The third LSL stream was devoted to the Aerofly simulator
data, as well as the behavioral and subjective data grouped
within the U-track application. This LSL stream was running
at 100 Hz. It included all plane’s parameters from the Aerofly
simulator (e.g., speed, heading, and geolocation). The Aerofly
data were sent to the U-track application and then embedded
by the application in the same LSL along with other data
fields. Note, the behavior and the subjective feedback data were
event-based. It contained all the data regarding the human
pilot interaction with the application, event time stamps, and
response values for each sub-task. As event-based, they were
only published in the LSL stream at their occurrence.

2.5. Pre-processing and Features
Extraction
2.5.1. Performance Scores
All three sub-tasks were scored. In the detection and
identification pop-up sub-task, each correct detection was
scored with 1. The pop-up response score and pop-up response
time were calculated for each event and averaged per load
condition, across all experimental blocks (i.e., yielding one value
per load condition). The same procedure was applied for the
working memory sub-task. However, the flying task score (yscore)
is based on the headings xn observed every 500 ms. Thus, starting
from an ATC command at time t until the next ATC command
at time t+k the score is defined as the sum of Gaussian functions
following the equation:

yscore =
t+k∑

n=t

1

σ
√
2π

e
− (xn−µ)2

2σ2 . (1)

Hence, participants scored higher when they flew in compliance
with the required heading µ. The standard deviation σ was set at
20 degrees.

Alongside maintaining a correct heading, there was a higher
priority part of the flying task, that was to avoid the restricted
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zones. Thus, for each 50 ms in the restricted zone, a penalty of 0.5
was applied to the heading score. Note that the score of the flying
sub-task was a continuous score computed from the ending of an
ATC command call until the next ATC call. At each newATC call,
the score related to the previous ATC command was published
in the LSL stream. The scores related to all ATC calls in a given
workload condition were then averaged, giving one score value
per load condition.

2.5.2. Subjective Feedback
The subjective feedback measure was based on the results of
the Instantaneous Self-assessment (ISA) (Tattersall and Foord,
1996) questionnaire launched at the end of each mission (i.e.,
experimental block). The obtained score ranged from 0—Under
Utilized—to 100—Excessive. The ISA scores were averaged per
mental workload condition.

2.5.3. Physiological Data Processing
Figure 4 illustrates the offline physiological data processing flow.
On the very first step, participant’s data were separated for each
load or rest condition. As seen earlier, there were two low mental
workload and two high mental workload conditions of 8 min
each; and 5 resting conditions of 1 min each. Therefore, 9 blocks
of conditions for each participant were created. Then, each block
was processed one by one to create 6-s epochs. An important
thing to note is, EEG and ECG were coming from same stream
(Biosemi stream), but the ET data was coming from a different
stream. Therefore, by using timestamps from the Biosemi stream,
which was of highest frequency (2,048 Hz), timestamps for the
beginning and the ending of the 6-s epoch were selected as
reference timestamp. These selected timestamps were then used
to get closest timestamps from the ET stream. Each epoch was
then fed to their respective sub-pipelined for further processing,
as detailed below:

• EEG epochs were processed using python’s MNE library 3.
Each 6-s epoch was first passed through a band-pass filter for
filtering out frequencies below 1 Hz and above 40 Hz, and then
downsampled to 512 Hz. Ocular artifacts were automatically
removed based on an Independent Component Analysis (ICA,
fastica algorithm) using EOG channels as reference signals.
Then, an average re-referencing was applied to the cleaned
data. Cleaned epochs were then used to extract PSD features
using the multitaper method. The extracted features are the
absolute power in the following bands: θ (4–8 Hz), α (8–12
Hz), β (12–30 Hz), and γ (30–45 Hz).

• ECG 6-s epochs were passed through a high-pass filter
(above 1 Hz), then peak detection was performed and R-
R intervals were extracted. The Aura-healthcare4 Python
package was used to remove RR-interval outliers using the
Malik rule (Kamath and Fallen, 1995), and then finally heart-
rate (HR) and heart-rate variability (HRV) temporal features
were extracted using the same package. In particular, HRV is
approximated using the Standard Deviation of the Normal-to-
Normal (SDNN) RR-intervals. These HR and HRV temporal

3MNE version 0.22.1, see documentation at https://mne.tools/stable/index.html
4see https://github.com/Aura-healthcare/hrv-analysis.

features were normalized with respect to the previous resting
period by subtracting each feature with the average value of
this feature in the resting condition.

• ET 6-s epochs were first processed to extract fixations and
blinks. Using Tobii glasses, the data was sampled at 100 Hz and
the samples that were missing from continuous data stream
were inferred as blinks. Fixations are generally considered as
the windows between two consecutive saccades (i.e., rapid
eye movements between 2 points) (Nyström and Holmqvist,
2010); here these fixations were extracted using the pygaze
python library (Dalmaijer et al., 2014).

2.6. Classification
A feature selection approach based on the statistical analyses was
used to focus on the most promising features for performing
the classification step. Hence, only features for which there
was a significant effect of the load condition were kept for the
classification stage (see section 2.7). Each feature vector (sample)
considered for classification was extracted from non-overlapping
6-s epochs. To evaluate the impact of features grouped by
the sensor used to acquire them, 7 combinations of features
were considered: EEG-only features, ECG-only features, ET-only
features, EEG and ECG features, EEG and ET features, ECG and
ET features, and finally EEG, ECG, and ET features. Moreover,
due to technical issues during the acquisition for two participants,
the EEG and ECG data of only 14 participants were kept for the
analysis, and 13 for the ET data.

Well-known classifiers that can be applied on small datasets
were used: k-Nearest Neighbors (kNN), Decision Trees
(DT), AdaBoost (AB), Gaussian Naive Bayes (GNB), Linear
Discriminant Analyses (LDA), Quadratic Discriminant Analysis
(QDA), and Support Vector Machine (SVM). Hence, we chose
not to employ highly data demanding classification algorithms
like deep learning, but also did not use Riemannian methods
that—to our knowledge—are seldom used with recording
methods other than EEG. Indeed the main focus here was to
perform a multi-modal estimation. The training-test designs and
cross-validation methodologies—traditional vs. ecological—that
were compared are explained in detail in the following.

2.6.1. Traditional Classification Design
In this setting, the data was classified in a traditional manner, that
is to say with all the data is pooled together, shuffled and splitted
into training data and testing data sets.

Intra-subject: For intra-subject classification in the
traditional design, 70 percent of samples were selected from each
participant’s data and used for parameters optimization using
a grid search method with 5 cross-validations. Then, the best
parameters were selected and used with all the data in a 10-fold
cross-validation method.

Inter-subject: For inter-subject classification in the traditional
design, a leave-n-out cross-validation was used, with n = 2.
Hence, 2 participants were selected each time for testing, and
the remaining 11 participants were used for training. Therefore,
every time the grid search method was used on selected training
data of 11 participants for parameter optimization with 5 cross-
validation. These selected parameters were used to train the
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model with training data and tested on the 2 selected participants
for testing separately.

