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The ability to perform movements is vital for our daily life. Our actions are embedded in a
complex environment where we need to deal efficiently in the face of unforeseen events.
Neural oscillations play an important role in basic sensorimotor processes related to
the execution and preparation of movements. In this review, I will describe the state
of the art regarding the role of motor gamma oscillations in the control of movements.
Experimental evidence from electrophysiological studies has shown that motor gamma
oscillations accomplish a range of functions in motor control beyond merely signaling
the execution of movements. However, these additional aspects associated with motor
gamma oscillation remain to be fully clarified. Future work on different spatial, temporal
and spectral scales is required to further understand the implications of gamma
oscillations in motor control.
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THE NEURAL ORGANIZATION OF MOVEMENTS

Human cognition is embedded in our interactions with others and with the environment (Varela
et al., 2016; Rossi et al., 2019). From this point of view, to understand cognition is critical to
understand how action and motor functions are realized within the nervous system. The impact
of actions on our minds has been historically neglected, but now it has been acknowledged that
even simple movements can modulate cognitive functions (Leisman et al., 2016). The motor system
constitutes all those processes involving the movement of the muscles and the neural systems
advocated to the control of the muscles. The motor system is tightly interconnected with other
neural systems to organize movements. A quintessential example of this interaction occurs between
perception and action systems (Prinz, 1997; Jeannerod, 2006). Perception and action are linked even
at the lowest level of organization in the motor system, with feedforward and feedback loops being
essential for motor control. The function of basic units in the motor system directly commanding
the muscles depends on feedback from the muscles and from information in tendons and joints
(Poppele and Bosco, 2003; Windhorst, 2007). This reciprocal interaction is replicated in higher
levels of organization of the motor system. The brain circuits associated with movements converge
on the primary motor cortex (M1 or Brodmann area 4) and signals are sent through the spinal
cord to the muscles so motor commands are executed. However, previous to M1 activity the
smooth unfolding of actions is programmed and organized in motor-related brain areas such as
the premotor cortex (PMC, lateral part of the Brodmann area 6), the supplementary motor area
(SMA, medial part of the Brodmann area 6) and the prefrontal cortex (PFC). The SMA forms a
circuit loop with the PFC to organize voluntary actions devised in the PFC, while the PMC forms
a circuit loop with parietal cortices and seems to be more reactive to externally evoked movements
(Donoghue and Sanes, 1994). This network of brain regions extends to other subcortical areas such
as the thalamus, the basal ganglia and the cerebellum, which contribute to the fine tuning of motor
parameters in iterative loops that affect the ongoing activity of the muscles (Rosenbaum, 2010).
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Connections with high-level centers such as the PFC are
supposed to feed with action “intentions” and “goals.” It is
thus important to understand how these brain signals are
transmitted to regions downstream in the motor system. In
addition, human movements are not realized in a vacuum.
Actions are created and modulated by a rich context, with
motor programs being regulated and monitored at distinct levels
of the motor system (Haggard, 2008). These distinct levels
where action processing occurs have been investigated with
modern brain imaging techniques. Among these methods, the
electrophysiological techniques are useful for identifying and
characterizing brain rhythms associated with action processing.

THE NEURAL DYNAMICS OF
MOVEMENTS

Time-resolved electrophysiological techniques allow us to
capture the macroscopic neural dynamics of the nervous system.
This means we can precisely describe the sequence of neural
activations that occur across multiple regions in the brain as
humans or other animals engage in an activity or remain at
rest. Rhythmic brain activity is associated with many perceptual
and cognitive processes contributing to both low to high-
level functions in humans (Varela et al., 2001; Buzsaki, 2006;
Hari and Puce, 2017). In the motor system, the coding of
movements has been shown to rely on the collective activity
of a population of neurons (a population code; Georgopoulos
et al., 1982, 1983). Likewise, rhythmic brain activity also seems
to play an important – albeit not fully understood – role in the
organization of movements (see van Wijk et al., 2012; Cheyne,
2013 for excellent reviews). Many studies investigating movement
production have been focused on well-known neural oscillations
in the alpha (10–12 Hz) and beta (13–30 Hz) band ranges. There
is consistent evidence that execution of movements induces a
decrease in alpha (Pfurtscheller, 1981; Salmelin and Hari, 1994;
Cochin et al., 1999; Muthukumaraswamy et al., 2004; Neuper
et al., 2006; Koelewijn et al., 2008) and beta (Cheyne et al.,
2008; Gaetz et al., 2010; Wilson et al., 2010, 2014) oscillatory
activity in sensorimotor cortices. Beta activity is characterized
by building up well before the onset of movements, persisting
and waning during the movement and being followed by a
strong re-synchronization after movement end (beta rebound;
Jurkiewicz et al., 2006; Engel and Fries, 2010; Zaepffel et al.,
2013). More recently, gamma oscillatory activity (above 40 Hz)
has attracted attention by its putative role in motor control.
Gamma oscillations have been widely studied in vision and
attention research, where they have shown a crucial role in
integrating visual information (Gray and Singer, 1989; Tallon-
Baudry et al., 1997). Based on these studies, it has been proposed
that gamma oscillations may be a general cortical activity
that integrates events among separated areas of the cortex for
a variety of cognitive processes (Bressler, 1990; Fries, 2005).
Based on recent works, researchers have started to uncover the
functions of gamma oscillations in the motor system. In the
following sections, I will outline distinct aspects of motor gamma
oscillations, including local and long-range activity involved in

simple and complex movements. The reader can also consult a
summary table at the end of the manuscript that I have prepared
with methodological details and main findings.

