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Classification of electroencephalogram (EEG) is a key approach to measure the rhythmic
oscillations of neural activity, which is one of the core technologies of brain-computer
interface systems (BCIs). However, extraction of the features from non-linear and
non-stationary EEG signals is still a challenging task in current algorithms. With the
development of artificial intelligence, various advanced algorithms have been proposed
for signal classification in recent years. Among them, deep neural networks (DNNs)
have become the most attractive type of method due to their end-to-end structure
and powerful ability of automatic feature extraction. However, it is difficult to collect
large-scale datasets in practical applications of BCIs, which may lead to overfitting or
weak generalizability of the classifier. To address these issues, a promising technique
has been proposed to improve the performance of the decoding model based on data
augmentation (DA). In this article, we investigate recent studies and development of
various DA strategies for EEG classification based on DNNs. The review consists of
three parts: what kind of paradigms of EEG-based on BCIs are used, what types of DA
methods are adopted to improve the DNN models, and what kind of accuracy can be
obtained. Our survey summarizes the current practices and performance outcomes that
aim to promote or guide the deployment of DA to EEG classification in future research
and development.

Keywords: brain-computer interface, EEG, deep neural networks, data augmentation, classification

INTRODUCTION

As a key tool to capture the intention of brain activity, electroencephalography (EEG) can be used
to measure rhythmic oscillations of the brain and reflect the synchronized activity of substantial
populations of neurons (Atagün, 2016). The rhythmic oscillation is closely related to the state
change of the nerve center that directly reflects the mental activity of the brain (Pfurtscheller, 2000;
Villena-González et al., 2018). The brain-computer interface (BCI) is one of the typical applications
used as a communication protocol between users and computers that does not rely on the normal
neural pathways of the brain and muscles (Nicolas-Alonso and Gomez-Gil, 2012). Based on the
generation types of EEG, BCIs can be divided into three types: non-invasive BCIs, invasive BCIs,
and partially invasive (Rao, 2013; Levitskaya and Lebedev, 2016). Due to the low risk, low cost, and
convenience, the EEG-based non-invasive BCIs are the most popular type of BCIs and are the main
type discussed in this article.

Frontiers in Human Neuroscience | www.frontiersin.org 1 December 2021 | Volume 15 | Article 765525

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2021.765525
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2021.765525
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2021.765525&domain=pdf&date_stamp=2021-12-17
https://www.frontiersin.org/articles/10.3389/fnhum.2021.765525/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-765525 December 13, 2021 Time: 13:16 # 2

He et al. Review of Data Augmentation for EEG

During the execution of the interaction, the automatic
classification of EEG is an important step toward making the
use of BCI more practical in applications (Lotte et al., 2007).
However, some limitations present challenges for classification
algorithms (Boernama et al., 2021). Firstly, EEG signals have
weak amplitudes and are always accompanied by irrelated
components which suffer from a low signal-to-noise ratio.
Secondly, the essence of EEG is the potential change of cluster
activity of neurons which is a non-stationary signal. The
technologies of machine learning and non-linear theory are
widely used for EEG classification in current research (Lotte et al.,
2018). However, a long calibration-time and weak generalization
ability limits their application in practice.

In the past few years, deep neural networks (DNNs) have
achieved excellent results in the field of image, speech, and
natural text processing (Hinton et al., 2012; Bengio et al.,
2013). The features can be automatically extracted from the
input data by successive non-linear transformations based on
hierarchical representations and mapping. Due to their ability to
minimize the interference of redundant information and non-
linear feature extraction, EEG decoding based on DNNs has
attracted more and more attention. However, one of the prior
conditions to obtain expected results is the support of large-
scale datasets that could ensure the robustness and generalization
ability of DNNs (Nguyen et al., 2015). There are still some
challenges for EEG collection. First, it is difficult to collect
large-scale data due to strict requirements for the experimental
environment and subjects that may cause overfitting and increase
the structural risk of the model (Zhang D. et al., 2019).
More than that, EEG signals are highly susceptible to change
in psychological and physiological conditions that cause high
variability of feature distribution across subject/sessions (Zhang
D. et al., 2018). It not only reduces the accuracy of the decoding
model, but also limits the generalization of the model in the
independent test set.

One promising approach is regularization (Yu et al., 2008; Xie
et al., 2015), which could effectively improve the generalization
ability and robustness for DNNs. There are three ways to
achieve regularization, including adding term into loss function
(e.g., L2 regularization), directly in the model (e.g., dropout,
batch normalization, kernel max norm constraint), and data
augmentation (DA). Compared to the first two approaches, DA
solves the problem of overfitting by using a more comprehensive
set of data to minimize the distance between the training and
test dataset. This is especially useful for EEG signals where the
limitation of small-scale datasets greatly affects the performance
of classifiers. Therefore, researchers are increasingly concerned
with optimization for deep learning (DL) models using DA in the
task of EEG classification. The framework of the methodology is
shown in Figure 1.