2.6.2. Ecological Classification Design
To take into account the non-stationarity effects of EEG
signals linked to time, a more ecological and realistic form of
classification evaluation was designed by separating training and
testing data with respect to time, as explained in the following.

Intra-subject: For intra-subject classification in the ecological
design, the initial two blocks ofmental workload data (one of Low
and one of High) were used for training and the remaining two
conditions blocks were used for testing the classifiers’ accuracy.
To ensure a total separation of training and testing sets, a custom
made cross-validation was designed to meet the needs of this
ecological design. In this validation methodology, each mental
workload condition (Low andHigh) from the training and testing
sets were divided into 3 smaller sub-sets. Then using these sub-
sets three groups were created. Please refer to Figure 6 illustrating
the sub-sets and groups creation for this cross-validationmethod.
For instance, the group G1 contained sub-set S1 and S2, group
G2 contained sub-set S2 and S3, and group G3 contained sub-
set S3 and S1, for each load condition from both training and
testing sets. Then two groups were pseudo-randomly selected
from the training set and used for parameters optimization (grid
search) with 5 cross-validations and following it, the classifier was
trained. Then the test phase was performed with all 9 possible
combinations of test groups (i.e., taking 1 from Low and 1 from
High load conditions it is possible to create 9 combinations).
This training and testing procedure was repeated with all the 9
combinations of training set, which eventually gave 81 validation
scores for each classifier.

Inter-subject: For inter-subject classification in ecological
design, a particular leave-n-out cross validation was used, with
n = 2. In this procedure, each time only the last 2 blocks of
mental workload data (one Low and one High) of 2 participants
were selected for testing. The remaining 11 participants along
with the initial 2 blocks of mental workload data of 2 testing
participants were used for training. Therefore, the combination
of training data is used for parameters optimization (grid search)
with 5 cross-validations, and following the classifier was trained,
and finally tested with the 2 selected participants separately.

2.7. Statistical Analysis
Statistical analyses were performed on the subjective, behavioral,
physiological and classification data using the Statistica software,
in order to assess the impact of the experimental conditions
and used features and techniques. Paired t-tests and Wilcoxon
tests were used for subjective and behavioral data analysis, and
for ECG features depending on the respect or not of the data
distribution normality assumption.

Regarding the EEG data analysis, in order to decrease the
dimension of the dataset, 20 electrodes that had a highest
magnitude difference between high and low mental workload
conditions were kept: Fp1, AF3, F7, F3, FC5, T7, CP5, P7, PO3,
O1, Oz, O2, PO4, P8, T8, FC6, F4, F8, AF4, and Fp2. A repeated
measure n-way ANOVA was applied on the EEG power features
(i.e., 2 load conditions × 20 electrodes × 4 frequency bands—
θ , α, β , and γ ). The sphericity assumption was checked and a
Greenhouse-Geiser correction was applied when violated. Tukey
post-hoc tests were performed for each statistically significant
main effect and interaction effect.

Concerning the ET features, two different analyses were
performed. A first one was performed on features that are

FIGURE 5 | U-track application sub-areas of interest.
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FIGURE 6 | Allocation process of each participant’s data in the ecological classification validation design for creating testing and training sets. Data from each

condition (High:H, Low:L) are divided into three subsets (S1, S2, and S3). These subsets are used to create three groups (G1, G2, and G3; e.g., G1 = S1 + S2).

assumed to be unrealted, i.e., blink latency, the number of
fixations, the fixation duration, and pupil dilation. For these,
paired t-tests or Wilcoxon tests were used based on the
normality of the data. The other features that have within
relation, such as the number of fixations on each AOI and
the total fixation duration on each AOI were analyzed with a
repeated n-way ANOVA. The main objective of this analysis
is to identify if there exists any statistical difference between
those ET features given the two mental workload conditions,
and AOI (e.g., 2 load conditions × 5 areas of interest). Note
that there are 7 AOIs in total along with one “no screen” AOI.
However, two AOIs were not used because they contained almost
no fixations.

Lastly, an ANOVA was performed on the classification
results to assess the impact of the type of validation pipeline
-either traditional or ecological- on the classification accuracy
reached using the various features and classifiers for both
the intra-participant and the inter-participant estimations
(i.e., 2 validation pipelines × 7 classifiers × 7 feature
combinations). Tukey post-hoc tests were performed for each
statistically significant main effect and interaction effect.
Additionally, the classification results were compared with the
chance level adjusted with respect to the amount of data
(Müller-Putz et al., 2008).

3. RESULTS

3.1. Subjective and Behavioral Data
The analysis of the subjective and behavioral data showed
that performance decreased, reaction times increased, and the
reported workload increased with an increase inmental workload
(i.e., task difficulty; see Figure 7). Indeed, the reported workload
acquired through the ISA questionnaire significantly increased
with load (t = 3.26, p < 0.05). Moreover, the pilot flying and
ATC commands related scores significantly decrease with load
(t = −4.77, p < 0.001 and t = −3.79, p < 0.01, respectively).

3.2. Physiological Data
3.2.1. Electrocardiogram (ECG)
A paired t−test for Heart Rate data and a paired Wilcoxon test
for Heart Rate Variability were performed with respect to the two
conditions (low and high mental workload, see Figures 8A,B).
There was a significant effect of load on both metrics with a
significant increase in HR (t = 27, p < 0.001) and a significant
decrease in HRV (W = 0.28, p < 0.05) when load increased.

3.2.2. Eye-Tracking (ET)
The impact of the load condition on the eye-tracking features
extracted using the processing pipeline (blink latency, number of
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FIGURE 7 | Illustration of the statistical results for the subjective and behavioral metrics for 14 participants using Paired t-test. ***p < 0.001, **p < 0.01, and

*p < 0.05. Pop-up response time is multiplied by 10 for visualization purposes.

fixations, fixation duration, and pupil dilation) was statistically
assessed using paired t-tests. Aside from blink latency, all the
other features were significantly impacted by load. Hence, with an
increase in load, the number of fixations significantly increased
(t = 3.15, p < 0.01), the average fixation duration significantly
decreased (t = 2.79, p < 0.05), and pupil dilation significantly
increased (t = 3.83, p < 0.01).

The impact of load on the number of fixations and
the total fixation duration features for each AOI was also
statistically assessed using an n-way ANOVA. There was a
significant main effect of load [F(1,12) = 5.39, p < 0.05],
and of AOIs [F(4, 48) = 15.13, p < 0.001], as well as a
significant interaction effect [F(4, 48) = 12.08, p < 0.001]
on the total fixation duration (Figure 9). Hence, in the high
load condition participants spent more time fixating AOI 2
(middle screen of the plane flying simulator) and AOI 4.1
(U-track sub-part for analyzing the movement of plane to
avoid red zones) than in the low load condition (p <

0.01).
Regarding the number of fixations, there was also a significant

main effect of load [F(1,12) = 9.97, p < 0.01], of AOI [F(4, 48) =
11.87, p < 0.001] and a significant interaction effect [F(4, 48) =
6.79, p < 0.001]. Hence, participants made more fixations on

the AOI 4.1 in the high workload condition than in the low
workload one (meanlow = 2.28; stdlow = 1.70; meanhigh = 2.72;
stdhigh = 1.63; p < 0.01).