MOTOR GAMMA OSCILLATIONS

Overview
In a seminal study using electrocorticography (ECoG) Crone
et al. (1998) identified two kinds of motor gamma responses.
A motor gamma centered in the 35–50 Hz range that started
with the motor response and remains active during the duration
of the movement and a motor gamma activity centered in the
75–100 Hz range that started slightly before the motor response
and was transient. This latter neural activity was somatotopically
organized and was more circumscribed at contralateral sides
than alpha or beta oscillations. Follow-up studies have confirmed
these findings for a wide range of gamma frequency bands
using again ECoG (Pfurtscheller et al., 2003; Leuthardt et al.,
2004; Ball et al., 2008; Darvas et al., 2010), but also using
magnetoencephalography (MEG; Dalal et al., 2007; Cheyne et al.,
2008; Tecchio et al., 2008; Muthukumaraswamy, 2010; Wilson
et al., 2010; Trevarrow et al., 2019; Spooner et al., 2021; Wiesman
et al., 2021), scalp electroencephalography (EEG; Pfurtscheller
et al., 1993; Ball et al., 2008; Darvas et al., 2010; Herz et al.,
2012; Oliveira et al., 2019; Djalovski et al., 2021) and stereo EEG
(Brovelli et al., 2005; Szurhaj et al., 2005). The detected gamma
activities in EEG tend to be in the low frequency band range near
40 to 60 Hz because of the filtering properties of the scalp, cortical
orientations of neuronal populations and other factors that limit
the detection of fast rhythms in EEG (Nunez and Srinivasan,
2006). The range of frequencies in which motor gamma has
been found is quite variable, analogous to what happens in
gamma oscillations in other domains (Uhlhaas et al., 2011). In
the motor domain, gamma oscillations have been reported for
ranges between 75–100 Hz (Crone et al., 1998), 65–90 Hz (Dalal
et al., 2007), 59–84 Hz (Ball et al., 2008), 81–101 Hz (Darvas
et al., 2010), 60–90 Hz (Muthukumaraswamy, 2010; Grent-’t-
Jong et al., 2013), 64–84 Hz (Wiesman et al., 2020), and 72–84 Hz
(Spooner et al., 2021), to name a few. In intracranial EEG studies,
the range of motor gamma is even broader, covering a 60–
200 Hz range (Brovelli et al., 2005). These distinct frequency
ranges may also reflect distinct forms of gamma oscillations in
the high frequency range (Uhlhaas et al., 2011). To date, there is
no clear understanding of the functional significance of distinct
gamma types. To develop a full picture of gamma oscillations,
efforts should be done to systematically and precisely describe the
frequency range in which motor gamma oscillations occur.

Motor gamma oscillations have been observed for simple
movements, including finger movements, tongue protrusions,
eye-winking, fist-clenching and foot movements (Pfurtscheller
and Neuper, 1992; Crone et al., 1998; Pfurtscheller et al., 2003;
Miller et al., 2007; Cheyne et al., 2008), but they have been also
observed for more elaborated representations of actions such as
motor imagery (Miller et al., 2010; Grosse-Wentrup et al., 2011),
mirroring of movements (Butorina et al., 2014), walking and
cycling movements (Gwin et al., 2011; Seeber et al., 2016) and
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interpersonal interaction (Djalovski et al., 2021). Motor gamma
oscillations seem also to change during human development.
It has been reported that gamma oscillations associated with
motor processing are very variable in frequency for very young
children, with frequency ranges varying between 35–45 and 70–
80 Hz (Cheyne et al., 2014). This variability seems to settle
in 70–80 Hz in children, adolescents and adults (Gaetz et al.,
2010). In addition, the power of motor gamma oscillations has
been reported to change from childhood to adolescence, with
decreases of gamma oscillations at the M1 (Trevarrow et al., 2019)
and the SMA (Wilson et al., 2010). One interpretation of these
findings is that, as the nervous system matures, motor control
becomes more localized and efficient (Wilson et al., 2010). The
reported decrease of gamma oscillations in adolescence contrast
with another study showing an increase of motor gamma power
from childhood to adolescence and weaker motor gamma in
adults relative to adolescents (Gaetz et al., 2010). There is also
evidence that lateralization of motor gamma activity is modulated
during adolescence (Huo et al., 2011), meaning that the strong
lateralization of motor gamma oscillations is the product of
a developmental trajectory. Overall, these studies highlight the
pervasive nature of gamma oscillations in distinct forms of motor
processing and its changes during development.