The rest of the article is organized as follows. The search
methods for identifying relevant studies is described in detail
in section “Method.” In section “Results,” the basic concept and
specific methods of DA in EEG classification based on DNNs are
presented. Section “Discussion” discusses the current research
status and challenges. Finally, conclusions are drawn in section
“Conclusion.”

METHOD

A wide literature search from 2016 to 2021 was conducted
through Web of Science, PubMed, and IEEE Xplore. The
keywords used for the search contain DA, EEG, deep
learning, DNNs. Table 1 lists the collection criteria for
inclusion or exclusion.

This review was conducted following PRISMA guidelines
(Liberati et al., 2009). Results are summarized in a flowchart
in Figure 2. The flowchart identifies and narrows down the
collection of related studies. Duplicates between all datasets and
studies that meet the exclusion criteria are excluded. Finally, 56
papers that meet the inclusion criteria are included.

RESULTS

Concepts and Methods for Data
Augmentation
Data augmentation aims to prevent the overfitting of the DNN
model by artificially generating new data based on existing
training data (Shorten and Khoshgoftaar, 2019). There are three
main strategies of this technology: basic image manipulations,
deep learning, and feature transformation. The first approach
performs augmentation directly in the input space while the last
two methods realize DA based on the feature space of datasets.
Here, we briefly describe these methods in the following parts.

Data Augmentation Based on Image Manipulations
Data augmentation based on image manipulations perform
simple transformations using geometric features in an intuitive
and low-cost way. Typical methods could be divided into the
following categories.

Geometry Transformations
The geometric features of images are generally a visual
representation of the physical information that contains both
direction and contour elements (Cui et al., 2015; Paschali et al.,
2019). Common operations include:

Flipping
This method is realized by rotating the image along the
horizontal or vertical axis under the premise that the size of the
matrix was consistent.

Cropping
The operation of cropping can be realized by cropping the central
patch of images randomly and then mixing the remaining parts.

Rotation
Data augmentation rotation is realized by rotating images along
some coordinate axis. How to select rotation parameters is an
important factor that affects the enhancement effect.

Photometric and Color Transformations
Performing augmentations in the color channels’ space is another
method to implement practically (Heyne et al., 2009). During
the operation, the raw data are converted to a form of the
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FIGURE 1 | The framework of EEG classification using DA strategy. Different color represents different classs.

TABLE 1 | Collection criteria for inclusion or exclusion.

Inclusion criteria Exclusion criteria

• Published within the last 5 years • Research for invasive EEG, electrocorticography (ECoG), magnetoencephalography
(MEG), source imaging, fMRI, and so on, or joint studies with EEG

• A focus on non-invasive EEG signals • No specific description of DA

• A specific explanation of how to apply DA to EEG signal

• At least one DNN is included for the classifier
• EEG used in the BCI task or the detection of sleep states or

epileptic seizures task

FIGURE 2 | The search method for identifying relevant studies.
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FIGURE 3 | The structure of the autoencoder. Blue represents input layers
and green represents output layers.

FIGURE 4 | The structure of variational autoencoder. Blue represents input
layers and green represents output layers.

power spectrum, stress diagram, and so on. They represent the
distribution of spatial features.

Color Transformations
Color transformation realizes the generation of new data by
adjusting the RGB matrix.

Noise Injection
Another approach to increase the diversity of data is injecting
random matrices into the raw data, which are usually derived
from Gaussian distributions (Okafor et al., 2017).

Data Augmentation Based on Deep Learning
Augmentation methods by image manipulations perform the
transformation in input space of data. However, these approaches
cannot take advantage of underlying features of data to perform
augmentation (Arslan et al., 2019). Recently, a novel DA method
has attracted the attention of researchers. It applies DNNs to
map data space from high-dimensional to low-dimensional and
realize feature extraction to reconstruct the artificial data (Cui
et al., 2014). There are two typical deep learning strategies for DA:
autoencoder (AE) and generative adversarial networks (GAN).

Autoencoder and Its Improved Version
As shown in Figure 3, an AE is a feed-forward neural network
used to encode the raw data into low-dimensional vector
representations by one-half of the network and to reconstruct
these vectors back into the artificial data using another half of the
network (Yun et al., 2019).