3.2.3. Electroencephalography (EEG)
Mental workload had a significant impact on the EEG features
(i.e., the power in the 4 frequency bands of interest), with all
ANOVA factors and interactions being significant. In particular,
there was a significant main effect of load [F(1,13) = 16.31, p <

0.01] with a general increase in power with an increase in
workload. However this effect was modulated by interactions
with electrode site [F(19,247) = 1.98, p < 0.001], band [F(3,39) =
16.17, p < 0.001], and electrode site and band [F(57,741) =
2.45, p < 0.001]. Indeed, only the power of the beta and gamma
bands did significantly increase with an increase in load at the
following 10 electrode sites: Fp2, FC5, FC6, T7, T8, CP5, P8,
O1, Oz, and O2 (p < 0.01), that is to say mostly at fronto-
central, temporal, and occipital sites (Figure 10 for illustration).
The decrease in alpha power with an increase in load observed at
parietal sites did not reach significance.

Moreover, the Engagement Index (EI) significantly increased
with an increase in workload [F(1,13) = 9.65, p < 0.01], with a
significant interaction between load and electrodes [F(19,247) =

Frontiers in Human Neuroscience | www.frontiersin.org 11 August 2021 | Volume 15 | Article 692878

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Singh et al. MWKL Estimation for Pilot-UAV Teaming

FIGURE 8 | Impact of load on the ECG temporal features. (A) Impact of load on the normalized heart rate (HR) temporal feature (p < 0.001). (B) Impact of load on the

normalized heart rate variability (HRV) (p < 0.05). Specifically, HRV is the Standard Deviation of the Normal-to-Normal (SDNN) RR-interval. ***p < 0.001 and *p < 0.05.

FIGURE 9 | Impact of the mental workload condition on the total duration of fixations per AOI (**p < 0.01, ***p < 0.001).
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FIGURE 10 | Topographic maps of the average power across subjects in the θ , α, β, and γ bands for the high and low mental workload conditions, and their

difference (“H”: high workload; “L”: low workload; “H-L”: difference between high and low workload).

3.37, p < 0.01]. Hence, the EI significantly increased with load at
the FC5, FC6, T7, T8, CP5, and P8 electrode sites (p < 0.05).

3.3. Classification Results
Regarding mental workload estimation results, the classification
accuracy was obtained for four different validation methods: the
traditional intra-subject classification design (see Figure 11), the
ecological intra-subject classification design (see Figure 12), the
traditional inter-subject classification design (see Figure 13), and
the ecological inter-subject classification design (see Figure 14).
The results are detailed in these figures which also include an
adjusted chance level that takes into account the number of trials
per class (Müller-Putz et al., 2008). A detailed comparison for
all features, classifiers, and validation design combinations is
also given in Table 1. From these results and from the n-way
repeated measures ANOVAs performed to assess the impact of
the validation method, the features used for classification and the
classifier, the following can be said:

• Intra-subject classification: the highest accuracy was achieved
with the traditional validation design with 74.8% (Figure 11)
as compared to 59.6% with the ecological validation design
(Figure 12). With the traditional validation design all features
and classifiers gave estimation results above the adjusted
chance level, except using ET-only features for all classifiers,
and EEG and ET as well as ECG and ET with the KNN
classifier. With the ecological validation design, only a few
features and classifiers gave results above the adjusted chance
level, i.e., ECG-only features for all classifiers except DT. There
was a significant drop in classification accuracy from the

traditional validation design to the ecological one [F(1, 12) =
100.92, p < 0.001]. Also, there were significant main effects
of the features used [F(6, 72) = 9.91, p < 0.001], the classifier
used [F(6, 72) = 11.18, p < 0.001], as well as significant
interactions between the validation method and the features
[F(6, 72) = 4.95, p < 0.001), the validation method and the
classifier [F(6, 72) = 11.85, p < 0.001], the features and the
classifier [F(36, 432) = 5.74, p < 0.001], as well as the double
interaction between the validation method, the features and
the classifier [F(36, 432) = 3.62, p < 0.001]. Indeed, whatever
the classifier and the validation design the ECG-only features
gave significantly higher estimation accuracy, and ET-only the
worst (p < 0.05). However the EEG and ECG feature sets
also allowed to reach high classification accuracy with the
traditional design with AB, LDA, and SVM (p < 0.05), and
all three feature types combined with the LDA (p < 0.05).
Indeed, regarding the classifiers, best performance was reached
with the traditional validation design using the AB, LDA, and
SVM ones, LDA and SVM reaching maximum performance
(p < 0.05); no difference between classifiers was significant
with the ecological validation design.

• Inter-subject classification: the highest accuracy was achieved
with the ecological validation design with 59.8% (Figure 14)
as compared to 57.4% with the traditional design (Figure 13).
Interestingly, 59.8% of accuracy is also higher than the intra-
subject classification accuracy achieved in ecological settings.
There was no significant impact of the validation method,
nor the features used. There was only a main effect of the
classifier used [F(6,72) = 2.73, p < 0.05], with LDA giving
significantly higher accuracy than DT (p < 0.01). Although
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FIGURE 11 | Intra-subject mental workload estimation results per features and classifiers with the traditional validation design (average across participants). The dots

represent the average score of each feature combination and the vertical line represents the associated standard deviation. The dashed horizontal red line represents

the adjusted chance level while the blue one represents the highest classification accuracy.

there was no significant effect of the features used, with the
traditional validation design the best performance was reached
using ECG-only features which was the only feature set giving
results above the adjusted chance level. Moreover, with the
ecological validation design ECG features were also giving the
best estimation performance with accuracy above chance level
reached only with this feature set for LDA, QDA, and SVM,
with the exception of EEG and ECG, and all three feature
types with the LDA that also gave results above the adjusted
chance level.

4. DISCUSSION

The main objectives of this study were: (i) to characterize and
estimate mental workload in a MUM-T setting with a search
and rescue mission scenario; (ii) to assess the impact of the
validation procedure on classification accuracy by comparing
the results obtained for the traditional and the ecological
methods. To achieve these objectives, an important amount
of developments and research, ranging from different kinds
of interactions between humans and UAVs, different types of

workload experienced by human agents, and about how to alter
mental workload without loosing realism of a MUM-T mission
has been conducted to create a setup that resembles all the
working principles of a MUM-T operation.

The subjective and behavioral results have enabled us to
confirm the ability of the implemented missions to elicit
two levels of mental workload. Indeed, in the high load
condition participants’ performance significantly decreased and
they reported a higher load than in the low load condition, which
is in accordance with the literature (Taylor et al., 2005; Bruggen,
2015; Gateau et al., 2015, 2018). It appeared after hand that
some participants translated the English ATC commands into
their native language for memorization, an additional processing
step that has most certainly affected their performance. However
participants’ strategies were unfortunately not systematically
recorded and could not be analyzed. It might also have
been particularly interesting to evaluate their adherence to the
given priorities. Indeed, immediately after ATC commands,
participants could make their priorities wrong. Here the
participants had to choose between shifting to the new
heading first or first putting the radio values for UAVs. In
this case the longer they delayed the heading, the worst the
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FIGURE 12 | Intra-subject mental workload estimation results per features and classifiers with the ecological validation design (average across participants). The dots

represent the average score of each feature combination and the vertical line represents the associated standard deviation. The dashed horizontal red line represents

the adjusted chance level while the blue one represents the highest classification accuracy.

score would be. For the next step—implementing real time
mental state estimation and system adaptation—the design of
a composite score with weights applied on the performance
scores corresponding to the priorities will be required by the
planning algorithm.