Local Gamma Activity
It has been often remarked that brain oscillations at the lower
end of the spectrum tend to engage large areas, while those
oscillations at higher frequencies are localized in restricted
cortical areas (Lopes da Silva, 2013). Local motor gamma activity
has been generally found in M1 (Crone et al., 1998; Cheyne et al.,
2008; Darvas et al., 2010; Muthukumaraswamy, 2010), but also
from accessory motor regions in the SMA (Szurhaj et al., 2005;
Ball et al., 2008; Wilson et al., 2010; Tamás et al., 2018), the PMC
(Brovelli et al., 2005; Gaetz et al., 2013; Dürschmid et al., 2014;
Wiesman et al., 2020) and regions closer to the frontal cortex
(Gaetz et al., 2013; Grent-’t-Jong et al., 2013). In addition, it has
been widely recognized that M1 receives inputs from subcortical
areas such as the thalamus, the cerebellum, and the basal ganglia.
The basal ganglia is a set of interconnected nuclei in the forebrain
that exerts an inhibitory influence on several motor systems
(Nambu et al., 2002). Motor gamma activity has been also found
in the basal ganglia, in particular in the globus pallidus (GB) and
the subthalamic nucleus (STN; Alegre et al., 2005; Brücke et al.,
2008). This broad motor gamma network is potentially critical
for the organization of movements. However, the relationship
between gamma oscillations arising from cortical and subcortical
regions is still poorly understood. Hints of a possible relationship
have been suggested. A study designed to compare motor gamma
activity evoked for upper and lower limbs found that the peak
frequency of gamma was slightly higher, and consistent within
individuals, for both right and left fingers and elbows relative
to foot movements (Cheyne et al., 2008; Cheyne and Ferrari,
2013). These individual gamma “fingerprints” led the authors to
speculate that gamma activity detected at cortical sites may have
a common origin and that source could be at the level of cortico-
subcortical networks. Overall, findings from studies focusing on

local neural activity show that gamma oscillations are distributed
across several cortical and subcortical structures.

The nature of gamma oscillations is an ongoing mystery.
Unlike neural oscillations in the low frequency range, like
alpha and beta, motor gamma oscillations have been described
as prokinetic, i.e., to promote movements. The increase of
gamma oscillatory activity has been found to occur very close
to triggering of movements (Crone et al., 1998; Pfurtscheller
et al., 2003; Cheyne et al., 2008; Darvas et al., 2010;
Muthukumaraswamy, 2010; but see also Muthukumaraswamy,
2010 for modulations at the movement end). This temporal
feature suggests a role of gamma oscillations in the driving of
movements, but the evidence is not clear. Some authors have
suggested that motor gamma activity is associated with the
processing of sensory reafferences (from the muscles) in sensory
and motor cortical centers (Szurhaj et al., 2005). This view holds
that motor gamma oscillations bind sensorimotor information
and facilitate movement. In this sense, gamma oscillations should
be strongly related to the processing of sensory information.
However, in a MEG study, Muthukumaraswamy (2010) shows
that motor gamma occurred equally well for both self-paced and
evoked movements but not for passive movements. In this same
study, the author also showed that motor gamma activity peaked
only at the beginning of a sequence of repetitive movements
and remained silent during the execution period. The short-lived
behavior of motor gamma oscillations has been observed in other
studies (Cheyne et al., 2008; Gaetz et al., 2013; Wiesman et al.,
2020). Thus, motor gamma oscillations are tightly locked to the
initiation of voluntary movements and they don’t seem to be a
direct consequence of sensory feedback produced by movements.
Using a mirror illusion effect, a study supports this idea. The
illusion of a moving hand can be evoked through the reflection
(in a mirror) of the movement of the opposite hand. Using this
paradigm (Butorina et al., 2014) demonstrated an increase of
motor gamma in a mirror manipulation. The increase of motor
gamma oscillations in this illusion suggest that gamma activity
is independent of proprioceptive feedback. It is worth noting,
however, that gamma activity evoked during this illusion was less
strong than the activity evoked for the actual movements. More
studies will be required to clarify the contribution of sensory
feedback to motor gamma activity. A role of motor gamma
oscillations in the control of movements should also involve
the coding of basic motor parameters. There is evidence that
gamma oscillations are associated with the coding of motor
parameters like force and direction. Muthukumaraswamy (2010)
showed that greater motor gamma power at M1 was associated
with greater force of movements. In addition, ECoG studies
have shown that motor gamma power at the M1 could be
used for decoding the direction of movements (Leuthardt et al.,
2004; Ball et al., 2009; Yanagisawa et al., 2012). Interestingly,
there are also studies showing that subcortical gamma activity is
involved in the coding of basic of motor parameters associated
with movements. Gamma activity at the STN is greater when
greater force is required (Tan et al., 2013; Alhourani et al., 2020)
and it is associated with larger (Brucke et al., 2012; Lofredi
et al., 2018) and faster movements (Brucke et al., 2012; Joundi
et al., 2012). Altogether, the current evidence highlight some
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of the characteristics of motor gamma oscillations: its close
connection (at least temporally) with movement initiation and
its contribution to the coding of some basic motor properties.
However, recent works have acknowledged a more sophisticated
role of motor gamma oscillations in the processing of actions.