To obtain the expected generated data, a variational
autoencoder (VAE) is proposed to improve the performance of

the autoencoder. Compared with AE, VAE ensure that generated
data is subject to specific probability distribution by adding
constraints into the structure (Figure 4).

Where µ is the mean value of probability distribution, σ2

represents variance, and ∈ is deviation.

Generative Adversarial Networks and Their Improved
Version
Generative adversarial networks refer to artificially generating
data based on the principle of adversarial learning. As shown in
Figure 5, it performs a competition between bilateral networks to
achieve a dynamic balance that learns the statistical distribution
of the target data (Deng et al., 2014). The optimization problem
of GAN can be defined as follows:

MinGMaxDV (D, G) = Ex∼p(x)

[
logD(x; θG)

]
+ Ez∼p(z)

[
log (1− D(x; θG))

]
(1)

Where p(x) is the distribution of training data and D(x; θG)
is the discriminative model used to estimate the probability
distribution p (•) between generated data z of real data x. V
represents the value function and E is the expected value. In
the process of training stage, the goal of GAN is to find the
Nash equilibrium of a non-convex game with high-dimensional
parameters. However, the optimization process of the model
does not constraint for loss function that is easy to generate
a meaningless output during the training stage. To address
the issue and expand its application scope, the researchers
proposed improved structures such as deep convolution GAN,
conditional GANs, cycle GANs, and so on (Goodfellow et al.,
2014). Amongst these new architectures for DA, DCGAN
employed the CNNs to build the generator and discriminator
networks rather than multilayer perceptron that expands more
on the internal complexity than GAN (Radford et al., 2015). To
improve the stability of the training process, an additional cycle-
consistency loss function was proposed to optimize the structure
of GAN, which was defined as cycle GANs (Kaneko et al.,
2019). Conditional GANs effectively alleviate the limitations
with mode collapse by adding a conditional vector to both
the generator and the discriminator (Regmi and Borji, 2018).
Another architecture of interest is known as Wasserstein GAN
(WGAN). This architecture employed Wasserstein distance to
measure the distance between generated data with real data rather
than Jensen–Shannon or Kullback–Leibler divergence to improve
the training performance (Yang et al., 2018).

Data Augmentation Based on Feature Transformation
Compared with the method of image manipulations and deep
learning, feature transformation performs DA using spatial
transformation of features in low dimensions that generate
artificial data with a diverse distribution. However, a few studies
have reported related methods. A novel spatial filtering method
has been proposed to generate data using a time-delay strategy
by combining it with a common spectral-spatial pattern (CSSP;
Blankertz and BCI Competition, 2005). Another study applied
empirical mode decomposition to divide EEG into multiple
modes for DA (Freer and Yang, 2019).
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FIGURE 5 | The structure of generative adversarial networks.

FIGURE 6 | A taxonomy of data augmentation in EEG decoding.

To clearly show the taxonomy of DA, Figure 6 briefly
integrated all the DA methodologies collected in this review.

Typical EEG Paradigms
Based on the form of interaction, the BCIs can be divided into
two types: active type and passive type. Among them, active BCI
is defined as a neural activity to a specific external stimulus that
contains three typical paradigms: Motor imagery (MI), visual
evoked potentials (VEP), and event-related potentials (ERP). MI
is a mental process that imitates motor intention without real
output. Different imagery tasks can activate the corresponding
region of the brain, while this activation can be reflected by
various feature representations of EEG (Bonassi et al., 2017).

Visual evoked potentials are continuous responses from
the visual region when humans receive flashing visual stimuli
(Tobimatsu and Celesia, 2006). When external stimuli are
presented in a fixed frequency form, the visual region is
modulated to produce a continuous response related to this
frequency, i.e., Steady-State Visually Evoked Potentials (SSVEP;
Wu et al., 2008).

Event-related potentials refers to a potential response when
receiving specific stimulus such as visual, audio, or tactile
stimulus (Luck, 2005).

Compared with active BCI, passive BCI aims to output the
EEG signals from subjects’ arbitrary brain activity, which is a
form of BCI that does not rely on voluntary task (Roy et al., 2013;
Arico et al., 2017).

In this section, we review recent reports for DA in EEG
classification based on DNNs.

Data Augmentation Strategy for EEG
Classification
In recent years, scientific interest in the field of the application
of DA for EEG classification has grown considerably.
Abdelfattah et al. (2018) employed recurrent GANs (RGAN)
to improve the performance of classification models in the
MI-BCI tasks. Different from the structure of GAN, they applied
recurrent neural networks to replace generator components.
Due to its ability to capture the time dependencies of signals,
RGAN show great advantages in time-series data generating.
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The classification accuracy was significantly improved after DA
through the verification of three models.