Interestingly, in addition to the subjective and behavioral
results, the physiological measurements were also in accordance
with the literature with a significant increase in heart rate and
decrease in heart rate variability (Heard et al., 2018), as well
as a significant increase in power in the EEG β and γ bands
and an increase of the engagement ratio with an increase in
mental workload. These power modulations are in accordance
with the literature and have been linked to modifications in
the alertness level, integration of sensory inputs, and working
memory load (Pope et al., 1995; Kumar and Bhuvaneswari, 2012;
Borghini et al., 2014). Moreover, as expected from the literature
(Borghini et al., 2014; Roy et al., 2016b), there was a decrease in
alpha power at parietal sites, however this effect did not reach
significance. Concerning the results obtained for ET features,
pupil dilation increased with an increase in mental workload
as expected (Heard et al., 2018). Moreover, fixation duration

decreased with an increase in mental workload which reflects the
more demanding the scenario was on attentional resources that
had to be allocated to several tasks.

A thorough benchmarking of several feature combinations
and classifiers was performed in order to determine an efficient
mental workload estimation pipeline for this MUM-T scenario.
Moreover, in order to assess the impact of the validation
procedure, due to time-related non-stationarity effects on the
physiological signals, different classification designs were studied
and implemented. In particular, an ecological design was
proposed to better reflect a real world process by training the
estimation pipeline on data acquired beforehand (either from
previous subjects or data from the beginning of the session) and
testing the pipeline on new data (either from a new subject or
from data of the end of the session). This validation design was
compared to a traditional one. As was hypothesized based on the
literature (Roy et al., 2013, 2016b), mental workload estimation
dropped significantly when using the ecological design, for the
intra-subject classification. Note that this is also the case when
systems are trained in a controlled setup and then evaluated in a
real world setup. However, this accuracy performance decrease
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FIGURE 13 | Inter-subject mental workload estimation results per features and classifiers with the traditional validation design (average across participants). The dots

represent the average score of each feature combination and the vertical line represents the associated standard deviation. The dashed horizontal red line represents

the adjusted chance level while the blue one represents the highest classification accuracy.

should not be seen as a limitation. Rather it should be taken
as an opportunity to work on further developments in order to
exploit new promising methods for such operational scenarios.
For instance, transfer learning, automatic feature selection, deep
learning, and ensemble learning could be good options to look
forward. Fahimi et al. proposed and evaluated a transfer learning
technique based on Deep Neural Networks, in which a classifier
is trained with a leave-one-out procedure and then further
retrained using a small sample set of test subject’s data (Fahimi
et al., 2019). However, they did not consider the signal’s non-
stationarity, which could bring different results in a more realistic
scenario. Whereas in this study a basic form of transfer learning
was implemented with the inter-subject ecological classification
design which took into consideration the non-stationarity effect
of EEG.

In light of these results, it appears that HR and HRV features
from ECG, pupil dilation feature from ET, and beta, gamma, and
engagement index features from EEG could possibly be exploited
in a MUM-T scenario in order to estimate human mental
workload through classification means. In addition regarding the
EEG features, specific frontal, temporal and parieto-occipital sites

have been identified that could lead to better mental workload
estimation results, i.e., Fp2, FC5, FC6, T7, T8, CP5, P8, O1, Oz,
and O2. More specifically, regarding the features that are most
useful for mental workload assessment in our scenarios, it stood
out that ECG features provided the best results compared to
EEG and ET ones. One of the reasons could be the number
of features, only 2 ECG features were used for classification,
compared to 60 for EEG and 16 for ET. Therefore, automatic
feature selection as proposed by Climente-González et al. (2019),
could also be another promising research venue to look into
while designing a better estimation pipeline for real world
mental workload monitoring applications. Finally, concerning
EEG features, one could also look into more robust features
to avoid non-stationarity effects, such as ERPs as proposed
by Roy et al. (2016b). Besides feature combinations, several
classifiers were benchmarked in this study. The ones that gave
the best results were the Adaboost, the Linear Discriminant
Analysis and the Support Vector Machine. Although classifiers
based on Riemannian geometry are known to give outstanding
results for cognitive state estimation based on EEG data
(Appriou et al., 2020), we could not use them for features
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FIGURE 14 | Inter-subject mental workload estimation results per features and classifiers with the ecological validation design (average across participants). The dots

represent the average score of each feature combination and the vertical line represents the associated standard deviation. The dashed horizontal red line represents

the adjusted chance level while the blue one represents the highest classification accuracy.

others than EEG, and therefore they were not included in our
benchmark. However they should be investigated in combination
with others for peripheral signals in order to improve the
mental workload estimation. Also, signal conditioning methods
should be considered and benchmarked, such as spatial filtering
methods (Roy et al., 2015).

Some of the limitations of this work that should be considered
for future studies could concern a more accurate chance level
adjustment by considering the number of features in addition
to the number of trials per class (Combrisson and Jerbi, 2015).
Another limitation to be addressed would be the need to evaluate
the benefit of transfer learning methods to overcome the time-
related non-stationarity issue. Moreover, these results need to
be further validated by increasing the number of participants
in order to increase the amount of data and robustness of the
results, but also by either eliminating artifact sources other than
ocular ones, which might have affected the gamma range, or by
only focusing on lower frequency bands, as well as by evaluating
the benefit of performing and individualized frequency band
computation. Moreover, a necessary step in future works consists
in working on the implementation of additional methods such

as Riemmanian methods that could be employed to fuse all
physiological recordings (Jiang et al., 2019), as well as thoroughly
evaluating the potential use of data demanding algorithms such
as the ones based on deep learning (Schirrmeister et al., 2017;
Chakladar et al., 2020).

In the near future, this work will be extended towards the
completion of a whole pBCI pipeline as the one showed in
Figure 4. The pipeline output could be seen as the output
of a monitoring system. This monitoring system could then
feed an appropriated sequential decision-making system (e.g.,
planner) that would take the estimated state of both types
of agents: the artificial ones, and the human pilot, and then,
choose the most appropriate agent, given its skills and current
capabilities, for performing a given task at hand. Hence, work
will have to be performed regarding the most appropriate ways
to mitigate operator mental states, such as task allocation,
i.e., adaptive automation human-computer interface studies
(Aricò et al., 2016; Di Flumeri et al., 2019). A solution
to perform this task allocation is to use sequential-decision
making. A sequential-decision making model able to consider
uncertainties, such as monitoring system outputs’ inaccuracy,
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while taking into consideration long-term mission goals, would
be a promising candidate. Moreover, the partial observability of
the human pilot state and the low accuracy of the monitoring
system (e.g., classifier) could be also compensated by such
an appropriate sequential decision-making framework. Partial
Observable Markov Decision Process seems to be an excellent
long-term decision framework to implement such an adaptive
symbiotic teaming (Chanel et al., 2020b; Roy et al., 2020).