In real life, movements need to be performed under
challenging conditions or might entail rapid adjustments.
Cognitive control describes the ability to generate, maintain
and adjust strategies directed to specific goals, which altogether
allows the emergence of flexible behavior (Botvinick et al.,
2001). A key question in cognitive neuroscience has been how
cognitive control is carried out in the brain. Distinct lines of
research have emphasized the idea that cognitive control, and
more generally, executive functions, are commanded by the PFC
(Toba et al., 2020). In this line, electrophysiological evidence
shows that these prefrontal operations involve theta (Cohen et al.,
2008; Nigbur et al., 2011; Gulbinaite et al., 2014) and gamma
(Jensen et al., 2007; Roux et al., 2012) oscillatory responses.
However, emergent evidence suggests that gamma oscillations at
M1 (Isabella et al., 2015; Heinrichs-Graham et al., 2018; Spooner
et al., 2021), motor regions like the PMC (Gaetz et al., 2013;
Wiesman et al., 2020) and medial frontal regions (Grent-’t-Jong
et al., 2013) contribute to the neural processing of movements in
the context of interference or conflict. These studies are based on
cognitive psychology paradigms where participants are required
to perform movements under conditions of interference and
require the inhibition of responses. These studies have shown
that motor gamma responses increase during interference in an
Eriksen flanker (Grent-’t-Jong et al., 2013; Heinrichs-Graham
et al., 2018; Spooner et al., 2021). In this task, participants respond
to a central letter or object flanked by distractor stimuli that
evoke an alternative response (Eriksen and Eriksen, 1974). In an
incompatible or interference condition, a conflict is generated
because a target attribute is presented alongside a distractor. To
succeed in this task, participants have to focus on suppressing
an automatic tendency to respond to the irrelevant dimension.
Interestingly, in distinct versions of this task, there have been
selective changes either in power (Grent-’t-Jong et al., 2013;
Spooner et al., 2021) or the frequency (Heinrichs-Graham et al.,
2018) of gamma oscillations. These differences could be due to
differences in the experimental setting, such as the use of distinct
button responses systems and the involvement of a different
number of fingers. It is likely that our understanding of the
impact of gamma oscillations in this type of motor responses
will improve with more studies that incorporate distinct spectral
metrics (power, frequency and phase). Motor gamma responses
have been also studied in a modified Go/No-Go task where a
switch condition is included (Isabella et al., 2015). In the Go/No-
Go task, participants must perform speeded responses in Go trials
and must refrain from responding on No-Go trials (Logan et al.,
2014). In the No-Go condition, a response inhibition is used to
cancel an intended movement. Conversely, in a switch condition,
participants are asked to perform a distinct movement. In the
study of Isabella et al. inhibition to stop was reflected in increased
theta power and inhibition to switch was reflected in increased
gamma power. These findings show a complementary roles of
theta and gamma oscillations in the inhibition of responses

(Isabella et al., 2015). Gamma activity is also modulated by
contextual information. In another MEG study, participants were
asked to perform a repetitive bimanual response in response
to visual stimuli. For a given hand, the context was uncertain
because in 20% of the trials a signal indicated that no movement
has to be performed. For the other hand, the context was certain
because there was never a stop signal and movements has to be
executed every time (Wiesman et al., 2021). When contralateral
responses of each hand were compared to each other the authors
found increased motor gamma power for movements performed
in the uncertain relative to the certain context. The engagement of
motor gamma oscillations in this situation speak of mechanisms
oriented to process the dynamic and uncertain conditions of
our environment. These findings converge with other studies
that show the responsiveness of motor gamma activity to
environmental cues, such as in attentional capture (Spooner et al.,
2020). This responsiveness to dynamical environmental demands
highlights the adaptive functions that motor gamma oscillations
have and its potential implications for our interactions with
our surrounding environment. Lastly, it is worth mentioning
that subcortical gamma activity has been also observed in
experimental situations where participants are required to inhibit
responses. There is robust evidence of the involvement of the
basal ganglia in motor control. A basal ganglia circuit involves
close interactions with cortical and other subcortical regions and
is important for fine adjustment of movements and the inhibition
of responses. This circuit has two main pathways. A direct
pathway has been associated with facilitation of movement
preparation, while an indirect pathway has been associated with
the suppression of movement preparation (Chakravarthy, 2013).
In this basal ganglia circuit the STN operate as a break within
the indirect pathway. In addition, there is a hyperdirect pathway
(a faster route than the aforementioned pathways) where frontal
(IFG, PFC) and motor (preSMA) regions are connected directly
with the STN (Swann et al., 2012; Chen et al., 2020). This pathway
seems to be important for the inhibition of automatic responses.
In these studies, the inhibition of responses can be assessed with
a Stop signal task. In this task, a participants had to respond to a
visual stimulus (go cue) and in a set of trials this go cue is followed
by a stop signal. The task is to stop the ongoing response to the
cue (Bari and Robbins, 2013). Recent work has demonstrated
that gamma activity at the STN is modulated during inhibitory
responses (Ray et al., 2012; Alegre et al., 2013; Fischer et al., 2017).
Altogether the evidence reviewed above suggest that local gamma
activity at cortical and subcortical areas is important for distinct
types of movements and for the inhibition of responses. Beyond
local activity, gamma oscillations have been also hypothesized to
carry information in structures far away apart.