Zhang et al. (2020) carried out the research of image
augmentation using deep convolution GAN (DCGAN) that
replace pooling layers with Fractional-Strided Convolutions in
the generator and strided convolutions in the discriminator.
Considered the rule of feature distribution, they transformed
time-series signal to spectrogram form and applied adversarial
training with convolution operation to generate data. Meanwhile,
they discussed the performance of different DA models and
then verified that the generated data by DCGAN show the best
similarity and diversity.

Freer and Yang (2019) proposed a convolutional long-short
term memory network (CLSTM) to execute binary classification
for MI EEG. To enhance the robustness of the classifier, they
applied noise injection, multiplication, flip, and frequency shift
to augment data, respectively. Results show average classification
accuracy could obtain 14.0% improvement after DA.

Zhang Z. et al. (2019) created a novel DA method in the MI-
BCI task in which they applied empirical mode decomposition
(EMD) to divide the raw EEG frame into multiple modes. The
process of decomposition was defined as:

x (t) =
n∑

n=1

IMFn (t)+ rs(t) (2)

Where x (t) is recovered signal by EMD, IMF represents intrinsic
mode functions, s represents the number of IMFs, and rs(t)
is the final residual value. In the training stage, they mixed
IMFs into the intrinsic mode functions to generate new data
and then transformed it into tensors using complex Morlet
wavelets which were finally input into a convolutional neural
network (CNN). Experimental results verified that the artificial
EEG frame could enhance the performance of the classifier and
obtain higher accuracy.

Panwar et al. (2020) proposed a WGAN (Eq. 3) with gradient
penalty to synthesize EEG data for rapid serial visual presentation
(RSVP) task. It is worth noting that WGAN applied Wasserstein
distance to measure the distance between real and generated data.

W(Pr, Pg) = Exr∼pr

[
D(xr)

]
− Exg∼pg

[
D(xf )

]
(3)

Where Pr and Pg are the distribution of real data xr and generated
data xg . W represents the distance of two distributions and E is
mean value. To improve the training stability and convergence,
they utilized a gradient penalty to optimize the training process.
Meanwhile, the proposed method addressed the problems of
frequency artifacts and instability in the training process of
DA. To evaluate the effectiveness of DA, they proposed two
evaluation indices (visual inspection and log-likelihood score
from Gaussian mixture models) to assess the quality of generated
data. Experiments show that presentation-associated patterns of
EEG could be seen clearly in generated data and they obtained
significant improvement based on the EEGNet model after DA in
the RSVP task (Lawhern et al., 2018). A similar method was also
performed in Aznan et al. (2019).

Aznan et al. (2019) applied WGAN to generate synthetic EEG
data that optimizes the efficiency of interaction in the SSVEP
task. After that, they performed generated EEG to the pre-trained
classifier in the offline stage and finetune classifier by real-
collection EEG. This approach was used to control the robot and
achieve real-time navigation. Results show that the DA method
significantly improves the accuracy in real-time navigation tasks
across multiple subjects.

Yang et al. (2020) deemed that typical DA methods of GT
and NI ignored the effect of signal-to-noise ratio (SNR) across
trials. Therefore, they proposed a novel DA method by randomly
averaging EEG data, which artificially generates EEG data with
different SNR patterns. The DA was achieved by randomly taking
n (1 < n < N) examples from the same category to calculate
the average potential at each iteration, where N represents the
number of all trials. RNN and CNN were used to classify different
specific frequencies in the visual evoked potential (VEP) task and
obtained significant improvement after DA.

Li et al. (2019) discussed the effect of noise addition
for time series form and spectrums signals in the MI-BCI
task, respectively. They applied CNN combined with channel-
projection and mixed-scale to classify 4-class MI signals and
concluded that noise may destroy the amplitude and phase
information of time-series signals, but cannot change the feature
distribution of spectrum. Therefore, they performed STFT to
transform time series EEG signal into spectral images, which
was defined as amplitude-perturbation DA. Results show that the
performance has been improved using DA almost for all subjects
in two public datasets.

Lee et al. (2020) investigated a novel DA method called
borderline-synthetic minority over-sampling technique
(Borderline -SMOTE). It generates synthetic data from minority
class by using the m nearest neighbors from the instance of
the minority class and then adding these instances into real
data by weighting calculation. The effectiveness of DA was
evaluated by EEG data collected from the P300 task. Results
show that the proposed methods could enhance the robustness
of decision boundaries to improve the classification accuracy of
P300 based on BCIs.