5. CONCLUSION

This research work has provided a Manned-Unmanned Teaming
(MUM-T) environment that aims to mimic a real world
search and rescue operation, while providing a way to
characterize and estimate the mental workload of a human
agent based on subjective, behavioral and physiological measures.
Cardiac measures and the Adaboost, Linear Discriminant
Analysis and Support Vector Machine classifiers gave the best
mental workload estimation performance. Furthermore, an
ecological classification validation design was proposed and
evaluated. The negative effect of the time-related non-stationarity
of physiological data (e.g., EEG features) on classification
performance was statistically assessed and the authors believe it
should be considered when developing solutions for real world
applications. In conclusion, this work paves the way towards
an interaction control system design that could take decisions
and assign tasks based on the state of artificial agents and also
based on human mental state estimation. The remaining part is
to complete the bigger picture of this pBCI system by thoroughly
considering inputs from all involved agents, current state and

goals of the mission; and then, taking decisions that could
enhance the mission performance while keeping both the agents
in safer and best productive state.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because not shareable. Requests to access the datasets should be
directed to gaganpreet.11@gmail.com.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by CER Toulouse, Id number: 2019-137. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

GS, CC, and RR: study conception and design, data analysis
and interpretation, and writing the article. GS: protocol
implementation and data acquisition. All authors have approved
the current manuscript.

FUNDING

This work has been financially supported by the Dassault
Aviation Chair5 (CASAC 2016-2021).

5https://www.isae-supaero.fr/fr/isae-supaero/mecenat-relations-avec-la-

fondation-isae-supaero/chaire-dassault-aviation-casac

REFERENCES

Angie, A. D., Connelly, S., Waples, E. P., and Kligyte, V. (2011). The influence of

discrete emotions on judgement and decision-making: a meta-analytic review.

Cogn. Emot. 25, 1393–1422. doi: 10.1080/02699931.2010.550751

Appriou, A., Cichocki, A., and Lotte, F. (2020). Modern machine-

learning algorithms: for classifying cognitive and affective states from

electroencephalography signals. IEEE Syst. Man Cybernet. Mag. 6, 29–38.

doi: 10.1109/MSMC.2020.2968638

Aricó, P., Borghini, G., Di Flumeri, G., Colosimo, A., Bonelli, S., Golfetti, A., et al.

(2016). Adaptive automation triggered by EEG-based mental workload index:

a passive brain-computer interface application in realistic air traffic control

environment. Front. Hum. Neurosci. 10:539. doi: 10.3389/fnhum.2016.00539

Bell, L., Vogt, J., Willemse, C., Routledge, T., Butler, L. T., and Sakaki, M.

(2018). Beyond self-report: a review of physiological and neuroscientific

methods to investigate consumer behavior. Front. Psychol. 9:1655.

doi: 10.3389/fpsyg.2018.01655

Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic, V.

T., et al. (2007). EEG correlates of task engagement and mental workload

in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 78,

B231–B244.

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., and Babiloni, F. (2014).

Measuring neurophysiological signals in aircraft pilots and car drivers for the

assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav.

Rev. 44, 58–75. doi: 10.1016/j.neubiorev.2012.10.003

Bradshaw, J. M., Jung, H., Kulkarni, S., Allen, J., Bunch, L., Chambers, N.,

et al. (2004). “Toward trustworthy adjustable autonomy and mixed-initiative

interaction in kaos,” in Proceedings of the AAMAS 2004 Trust Workshop (New

York, NY). doi: 10.1007/11532095_2

Brockmann, E. N., and Simmonds, P. G. (1997). Strategic decision making: the

influence of ceo experience and use of tacit knowledge. J. Manag. Issues 9,

454–467.

Brouwer, A.-M., Hogervorst, M. A., Van Erp, J. B., Heffelaar, T., Zimmerman,

P. H., and Oostenveld, R. (2012). Estimating workload using EEG

spectral power and ERPs in the n-back task. J. Neural Eng. 9:045008.

doi: 10.1088/1741-2560/9/4/045008

Bruggen, A. (2015). An empirical investigation of the relationship

between workload and performance. Manage. Decis. 53, 2377–2389.

doi: 10.1108/MD-02-2015-0063

Callan, D. E., Durantin, G., and Terzibas, C. (2015). Classification of single-

trial auditory events using dry-wireless EEG during real and motion

simulated flight. Front. Syst. Neurosci. 9:11. doi: 10.3389/fnsys.2015.

00011

Chakladar, D. D., Dey, S., Roy, P. P., and Dogra, D. P. (2020). EEG-

based mental workload estimation using deep BLSTM-LSTM network

and evolutionary algorithm. Biomed. Signal Process. Control 60:101989.

doi: 10.1016/j.bspc.2020.101989

Chanel, C. P., Roy, R. N., Dehais, F., and Drougard, N. (2020a). Towards

mixed-initiative human-robot interaction: assessment of discriminative

physiological and behavioral features for performance prediction. Sensors

20:296. doi: 10.3390/s20010296

Chanel, C. P. C., Roy, R. N., Dehais, F., and Drougard, N. (2020b).

“Mixed-initiative human-automated agents teaming: towards a flexible

cooperation framework,” in 22nd International Conference on Human-

Computer Interaction - HCI International (Copenhagen), 117–133.

doi: 10.1007/978-3-030-49183-3_10

Chanel, C. P. C., Roy, R. N., Drougard, N., and Dehais, F. (2020c). “Mixed-

initiative human-automated agents teaming:towards a flexible cooperation

Frontiers in Human Neuroscience | www.frontiersin.org 18 August 2021 | Volume 15 | Article 692878

https://www.isae-supaero.fr/fr/isae-supaero/mecenat-relations-avec-la-fondation-isae-supaero/chaire-dassault-aviation-casac
https://www.isae-supaero.fr/fr/isae-supaero/mecenat-relations-avec-la-fondation-isae-supaero/chaire-dassault-aviation-casac
https://doi.org/10.1080/02699931.2010.550751
https://doi.org/10.1109/MSMC.2020.2968638
https://doi.org/10.3389/fnhum.2016.00539
https://doi.org/10.3389/fpsyg.2018.01655
https://doi.org/10.1016/j.neubiorev.2012.10.003
https://doi.org/10.1007/11532095_2
https://doi.org/10.1088/1741-2560/9/4/045008
https://doi.org/10.1108/MD-02-2015-0063
https://doi.org/10.3389/fnsys.2015.00011
https://doi.org/10.1016/j.bspc.2020.101989
https://doi.org/10.3390/s20010296
https://doi.org/10.1007/978-3-030-49183-3_10
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Singh et al. MWKL Estimation for Pilot-UAV Teaming

framework,” in 22nd International Conference on Human-Computer Interaction

(Copenhagen).