Brain-Muscle Coupling
Researchers have been dealing for long time to understand how
motor commands are transmitted from the cortex to the muscles.
Axons from the neurons in high-level processing areas of the
motor system descend through the spinal cord and reach the
neurons that connect directly with the muscles (Rosenbaum,
2010). In the spinal cord, alpha neurons connecting with the
muscles form what has been called motor units. Each motor unit
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is composed of a motor neuron and all the muscles this motor
neuron innervates (Rosenbaum, 2010). The electrical activity of
the muscles indirectly reflects the activity of spinal alpha neurons
(and thus of motor units) and is measured by electromyography
(EMG). The study of muscular activity originated from early
investigations by Hans Piper, who detected a muscular 40 Hz
activity using a stethoscope. This rhythm is called the Piper
rhythm in his honor. In a seminal study in humans, Conway
et al. (1995) demonstrated that brain signals show brain-muscle
coupling (as coherence) in the beta range when participants
are asked to perform isometric contractions with weak force.
Isometric contractions are static compressions of the muscle and
occur without movement. Later studies showed that a contraction
entailing force may lead to a decrease of beta coherence (Kilner
et al., 1999) and a predominance of coherence in the gamma
range (∼40 Hz; Brown et al., 1998; Mima et al., 1999; Li
et al., 2020). Gamma brain-muscle coupling is produced also
for slow movements (Salenius et al., 1996; Marsden et al., 2000),
repeated maximal contractions (Brown et al., 1998) and isotonic
movements (for lower limb movements; Gwin and Ferris, 2012).
Unlike isometric contractions, isotonic movements are associated
with changes in the muscle’s length. Some studies pinpoint to
some distinctions in the brain muscle-coupling in the gamma or
beta range. For instance, Omlor et al. (2007) showed that gamma
coupling occurs in complex or dynamic movements, while beta
is predominant for movements with a stable motor output. It has
been also hypothesized that gamma coupling could be important
for the correct prediction of errors in fast force transitions
(Mehrkanoon et al., 2014). Finally, local gamma activity seems to
be independent of brain-muscle coupling. Muthukumaraswamy
(2011) showed that for simple and repetitive movements, cortical
gamma increase was paralleled by an increase of brain-muscle
coupling, but for static force production there is a burst of
gamma activity without an increase in brain-muscle coupling.
These findings suggest different functional processes reflected in
brain-muscle coupling and cortical activity.

There is a more general issue that involves the synchronic
nature of brain-muscle coupling. Some studies have found
instantaneous (or zero delay) synchronization in brain-muscle
coupling (Conway et al., 1995; Halliday et al., 1998). In
the motor system, a mechanism that could induce zero
delay synchronization could involve afferent feedback from
the muscles. There is evidence supporting this notion. For
instance, ischemia-induced deafferentation (producing lack
afferent feedback) dampen brain-muscle coupling (Pohja and
Salenius, 2003). Conversely, it has been shown that affecting
spindle activity in the muscles does not change the Piper rhythm
(Hagbarth et al., 1983) or the brain-muscle coupling (Mima et al.,
2000). In addition, there are studies reporting a delay between
brain and the muscle signals in brain-muscle coupling (Salenius
et al., 1997; Brown et al., 1998; Mima et al., 2000). This lag occurs
in a direction where the motor cortex is activated first and drives
the activity of the muscle. The sources of the leading activity in the
brain have been shown to follow a somatotopic organization and
to be at the M1 (Gross et al., 2005), although the SMA may also
contribute (Salenius et al., 1997; Hari and Salenius, 1999). It has
been also reported a 15 ms longer delay in brain-muscle coupling

for lower relative to upper limb movements (Mima et al., 2000).
These differences have been in part explained as differences in
the conduction distance between the cortex and the muscle. The
practical importance of brain-muscle coupling to motor behavior
is still discussed. Some studies have shown an increased brain-
muscle gamma coupling with increased readiness to respond in
simple reaction time experiments (Schoffelen et al., 2005, 2011).
There remain several aspects of motor-muscle coupling about
which relatively little is known.