Regarding EEG-based passive BCIs, they have gradually
become more prominent in research (Zander et al., 2009; Cotrina
et al., 2014; Aricò et al., 2018), and are used to detect and monitor
the affective states of humans. In this part, we introduce some
cases of DA application to passive BCIs.

Kalaganis et al. (2020) proposed a DA method based on graph-
empirical mode decomposition (EMD) to generate EEG data,
which combines the advantage of multiplex network model and
graph variant of classical empirical mode decomposition. They
designed a sustained attention driving task in a virtual reality
environment, while realizing the automatic detection for the state
of humans using graph CNN. The experimental results show that
the exploration of the graph structure of EEG signal could reflect
the spatial feature of signal and the methodology of integrating
graph CNN with DA has obtained a more stable performance.

Wang et al. (2018) discussed the limitations of DA for EEG
in emotion recognition tasks and pointed out that the features
of EEG in emotion detection tasks have a high correlation with
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TABLE 2 | Summary of data augmentation for EEG decoding based on DNNs.

EEG
paradigms

Channel of
EEG

Subjects DA methods Input form of DA Classifier Improvement of
accuracy after DA

Datasets References

Driving
detection

30 27 EMD Time-series data Graph CNN 72–95% Private dataset (27
subjects)

Kalaganis et al.,
2020

SD 23 23 WGAN Time-series data CNN 72.11–95.89% CHB-MIT (PhysioNet,
2010)

Wei et al., 2019

ER 14 18 GAN Time-series data DNN NA to 98.4% Private dataset (18
subjects)

Chang and Jun,
2019

ER 15/32 NA NI Differential entropy SVM/ResNet 40.8–45.4% SEED (Chang and Jun,
2019)/MAHNOB-HCI
dataset (Zheng and Lu,
2015)

Wang et al., 2018

ER 15/32 15 cWGAN/sVAE Power spectral
density/Differential
entropy

SVM/DNN 44.9–90.8% SEED/DEAP (Chang
and Lin, 2011)

Luo et al., 2020

ER 32 15 NI Time-series data 3D-CNN 79.11–88.49%
79.12–87.44%

DEAP (Koelstra et al.,
2012)

Shawky et al., 2018

ER NA NA CycleGAN Time-series data CNN Average improvement of
3.7%∼8%

FER2013/SFEW
/JAFFE datasets

Zhu et al., 2018

ERP 31 37 Paired trial Time-series data DNN Average improvement of
20∼30%

ERP datasets from
Williams et al. (2020)

Williams et al.,
2020

P300 32 44 Borderline-
SMOTE

Time-series data SVM/CNN Average improvement of
5∼15%

Private dataset (44
subjects)

Lee et al., 2020

MI 14 1 Conditional
DCGAN

Time-frequency
representation

CNN 78–83% BCIC II-dataset III
(Johnson et al., 2015)

Schlögl, 2003

MI 22/44 9/NA NI Spectral image CP-MixedNet Average improvement of
1.1∼4.5%

BCIC IV-dataset 2a
(Zhang and Liu, 2018)
/HGD (Ang et al., 2012)

Li et al., 2019

MI 14 1/5 EMD Time-series data CNN/WNN 77.9–82.9% 88.0–90.1% BCIC II-dataset III/Five
subject’s experiments

Zhang Z. et al.,
2019

MI 14/3 1/9 GT Time-frequency
representation

CNN NA BCIC II-dataset III/
BCIC IV-dataset 2b
(Leeb et al., 2007;
Schirrmeister et al.,
2017)

Shovon et al., 2019

MI 3 9 Feature
transform

Time-series data CNN Average improvement of
5∼10%

BCIC IV-dataset 2b Huang et al., 2020

MI 3/3 4/9 DCGAN Spectral image CNN 74.5–83.2% 80.6–93.2% BCIC IV-dataset 1
(Huang et al., 2020)
/BCIC IV-dataset 2b
(BCI Competition,
2008)

Zhang et al., 2020

MI 22 9 NI/GT Time-series data LSTM NA BCIC IV-dataset 2a Freer and Yang,
2019

MI 22/3 9/9 SW Time-series data RM classifier NA to 80.4%/82.39% BCIC IV-dataset 2a/
BCIC IV-dataset 2b

Majidov and
Whangbo, 2019
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TABLE 2 | (Continued)

EEG
paradigms

Channel of
EEG

Subjects DA methods Input form of DA Classifier Improvement of
accuracy after DA

Datasets References

MI 62 14 Conditional
DCGAN

Spectral image CNN Average improvement of
3.22∼5.45%

Private dataset (14
subjects)