Chaouachi, M., and Frasson, C. (2012). “Mental workload, engagement

and emotions: an exploratory study for intelligent tutoring systems,” in

International Conference on Intelligent Tutoring Systems (Chania: Springer),

65–71. doi: 10.1007/978-3-642-30950-2_9

Climente-González, H., Azencott, C.-A., Kaski, S., and Yamada, M. (2019). Block

HSIC LASSO: model-free biomarker detection for ultra-high dimensional data.

Bioinformatics 35, i427–i435. doi: 10.1093/bioinformatics/btz333

Combrisson, E., and Jerbi, K. (2015). Exceeding chance level by chance:

the caveat of theoretical chance levels in brain signal classification and

statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136.

doi: 10.1016/j.jneumeth.2015.01.010

Dalmaijer, E. S., Mathôt, S., and Van der Stigchel, S. (2014). Pygaze: an open-

source, cross-platform toolbox for minimal-effort programming of eyetracking

experiments. Behav. Res. Methods 46, 913–921. doi: 10.3758/s13428-013-0422-2

David, R. A., and Nielsen, P. (2016). Defense Science Board Summer Study

on Autonomy. Technical report, Defense Science Board, Washington, DC.

doi: 10.21236/AD1017790

de Souza, P. E. U., Chanel, C. P. C., Maillez, M., and Dehais, F. (2020). Predicting

human operator’s decisions based on prospect theory. Interact. Comput. 32,

221–232. doi: 10.1093/iwcomp/iwaa016

Dehais, F., Duprés, A., Blum, S., Drougard, N., Scannella, S., Roy, R. N., et al.

(2019a). Monitoring pilot’s mental workload using ERPs and spectral power

with a six-dry-electrode EEG system in real flight conditions. Sensors 19:1324.

doi: 10.3390/s19061324

Dehais, F., Peysakhovich, V., Scannella, S., Fongue, J., and Gateau, T. (2015).

““Automation surprise” in aviation: real-time solutions,” in Proceedings of the

33rd Annual ACMConference onHuman Factors in Computing Systems (Seoul),

2525–2534. doi: 10.1145/2702123.2702521

Dehais, F., Rida, I., Roy, R. N., Iversen, J., Mullen, T., and Callan, D. (2019b). “A

PBCI to predict attentional error before it happens in real flight conditions,”

in 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)

(Bari: IEEE), 4155–4160. doi: 10.1109/SMC.2019.8914010

Di Flumeri, G., De Crescenzio, F., Berberian, B., Ohneiser, O., Kramer,

J., Arice, P., et al. (2019). Brain-computer interface-based adaptive

automation to prevent out-of-the-loop phenomenon in air traffic controllers

dealing with highly automated systems. Front. Hum. Neurosci. 13:296.

doi: 10.3389/fnhum.2019.00296

Dijksterhuis, C., de Waard, D., Brookhuis, K., Mulder, B., and de Jong, R.

(2013). Classifying visuomotor workload in a driving simulator using subject

specific spatial brain patterns. Front. Neurosci. 7:149. doi: 10.3389/fnins.2013.

00149

Donath, D., Rauschert, A., and Schulte, A. (2010). “Cognitive assistant system

concept for multi-UAV guidance using humanoperator behaviour models,”

in Conference on Humans Operating Unmanned Systems (HUMOUS’10)

(Toulouse).

Durand, B., Godary-Dejean, K., Lapierre, L., and Crestani, D. (2009).

“Inconsistencies evaluation mechanisms for an hybrid control architecture

with adaptive autonomy,” in CAR: Control Architectures of Robots (Toulouse).

Available online at: https://hal.archives-ouvertes.fr/lirmm-00386063/

Fahimi, F., Zhang, Z., Goh,W. B., Lee, T.-S., Ang, K. K., and Guan, C. (2019). Inter-

subject transfer learning with an end-to-end deep convolutional neural network

for EEG-based BCI. J. Neural Eng. 16:026007. doi: 10.1088/1741-2552/aaf3f6

Fairclough, S. H. (2008). Fundamentals of physiological computing. Interact.

Comput. 21, 133–145. doi: 10.1016/j.intcom.2008.10.011

Galdi, S., Arcuri, L., and Gawronski, B. (2008). Automatic mental associations

predict future choices of undecided decision-makers. Science 321, 1100–1102.

doi: 10.1126/science.1160769

Gangl, S., Lettl, B., and Schulte, A. (2013a). “Management of multiple unmanned

combat aerial vehicles from a single-seat fighter cockpit in manned-unmanned

fighter missions,” in AIAA Infotech@ Aerospace (I@ A) Conference (Boston,

MA), 4899. doi: 10.2514/6.2013-4899

Gangl, S., Lettl, B., and Schulte, A. (2013b). “Single-seat cockpit-based

management of multiple UCAVs using on-board cognitive agents for

coordination in manned-unmanned fighter missions,” in International

Conference on Engineering Psychology and Cognitive Ergonomics (Berlin;

Heidelberg: Springer), 115–124. doi: 10.1007/978-3-642-39354-9_13

Gateau, T., Ayaz, H., and Dehais, F. (2018). In silico vs. over the clouds: on-

the-fly mental state estimation of aircraft pilots, using a functional near

infrared spectroscopy based passive-BCI. Front. Hum. Neurosci. 12:187.

doi: 10.3389/fnhum.2018.00187

Gateau, T., Durantin, G., Lancelot, F., Scannella, S., and Dehais, F. (2015). Real-

time state estimation in a flight simulator using fNIRS. PLoS ONE 10:e0121279.

doi: 10.1371/journal.pone.0121279

George, L., and Lécuyer, A. (2010). An overview of research on “passive” brain-

computer interfaces for implicit human-computer interaction. Venice.

Gomarus, H. K., Althaus, M., Wijers, A. A., and Minderaa, R. B. (2006). The effects

of memory load and stimulus relevance on the EEG during a visual selective

memory search task: an ERP and ERD/ERS study. Clin. Neurophysiol. 117,

871–884. doi: 10.1016/j.clinph.2005.12.008

Goodrich, M. A., and Schultz, A. C. (2008). Human-Robot Interaction: A Survey.

Foundations and Trends in Human-Computer Interaction. Now Publishers Inc.

Gopher, D., and Donchin, E. (1986). “Workload-an examination of the concept,”

inHandbook of Perception and Human Performance, Vol II, Cognitive Processes

and Performance, eds K. R. Boff, L. Kaufman, and J. P. Thomas (New York, NY:

Wiley & Sons), 1–49.

Heard, J., Harriott, C. E., and Adams, J. A. (2018). A survey of workload

assessment algorithms. IEEE Trans. Hum. Mach. Syst. 48, 434–451.

doi: 10.1109/THMS.2017.2782483

Hearst, M. A., Allen, J., Guinn, C., and Horvitz, E. (1999). Mixed-initiative

interaction: Trends and controversies. IEEE Intell. Syst. 14, 14–23.

doi: 10.1109/5254.796083

Jiang, D., Yu, M., and Yuanyuan, W. (2019). Sleep stage classification

using covariance features of multi-channel physiological signals on

Riemannian manifolds. Comput. Methods Prog. Biomed. 178, 19–30.

doi: 10.1016/j.cmpb.2019.06.008

Kamath, M., and Fallen, E. (1995). “Correction of the heart rate variability signal

for ectopics and missing beats,” in Heart Rate Variability, eds M. Malik and A.