Brain–Brain Coupling
It is currently acknowledged that neural functions derive from
some specialization of brain areas. However, the modern view
maintains that cognitive functions emerge from the cooperative
participation of groups of brain regions or networks (Sporns,
2011). While local neural activity covers an area of ∼1 cm
through monosynaptic connections, large-scale activity is said to
occur between neural assemblies that are over 1 cm apart and
involve polysynaptic pathways (Varela et al., 2001). Long-range
interactions involve a complex configuration of connections
between distinct nodes that are difficult to understand. This
is further complicated by the fact that connectivity measures
show limitations because of the probability of spurious
synchronization. The exact functional significance of brain–
brain coupling has not been demarcated, but it is assumed
that the co-activation of brain regions during a task reflects
the relevance of a given neuronal ensemble for the cognitive
process under study. In the motor domain, brain regions
related to action processing are thought to act in concert so
precise and smooth movement are brought about. Studies of
connectivity have been propelled by former functional magnetic
resonance and positron emission tomography that defined the
key nodes associated with the motor brain network. For instance,
simple finger movements involved a lateralized motor network
comprising regions like the M1, PMC and the SMA (Catalan,
1998; Diciotti et al., 2007). Electrophysiological studies have
investigated the oscillatory coupling between these regions (e.g.,
Gerloff, 1998; Gross et al., 2005). For instance, Gross et al. (2005)
investigated with MEG the connectivity across several frequency
bands for a set of unimanual and bimanual movements. This
study showed that left M1-right M1 coupling was greater for
bimanual relative to unimanual movements. In addition, it was
shown that changes in gamma M1-SMA coupling and gamma
brain-muscle coupling occurred for movements with distinct
complexity. This basic core motor network has been naturally
extended to other regions, like the PFC and posterior parietal
cortex. For instance, it has been shown that distinct types of finger
movements involve distinct gamma connectivity profiles between
primary sensorimotor cortices with the SMA and the PFC (Tamás
et al., 2018). Differences in patterns of connectivity has been also
disclosed with dynamic causal modeling. In an EEG study, it has
been shown that isometric contractions of the forearm involve
gamma coupling between the M1 and SMA, while repetitive
finger movements involve an additional coupling between the
PMC and both the M1 and SMA (Herz et al., 2012). Again,
subcortical regions have been seen to contribute to motor control
and to code basic motor parameters. For instance, it has been

Frontiers in Human Neuroscience | www.frontiersin.org 5 January 2022 | Volume 15 | Article 787157

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-787157 January 11, 2022 Time: 15:0 # 6

Ulloa Motor Gamma Oscillations

shown increased cortico-subcortical coupling between the M1
and STN for increased force (Alhourani et al., 2020) and velocity
(Fischer et al., 2020) in manual responses. Gamma coupling
has been also seen in responses associated with inhibition. For
instance, an ECoG showed increased gamma coupling between
the preSMA and right inferior frontal gyrus (IFG) for responses
that required a stopping response (Swann et al., 2012).

Brain–brain coupling can also occur across different frequency
bands. Typically, activities in the lower frequency band modulate
the amplitude, frequency, or phase of the higher frequency
signal. This cross-frequency coupling (CFC) has been linked to
several cognitive processes and has been shown to be altered
in pathological states (Canolty and Knight, 2010). A form of
CFC, phase-amplitude coupling (PAC) has been typically found
between theta and gamma, where the phase of theta activity
modulates the amplitude of gamma activity (Lisman and Jensen,
2013). Theta-gamma coupling has been also shown in the motor
domain. A study involving a variety of distinct tasks (a serial
response, auditory motor coordination and Go/No-Go task)
revealed that an increase theta-gamma PAC coupling is associated
with an increment in motor performance (Dürschmid et al.,
2014). These effects reflect a role of motor gamma oscillations
in association with theta rhythms in motor learning. PAC
coupling has been also shown to be involved in inhibition of
responses. In an MEG study, participants were asked to perform
a social approach-avoidance task where they have to avoid or
approach emotional displays using a joystick (Bramson et al.,
2018). The authors observed that theta power at the PFC was
modulated by the congruence conditions, with increased theta
activity in the incongruent relative to the congruent condition.
Cognitive control exerted by the PFC was further qualified by
PAC between PFC theta and M1 motor gamma. This is, the
increase of gamma activity during emotional action control
was modulated by the PFC. Even more, in a transcranial
alternating current stimulation (tACS) study, emotional control
was elicited by increasing this PFC-M1 theta-gamma coupling
(Bramson et al., 2020). Other studies have characterized theta-
gamma coupling and found that is modulated by sensory
modulations. Somatosensory entrainment reduced theta-gamma
PAC in simple fingers movements in a visual response paradigm
(Spooner et al., 2021). The evidence presented support the
idea that gamma activity occurs locally and in large-scale
interactions. From a functional point of view, motor gamma
encodes certain basic motor parameters and seems to play a role
in inhibitory responses. More evidence still needs to be gathered
to fully understand the role of gamma oscillations in movements.
Another important aspect of gamma is its biological substrates.
This is important since it has been observed that disturbances in
the generation of gamma oscillations have been associated with
some neurological and psychiatric conditions.