Fahimi et al., 2020

MI 22/3 9/9 Feature
transform

Time-series data HS-CNN 85.6–87.6% BCIC IV-dataset 2a/
BCIC IV-dataset 2b

Dai et al., 2019

MI 22/60 9/3 Extended
CSSP

Feature matrix FLDA Average improvement of
0.3∼31.2%

BCIC IV-dataset 2a/
BCIC III -dataset IIIa
(Blankertz and BCI
Competition, 2005)

Gubert et al., 2020

RSVP 256 10 WGAN Time-series data EEGNet NA BCIT X2 dataset (Dong
et al., 2016)

Lawhern et al.,
2018

Sleep stage
classification

2/2 20/25 Oversampling
model

Time-series data BLSTM Average improvement of
0.1∼2.0%

SA dataset/Sleep-EDF
database (Goldberger
et al., 2000)

Sun et al., 2019

SSVEP 32 8 Randomly
average

Time-series data RNN Average improvement of
3∼13%

Private dataset (8
subjects)

Yang et al., 2020

MW detection 4 8 NI Time-series data DBN NA Private dataset (8
subjects)

Yin and Zhang,
2017b

MW detection 64 15 NI Spectral image Multi-frame classifier NA Private dataset (8
subjects)

Bashivan et al.,
2014, 2015

MW detection 11 7 NI Spectral image SAE 34.2–75% Private dataset (7
subjects)

Yin and Zhang,
2017a

MW detection 64 22 NI Spectral image RNN + CNN NA to 93% Private dataset (22
subjects)

Kuanar et al., 2018

MI 3 5 NI Time-series data CNN NA BCIC IV-dataset 2b Parvan et al., 2019

MW detection 1 30 GAN Spectral image Boast 90–95% NA Piplani et al., 2018

MI 1 1 GAN Spectral image Distance measurement NA NA Hartmann et al.,
2018

ER 32 32 GAN Spectral image CWGAN Average improvement of
3∼20%

SEED Luo and Lu, 2018

MI 3 1 GAN Spectral image CNN 77–79% BCIC IV-dataset 2b Zhang X. et al.,
2018

ER 14 18 GAN Time-series data GANA 97–98% CHB-MIT Chang and Jun,
2019

MI 3 9 GAN Time-series data CNN + LSTM NA to 76% BCIC IV-dataset 2b Yang et al., 2019

RSVP 256 10 GAN Time-series data CNN Average improvement of
0.7∼2%

BCIT X2 RSVEP
Dataset (Touryan et al.,
2014)

Panwar et al., 2019

(Continued)
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TABLE 2 | (Continued)

EEG
paradigms

Channel of
EEG

Subjects DA methods Input form of DA Classifier Improvement of
accuracy after DA

Datasets References

SD 100 18 SW Spatio-temporal signal CNN NA to 97% Clinic dataset (100
subjects)

O’Shea et al., 2017

SD 100 10 SW Time-series data CNN NA University of Bonn
Dataset (Andrzejak
et al., 2001)

Ullah et al., 2018

SD 16 2 SW Spectral image CNN NA Clinic dataset Truong et al., 2018

SSC 4 NA SW Time-series data CNN 82.9–85.7% Sleep-EDF database Mousavi et al.,
2019

SD 18 29 SW Time-series data CNN NA to 93% Clinic dataset Avcu et al., 2019

MI 3 9 SW Spectral image CNN NA to 84% BCIC IV-dataset 2b Tayeb et al., 2019

SD 18 24 SW Spatio-temporal signal LSTM 70–78% CHB-MIT Tsiouris et al., 2018

SD NA 2 SW Time-series data CNN NA Clinic dataset Tang et al., 2017

RSVP 64 12 Oversampling
model

Time-series data CNN 83.99–86.96% Private dataset (12
subjects)

Manor and Geva,
2015

Movement of
eye

2 NA Oversampling
model

Feature matrix MLP NA to 82% MAHNOB HCI-Tagging
database (Soleymani
et al., 2012)

Drouin-Picaro and
Falk, 2016

SSC 20 62 Oversampling
model

Time-series data CNN Average improvement of
1.7∼20%

Sleep-EDF Supratak et al.,
2017

SSC 20 62 Oversampling
model

Time-frequency
representation

Mixer networks 89.3–90.1% NA Dong et al., 2017

SSC 14 121 Oversampling
model

Spectral image CNN NA Private dataset (121
subjects)