J. Camm (Armonk, NY: Futura Pub. Co. Inc.), 75–85.

Kramer, A. F., Sirevaag, E. J., and Braune, R. (1987). A psychophysiological

assessment of operator workload during simulated flight

missions. Hum. Factors 29, 145–160. doi: 10.1177/001872088702

900203

Kumar, J. S., and Bhuvaneswari, P. (2012). Analysis of electroencephalography

(EEG) signals and its categorization–A study. Proc. Eng. 38, 2525–2536.

doi: 10.1016/j.proeng.2012.06.298

LeCun, Y., Huang, F. J., Bottou, L., et al. (2004). “Learning methods

for generic object recognition with invariance to pose and

lighting,” in Proceedings of the 2004 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, CVPR 2004

(Washington, DC: Citeseer), 97–104. doi: 10.1109/CVPR.2004.131

5150

Leslau, O. (2010). The effect of intelligence on the decisionmaking process.

Int. J. Intell. Count. Intell. 23, 426–448. doi: 10.1080/0885060100377

2687

Liu, Y., Ayaz, H., and Shewokis, P. A. (2017). Multisubject “learning” for

mental workload classification using concurrent EEG, fNIRS, and physiological

measures. Front. Hum. Neurosci. 11:389. doi: 10.3389/fnhum.2017.00389

Luck, M., d’Inverno, M., and Munroe, S. (2003). “Autonomy: variable

and generative,” in Agent Autonomy (Boston, MA: Springer), 11–28.

doi: 10.1007/978-1-4419-9198-0_2

Mehta, R. K., and Parasuraman, R. (2013). Neuroergonomics: a review of

applications to physical and cognitive work. Front. Hum. Neurosci. 7:889.

doi: 10.3389/fnhum.2013.00889

Müller-Putz, G., Scherer, R., Brunner, C., Leeb, R., and Pfurtscheller, G. (2008).

Better than random: a closer look on BCI results. Int. J. Bioelectromagnet. 10,

52–55.

Murphy, R. R. (2014). Disaster Robotics. MIT Press.

doi: 10.7551/mitpress/9407.001.0001

Nyström, M., and Holmqvist, K. (2010). An adaptive algorithm for fixation,

saccade, and glissade detection in eyetracking data. Behav. Res. Methods 42,

188–204. doi: 10.3758/BRM.42.1.188

Parasuraman, R. (2000). Designing automation for human use:

empirical studies and quantitative models. Ergonomics 43, 931–951.

doi: 10.1080/001401300409125

Frontiers in Human Neuroscience | www.frontiersin.org 19 August 2021 | Volume 15 | Article 692878

https://doi.org/10.1007/978-3-642-30950-2_9
https://doi.org/10.1093/bioinformatics/btz333
https://doi.org/10.1016/j.jneumeth.2015.01.010
https://doi.org/10.3758/s13428-013-0422-2
https://doi.org/10.21236/AD1017790
https://doi.org/10.1093/iwcomp/iwaa016
https://doi.org/10.3390/s19061324
https://doi.org/10.1145/2702123.2702521
https://doi.org/10.1109/SMC.2019.8914010
https://doi.org/10.3389/fnhum.2019.00296
https://doi.org/10.3389/fnins.2013.00149
https://hal.archives-ouvertes.fr/lirmm-00386063/
https://doi.org/10.1088/1741-2552/aaf3f6
https://doi.org/10.1016/j.intcom.2008.10.011
https://doi.org/10.1126/science.1160769
https://doi.org/10.2514/6.2013-4899
https://doi.org/10.1007/978-3-642-39354-9_13
https://doi.org/10.3389/fnhum.2018.00187
https://doi.org/10.1371/journal.pone.0121279
https://doi.org/10.1016/j.clinph.2005.12.008
https://doi.org/10.1109/THMS.2017.2782483
https://doi.org/10.1109/5254.796083
https://doi.org/10.1016/j.cmpb.2019.06.008
https://doi.org/10.1177/001872088702900203
https://doi.org/10.1016/j.proeng.2012.06.298
https://doi.org/10.1109/CVPR.2004.1315150
https://doi.org/10.1080/08850601003772687
https://doi.org/10.3389/fnhum.2017.00389
https://doi.org/10.1007/978-1-4419-9198-0_2
https://doi.org/10.3389/fnhum.2013.00889
https://doi.org/10.7551/mitpress/9407.001.0001
https://doi.org/10.3758/BRM.42.1.188
https://doi.org/10.1080/001401300409125
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Singh et al. MWKL Estimation for Pilot-UAV Teaming

Parasuraman, R. (2003). Neuroergonomics: research and practice. Theoret. Issues

Ergon. Sci. 4, 5–20. doi: 10.1080/14639220210199753

Plassmann, H., Venkatraman, V., Huettel, S., and Yoon, C. (2015). Consumer

neuroscience: applications, challenges, and possible solutions. J. Market. Res.

52, 427–435. doi: 10.1509/jmr.14.0048

Pope, A. T., Bogart, E. H., and Bartolome, D. S. (1995). Biocybernetic system

evaluates indices of operator engagement in automated task. Biol. Psychol. 40,

187–195. doi: 10.1016/0301-0511(95)05116-3

Raza, H., Rathee, D., Zhou, S.-M., Cecotti, H., and Prasad, G. (2019).

Covariate shift estimation based adaptive ensemble learning for handling non-

stationarity in motor imagery related EEG-based brain-computer interface.

Neurocomputing 343, 154–166. doi: 10.1016/j.neucom.2018.04.087

Roy, R. N., Bonnet, S., Charbonnier, S., and Campagne, A. (2013). “Mental fatigue

and working memory load estimation: interaction and implications for EEG-

based passive BCI,” in 2013 35th Annual International Conference of the IEEE

Engineering inMedicine and Biology Society (EMBC) (Osaka: IEEE), 6607–6610.

doi: 10.1109/EMBC.2013.6611070

Roy, R. N., Bonnet, S., Charbonnier, S., and Campagne, A. (2016a). Efficient

workload classification based on ignored auditory probes: a proof of concept.

Front. Hum. Neurosci. 10:519. doi: 10.3389/fnhum.2016.00519

Roy, R. N., Bonnet, S., Charbonnier, S., Jallon, P., and Campagne, A. (2015).

“A comparison of ERP spatial filtering methods for optimal mental workload

estimation,” in 2015 37th Annual International Conference of the IEEE

Engineering inMedicine and Biology Society (EMBC) (Milan: IEEE), 7254–7257.

doi: 10.1109/EMBC.2015.7320066

Roy, R. N., Charbonnier, S., Campagne, A., and Bonnet, S. (2016b). Efficient

mental workload estimation using task-independent EEG features. J. Neural

Eng. 13:026019. doi: 10.1088/1741-2560/13/2/026019

Roy, R. N., Drougard, N., Gateau, T., Dehais, F., and Ponzoni Carvalho Chanel,

C. (2020). How can physiological computing benefit human-robot interaction?

Robotics 9:100. doi: 10.3390/robotics9040100

Scerri, P., and Reed, N. (2001). “Designing agents for systems with adjustable

autonomy,” in The IJCAI Workshop on Autonomy, Delegation, and Control:

Interacting with Autonomous Agents (Seattle, WA).