Neurobiological Mechanisms and
Physiopathology
Neural oscillations correspond to rhythmic fluctuations in the
excitability of populations of neurons occurring at distinct spatial
and temporal scales (Varela et al., 2001; Buzsaki, 2006). The

mechanisms that give rise to oscillations involve the interactions
between inhibitory interneurons, based on aminobutyric acid
(GABA)ergic neurotransmission, and excitatory pyramidal cells,
based on glutamatergic neurotransmission. An alternating cycle
between excitatory and inhibitory states emerges when excitatory
pyramidal cells get activated and stimulate interneurons which
then inhibit the excitatory cells. The following decrease in
inhibition allows the excitation period to start again (Buzsáki
and Wang, 2012). Both excitatory and inhibitory mechanisms are
important for the generation of neural oscillations, particularly
in the gamma band. Excitatory mechanisms led by α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and
N-methyl-D-aspartate (NMDA) neurotransmission is critical for
the generation of gamma oscillations (Fuchs et al., 2001; Carlén
et al., 2012). Similarly, the inhibitory features of parvalbumin-
expressing GABAergic interneurons are a key element in the
generation of gamma oscillations (Sohal et al., 2009). The
role of GABA neurotransmission has been investigated with
MEG and pharmacological interventions. Some studies have
shown that modulations of GABA neurotransmission are more
directly associated with changes in beta rather than gamma
oscillations in the motor cortex (Gaetz et al., 2011; Hall et al.,
2011; Muthukumaraswamy et al., 2013). However, enhancing
gamma activity with transcranial magnetic stimulation (TMS)
has been associated with changes in GABA levels (Nowak et al.,
2017). Different outcomes from these studies could be related
to distinct methods to measure GABA and to differences in
the used paradigms. For instance, while Nowak et al. (2017)
applied a Go/No-Go task, the aforementioned studies use simple
reaction time paradigms. Besides neurotransmission, gamma
oscillations also emerge as a result of network properties, such
as mutual inhibition, mutual excitation and recurrent inhibition
(Uhlhaas et al., 2011). These properties define models where
gamma oscillations arise from locally generated excitations or
inhibitions within an ensemble, or could result from increased
input (Sedley and Cunningham, 2013). The current evidence
highlights the importance of neurotransmission systems and
network properties for the emergence of gamma oscillations. In
line with a role of excitatory and inhibitory states in the normal
brain functioning, unbalanced neurotransmission and alterations
of oscillatory activity have been associated with neuropsychiatric
and neurological disorders.

Schizophrenia is a complex neuropsychiatric disorder
characterized by delusions, hallucinations, apathy and a loss
of social motivation. It has been shown that patients with
schizophrenia have aberrant gamma oscillations in perceptual
(Uhlhaas et al., 2006) and executive (Cho et al., 2006) functions.
More recently, it has been also shown that these patients exhibit
motor disturbances and these alterations may involve changes
in motor oscillations. Compared with healthy individuals,
early onset schizophrenic patients show a reduction of gamma
oscillatory responses in M1 and the cerebellum in a finger
movement paradigm (Wilson et al., 2011). These findings
suggest that alterations of gamma activity span distinct
cognitive domains and may reflect a general dysfunction of
gamma oscillatory activity. This notion converges with the
idea of an altered neurotransmission balance in schizophrenia
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(Gaspar et al., 2009). Autism spectrum disorder (ASD) is
a neurodevelopmental disorder characterized by deficits in
social communication, restricted interests, and repetitive
behaviors (American Psychiatric Association, 2013). In a series
of studies with MEG and a game-like motor task An et al. (2018,
2021) investigated the neural responses associated with finger
presses in normal and ASD children. These studies showed a
decrease in gamma peak activity (An et al., 2018) and decreased
beta-gamma ipsilateral PAC activity (An et al., 2021) in M1
of ASD children in comparison with healthy participants.
Once again, these modulations of motor gamma oscillations
may reflect an unbalance in the excitatory and inhibitory
neurotransmission systems. Indeed, these neurotransmissions
anomalies have been hypothesized to be a core aspect of ASD
(Rubenstein and Merzenich, 2003). Lastly, Parkinson’s disease is
a neurodegenerative disorder leading to tremor, bradykinesia,
stiffness, and difficulty with walking, balance, and coordination.
PD is characterized by a loss of nigrostriatal dopaminergic
neurons and thus dopamine replacement has been used as a
pharmacological treatment (Lang and Lozano, 1998a). A more
recent therapy is based on deep brain stimulation (DBS) of
the STN and has been shown to decrease motor disturbances
in PD (Lang and Lozano, 1998b). Interestingly, improvement
of motor functions seems to be related to a decrease of beta
oscillations (which are over activated in the disorder) and an
increase of motor gamma oscillations (Brown et al., 2001).
These findings highlight the complementary roles of beta and
gamma oscillations during health and a how an alteration of the
oscillatory activities might underlie pathological conditions.

Gamma oscillations are modulated by alterations in the
normal functioning of the nervous system that compromise
the production of movements. A stroke occurs when the blood
supply to a brain region is impeded (possibly by an obstruction or
a rupture of the vasculature). Stroke can lead to sensory deficits
problems to produce or understand speech and is associated with
impairments in motor functions. It has been shown that patients
with stroke have decreased brain-muscle gamma coupling than
healthy controls during the realization of movements (Fang
et al., 2009; Rossiter et al., 2013). Interestingly, peripheral nerve
stimulation therapy in patients with stroke shows decreased M1
gamma activity and these effects are related to an improvement
in motor symptoms (Wilson et al., 2011). These effects are
said to result from a more efficient local processing in the
motor cortex after therapy. Cerebral palsy (CP) is a common
motor disability in children that affects the ability to move and
maintain the balance of the body. Studies show an aberrant
gamma response in children with CP compared with healthy
individuals, either with an increase (Guo et al., 2012; Short
et al., 2020) or decrease (Kurz et al., 2014; Hoffman et al.,
2019) of gamma activity. The reported gamma abnormalities
in CP span distinct gamma ranges, with intervals between
38 and 56 Hz to interval between 70 and 200 Hz. However,
studies differ in disorder specificities, brain recording methods,
as well as in using distinct experimental manipulations, including
walking (Short et al., 2020), simple bodily responses (Kurz et al.,
2014), response inhibition (Hoffman et al., 2019) and electric
stimulation (Guo et al., 2012). Overall, these cases support

the view that abnormalities in motor gamma oscillations are
implicated in neuropsychiatric and neurological disorders.