Ruffini et al., 2018

SD 23 23 Oversampling
model

Spatio-temporal signal CNN + LSTM NA CHB-MIT Thodoroff et al.,
2016

SSC NA NA Oversampling
model

Spectral image CNN NA to 99% Private dataset Sengur et al., 2019

SSC 16 NA Feature
transform

Time-series data CNN 72–75% Private dataset Schwabedal et al.,
2018

ER 32 32 GT Wavelet feature SAE NA to 68.75% DEAP Surrogates Said
et al., 2017

ER 32 22 GT Feature matrix NN 40.8–45.4% DEAP Frydenlund and
Rudzicz, 2015

SSC 19 155 Repeat
sampling

Entropy feature CNN NA to 81.4% Clinic dataset Deiss et al., 2018

ER 32 32 GT Wavelet feature CNN Average improvement of
2.2∼5%

DEAP Mokatren et al.,
2019

MI 3/22 9/9 NI Time-series data Inception NN Average improvement of
3%

BCIC IV-dataset 2b
BCIC IV-dataset 2a

Zhang et al., 2021

Abbreviations: BCIC, BCI Competition; BLSTM, Bidirectional Long Short-Term Memory network; CSSP, Common Spectral Spatial Patterns; DBN, Deep Belief Networks; EMD, Empirical Model Decomposition; ER,
Emotion recognition; FLDA, Fisher Linear Discriminant Analysis; HS-CNN, A CNN with Hybrid Convolution Scale; MW, Mental Workload; MLP, Multi-Layer Perception; LeNet, Deep neural network proposed by Lecun
and Bottou (1998); NA, Not Applicable; NN, Neural Network; KL, Kullback-Leibler; WNN, Wavelet Neural Network; RM, Riemannian Manifold; ReLU, Rectified Linear Units; SVM, Support Vector Machines; SAE, Stacked
Autoencoder; SW, Sliding Window; SD, Seizure Detection; SSC, Sleep Stage Classification; ResNet, Deep neural network proposed by He et al. (2016).
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time sequence. However, direct geometric transformations and
noise injection may destroy the feature in the time domain, which
may cause a negative DA effect. Based on these considerations,
they added Gaussian noise to each feature matrix of the original
data to obtain new training samples. The calculation could be
defined as:

PG(z) =
1

σ
√

2π
e−

(z−µ)2

2δ2 (4)

xg = xr + xr∗PG(z) (5)

Where µ and σ are mean value and standard deviation,
respectively, P is probability density function, and z is Gaussian
random variable. xg is generated data after noise injection. There
are three classification models, namely LeNet, ResNet, and SVM,
that were used to evaluate the performance. Results show the
generated data could significantly improve the performance for
the classifier based on LeNet and ResNet. However, it obtains
little effect on the SVM model.

Luo et al. (2020) applied conditional Wasserstein GAN
(cWGAN) and selective VAE (sVAE) to enhance the performance
of the classifier in the emotion recognition tasks. The loss
functions of sVAE is defined as follows:

maxELBO =
∑

i

∑
k

[(xr − xg)
2
] +

1
2
(
∑

(xr)+ µ2 (xr)− 1− log
∑

xr) (6)

Where ELBO represent the evidence lower bound and xr
and xg is real data and generated data, respectively. The goal
of optimization was to maximize ELBO which was equal to
minimizing the KL divergence between the real data and
generated data. Based on the loss function of GAN, an extra
penalty term is added to it:

minmaxL
(
xr, xg

)
= Exr∼xr [D (xr)]− Exg∼xg

[
D
(
xg
)]
−

λEx̂r∼x̂r [
(
‖ ∇x̂D

(
x̂
)
‖2
)
− 1] (7)

Where λ is weight coefficient for the trade-off between the
original objective and gradient penalty, and x̂ represents the data
points sampled from the straight line between a real distribution
and generated distribution. ‖ · ‖2 is 2-norm value. In their work,
the training samples of DA models were transformed into the
forms of power spectral density or differential entropy and
the performance of different classifiers are compared after DA.
Experiments show that two representations of EEG signals were
suitable for the requirement of the artificial datasets that enhances
the performance of the classifier.

Bashivan et al. (2015) emphasized the challenge in modeling
cognition signals from EEG was extracting the representation
of signals across subjects/sessions and suggested that DNN
had an excellent ability for feature extraction. Therefore, they
transformed the raw EEG signal to topology-preserving multi-
spectral images as training sets in a mental load classification
task. To address the overfitting and weak generalization ability,
they randomly added noise to spectral images to generate
training sets. However, this DA method did not significantly

improve classification performance, just strengthened the
stability of the model.

To comprehensively show the implementation, we summarize
the details of the application of DA in EEG decoding in Table 2.

DISCUSSION

The limitation of small-scale datasets hinders the application
of DL for EEG classification. Recently, the strategy of DA has
received widespread attention and is employed to improve the
performance of DNNs. However, there remain several issues
worth discussing.