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M.,

Eggensperger, K., Tangermann, M., et al. (2017). Deep learning with

convolutional neural networks for EEG decoding and visualization.Hum. Brain

Mapp. 38, 5391–5420. doi: 10.1002/hbm.23730

Scholl, C. A., Chi, Y. M., Elconin, M., Gray, W. R., Chevillet, M. A.,

and Pohlmeyer, E. A. (2016). “Classification of pilot-induced oscillations

during in-flight piloting exercises using dry EEG sensor recordings,” in

2016 38th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC) (Orlando, FL: IEEE), 4467–4470.

doi: 10.1109/EMBC.2016.7591719

Schulte, A., Donath, D., and Honecker, F. (2015). “Human-system interaction

analysis for military pilot activity and mental workload determination,” in 2015

IEEE International Conference on Systems, Man, and Cybernetics (SMC) (Hong

Kong: IEEE), 1375–1380. doi: 10.1109/SMC.2015.244

Shakhnarovich, G., Kim, S.-P., and Black,M. J. (2007). “Nonlinear physically-based

models for decoding motor-cortical population activity,” in Advances in Neural

Information Processing Systems (Vancouver, BC), 1257–1264.

Singh, G., Bermúdez i Badia, S., Ventura, R., and Silva, J. L. (2018).

“Physiologically attentive user interface for robot teleoperation: real time

emotional state estimation and interface modification using physiology, facial

expressions and eye movements,” in 11th International Joint Conference

on Biomedical Engineering Systems and Technologies (Funchal), 294–302.

doi: 10.5220/0006733002940302

Singh, G., Roy, R. N., and Chanel, C. P. (2020). “Real-time eye-tracking processing

during pilot-uav interaction,” in 1st International Workshop on Eye-Tracking in

Aviation (Toulouse).

Soon, C. S., Brass, M., Heinze, H.-J., and Haynes, J.-D. (2008). Unconscious

determinants of free decisions in the human brain. Nat. Neurosci. 11, 543–545.

doi: 10.1038/nn.2112

Sternberg, S. (1969). Memory-scanning: mental processes revealed by reaction-

time experiments. Am. Sci. 57, 421–457.

Strenzke, R., Uhrmann, J., Benzler, A., Maiwald, F., Rauschert, A., and Schulte,

A. (2011). “Managing cockpit crew excess task load in military manned-

unmanned teaming missions by dual-mode cognitive automation approaches,”

in AIAA Guidance, Navigation, and Control Conference (Portland), 6237.

doi: 10.2514/6.2011-6237

Suner, S., Fellows, M. R., Vargas-Irwin, C., Nakata, G. K., and Donoghue,

J. P. (2005). Reliability of signals from a chronically implanted, silicon-

based electrode array in non-human primate primary motor cortex. IEEE

Trans. Neural Syst. Rehabil. Eng. 13, 524–541. doi: 10.1109/TNSRE.2005.

857687

Tattersall, A. J., and Foord, P. S. (1996). An experimental evaluation of

instantaneous self-assessment as a measure of workload. Ergonomics 39,

740–748. doi: 10.1080/00140139608964495

Taylor, J. L., O’Hara, R., Mumenthaler, M. S., Rosen, A. C., and Yesavage, J. A.

(2005). Cognitive ability, expertise, and age differences in following air-traffic

control instructions. Psychol. Aging 20:117. doi: 10.1037/0882-7974.20.1.117

Verdiére, K. J., Roy, R. N., and Dehais, F. (2018). Detecting pilot’s engagement

using fnirs connectivity features in an automated vs. manual landing scenario.

Front. Hum. Neurosci. 12:6. doi: 10.3389/fnhum.2018.00006

Wilke, A., and Todd, P. M. (2010). Past and present environments: the evolution

of decision making. Psicothema 22, 4–8.

Williams, K.W. (2004).A Summary of Unmanned Aircraft Accident/Incident Data:

Human Factors Implications. Technical report, DTIC Document.

Xie, B., and Salvendy, G. (2000). Prediction of mental workload in single and

multiple tasks environments. Int. J. Cogn. Ergon. 4, 213–242.

Zander, T. O., and Jatzev, S. (2011). Context-aware brain-computer interfaces:

exploring the information space of user, technical system and environment. J.

Neural Eng. 9:016003. doi: 10.1088/1741-2560/9/1/016003

Zieba, S., Polet, P., Vanderhaegen, F., and Debernard, S. (2010). Principles of

adjustable autonomy: a framework for resilient human-machine cooperation.

Cogn. Technol. Work 12, 193–203. doi: 10.1007/s10111-009-0134-7

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Singh, Chanel and Roy. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 20 August 2021 | Volume 15 | Article 692878

https://doi.org/10.1080/14639220210199753
https://doi.org/10.1509/jmr.14.0048
https://doi.org/10.1016/0301-0511(95)05116-3
https://doi.org/10.1016/j.neucom.2018.04.087
https://doi.org/10.1109/EMBC.2013.6611070
https://doi.org/10.3389/fnhum.2016.00519
https://doi.org/10.1109/EMBC.2015.7320066
https://doi.org/10.1088/1741-2560/13/2/026019
https://doi.org/10.3390/robotics9040100
https://doi.org/10.1002/hbm.23730
https://doi.org/10.1109/EMBC.2016.7591719
https://doi.org/10.1109/SMC.2015.244
https://doi.org/10.5220/0006733002940302
https://doi.org/10.1038/nn.2112
https://doi.org/10.2514/6.2011-6237
https://doi.org/10.1109/TNSRE.2005.857687
https://doi.org/10.1080/00140139608964495
https://doi.org/10.1037/0882-7974.20.1.117
https://doi.org/10.3389/fnhum.2018.00006
https://doi.org/10.1088/1741-2560/9/1/016003
https://doi.org/10.1007/s10111-009-0134-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Mental Workload Estimation Based on Physiological Features for Pilot-UAV Teaming Applications
	1. Introduction
	1.1. Human Operator State
	1.2. Mental Workload Assessment
	1.3. Physiological Signal Non-stationarity and Classification Methodology

	2. Materials and Methods
	2.1. Participants
	2.2. Experimental Protocol
	2.3. Search and Rescue Mission
	2.4. Data Acquisition
	2.5. Pre-processing and Features Extraction
	2.5.1. Performance Scores
	2.5.2. Subjective Feedback
	2.5.3. Physiological Data Processing

	2.6. Classification
	2.6.1. Traditional Classification Design
	2.6.2. Ecological Classification Design

	2.7. Statistical Analysis

	3. Results
	3.1. Subjective and Behavioral Data
	3.2. Physiological Data
	3.2.1. Electrocardiogram (ECG)
	3.2.2. Eye-Tracking (ET)
	3.2.3. Electroencephalography (EEG)

	3.3. Classification Results

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