FUTURE DIRECTIONS

I have tried to summarize our current understanding of the role
of motor gamma oscillations in the control of movements. There
are many aspects of motor gamma oscillations that need to be
clarified in future studies. Still, the current evidence suggests
that motor gamma oscillations accomplish a role beyond mere
movement initiation. Local and long-range motor gamma activity
serves as a core mechanism to organize distinct forms of motor
processing. The impact of gamma motor oscillations probably
relies on the extensive network of brain regions that include
cortical, subcortical and spinal cord activity (indirectly reflected
in the EMG measurement). The current challenge is to put all this
in one or several models of motor control. There are many open
questions and future directions that need to be taken. Research
in this domain will be enriched with longitudinal studies, which
will allow us to have a better grasp of the development trajectory
of motor oscillations and whether and how these changes are
contingent with changes in motor milestones in human beings
(see Stephen et al., 2021 for an example). This endeavor will be
only approachable within an interdisciplinary and collaborative
framework. This is also important because “movement” data
can take a variety of forms. A better interpretation of these
data requires the collaboration between scientists from distinct
disciplines. In this same line, it is necessary to replicate findings
for a set of well-defined experimental paradigms with well-
characterized movements. There are many types of movements
reported in the literature. Both simple and complex types of
movements should be systematically studied and can become
potential markers for the use in clinical as well as more
fundamental research on motor control. Gamma oscillations
involve a wide range of brain regions beyond being confined
to cortical regions. The versatility of gamma oscillations in the
organization of movements is probably because of this wide
network activity. A multi-scale approach to understanding brain
connections that occur at distinct levels of processing will be
essential. It is important to understand the specific contribution
of each node in the sensorimotor gamma network, including
primary sensorimotor cortices, as well the PMC, the SMA,
and other regions, such as the parietal cortex and the PFC.
The contribution of subcortical regions such as the thalamus,
cerebellum, and basal ganglia needs to be integrated in the
often cortico-centered models of motor control. There is robust
evidence that the basal ganglia exerts an important influence on
the organization of simple and complex responses. It is necessary
to understand how the activity of the PFC influences downstream
motor pathways. The ability to prepare actions and predict the
consequences of our actions rely in a complex organization likely
commanded by the PFC. In this line, new ideas about cognition
and brain function suggest that the brain could operate as a
Bayesian inference machine (Friston, 2010). In this framework,
predictions derived from the internal models are confronted
with new sensory information from the environment (a sensory
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consequence of a movement) and the comparisons between these
signals update an internal model which subsequently can alter
motor activity. Recent evidence suggest that neural oscillations
associated with motor control in the beta (Tan et al., 2016) and
gamma (Wiesman et al., 2021) range are sensitive to certainty of
events in the external environment.

There are methodological aspects that deserve more attention.
We need to better understand the role of different frequency
gamma ranges and why there is such a frequency diversity in
which gamma responses are found. One of the difficulties in the
study of motor, and more generally, gamma oscillations, is its
frequency variability. Using a diversity of neural metrics, future
studies should aim to categorize the diversity of frequency ranges
of gamma responses found in distinct brain areas. It is possible
that the integrative properties endowed by gamma oscillations
operate at distinct spatio-temporo-spectral dimensions. In
addition, future studies will need to expand analyses methods to
consider the complexity and non-linear nature of local and long-
range brain activity. The inherent complexity of brain networks
has not been fully explored, and can make up another dimension
in which motor parameters are coded. We need also consider the
social context in which movements are carried out. In models
of motor control, it is necessary to incorporate the fact that
the actions are carried out in a social context associated with
social inter-actions. These interactions shape our experience and
our perceptual processes. Future lines of research should be
concerned with evaluating actions in both laboratory contexts
and real contexts outside the laboratory. Flexible and adaptive
behavior is grounded in our ability to perform actions, and
this adaptive behavior varies according to the contingencies we
encounter in our social daily life. Lastly, gamma oscillations
are not the only oscillations involved in motor processing. In
fact, it is intriguing that so many distinct oscillatory responses
contribute to the processing of motor information in the nervous
system. This attests to the importance of actions for human
beings. The science of movements has become one of the
most exciting challenges in neuroscience emerging these recent
years. The evolution of this field has benefited from recent
advances in experimental psychology, cognitive neuroscience

and computational modeling, which altogether have dramatically
sped up our understanding of movements. A collective effort will
be instrumental to fully understand the role of motor gamma
oscillations in human movements.
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