Taking the above discussion into consideration, we found
that the input forms of DA models could be divided into three
categories: time-series data, spectral image, and feature matrix.
We also found that researchers preferred to convert EEG signals
into image signals for subsequent processing in MI tasks. One
possible reason might be that the features of MI are often
accompanied by changes in frequency band energy, i.e., event-
related desynchronization (ERD)/event-related synchronization
(ERS; Phothisonothai and Nakagawa, 2008; Balconi and Mazza,
2009). This phenomenon indicated that more significant feature
representations of MI-EEG were displayed in the time-frequency
space rather than the time domain. While the EEG based on
VEP paradigms prefer to employ the time-series signal as the
input, which has the strict requirement of being time-locked and
contains more obvious features in time sequence (Basar et al.,
1995; Kolev and Schurmann, 2009; Meng et al., 2014). Another
form of input is the feature matrix that could be extracted by
wavelet, entropy, STFT, power spectral density, and so on (Subasi,
2007; Filippo et al., 2009; Seitsonen et al., 2010; Lu et al., 2017;
Lashgari et al., 2020).

From a difference of implementation point of view, DA can
be divided into input space augmentation and feature space
augmentation. Indeed, the former aspect has the advantage of
interpretability and takes lower computational costs. However,
we found that the operation in feature space could obtain
more significant improvements than in input space based on
the results of classification performance presented in Table 2.
One explanation is that this type of DA model could extract an
intrinsic representation of data due to the incredible ability of
non-linear mapping and automatic feature extraction.

Generative adversarial networks have become popular for
generating EEG signals in recent years (Hung and Gan, 2021),
although it has still not been clearly demonstrated to be the most
effective strategy across different EEG tasks. Due to the limited
number of studies, it is still unclear which method is the more
popular technique. Consequently, researchers should select the
appropriate DA method according to the paradigm type and
feature representation of EEG.

Previous studies show that DA could improve the decoding
accuracy of EEG to varying degrees in different EEG tasks.
However, this improvement varies greatly in different data sets
and preprocessing modes. There are several possible explanations
to be discussed. First, most studies have not discussed whether
DA produces negative effects in the training stage of the
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classifier. As mentioned in the above discussion, EEG signals
are accompanied by strong noise and multi-scale artifact. But
existing DA methods are global operations, which cannot
effectively distinguish these irrelevant components. Meanwhile,
EEG signals collected from specific BCI tasks (SSVEP, P300)
perform features that are time-locked and phase-locked,
which may cause wrong feature representation using GT
to produce artificial data. While GT performs effectively
in MI and ER tasks due to this kind of signal having
no strict requirement for feature-locking. Therefore, feature
representation of EEG should be analyzed before the application
of GT. Second, there are a few studies that discuss the
boundary conditions of the feature distribution for generated
data, even though it is one of the important guarantees
of data validity.

Another important issue worthy to discuss is how much
generated data could most effectively enhance the performance
of a classifier. Researchers have explored the influence of different
ratios of real data (RD) and generated data (GD) for classification
performance and demonstrated that the enhancement effect
does not increase with the size of GD (Zhang et al., 2020).
Research on the effect of different amounts of training data to
the classification performance using artificial data has indicated
that the improvement of performance requires at least a doubling
size of GD (Zhang and Liu, 2018). Consequently, the size
of the GD should be determined by multi-group trials with
different mix proportion.

Based on the above analysis we believe that the following
studies are worthy of exploring in further research. First,
different DA methods can be combined to extend datasets and
augmentation would be executed both in input space and feature
space. For example, generated data based on GT can be put into
GANs to realize secondary augmentation, which may improve
the diversity of generated data. Second, combining meta-learning
with data enhancement might reveal why DA affects classification
tasks, which may improve the interpretability of generated data.
Meanwhile, DA based on GAN is a mainstream method at

present, but how to improve the quality of generated data is still
a valuable point.

CONCLUSION

Collecting large-scale EEG datasets is a difficult task due to the
limitations of available subjects, experiment time, and operation
complexity. Data augmentation has proven to be a promising
approach to avoid overfitting and improve the performance of
DNNs. Consequently, the research state of DA for EEG decoding
based on DNNs is discussed in the study. The latest studies in
the past 5 years have been discussed and analyzed in this work.
Based on the analysis of their results, we could conclude that DA
is able to effectively improve the performance in EEG decoding
tasks. This review presents the current practical suggestions
and performance outcomes. It may provide guidance and help
for EEG research and assist the field to produce high-quality,
reproducible results.
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