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Recent computational models of perception conceptualize auditory oddball responses
as signatures of a (Bayesian) learning process, in line with the influential view of the
mismatch negativity (MMN) as a prediction error signal. Novel MMN experimental
paradigms have put an emphasis on neurophysiological effects of manipulating
regularity and predictability in sound sequences. This raises the question of the
contextual adaptation of the learning process itself, which on the computational
side speaks to the mechanisms of gain-modulated (or precision-weighted) prediction
error. In this study using electrocorticographic (ECoG) signals, we manipulated the
predictability of oddball sound sequences with two objectives: (i) Uncovering the
computational process underlying trial-by-trial variations of the cortical responses.
The fluctuations between trials, generally ignored by approaches based on averaged
evoked responses, should reflect the learning involved. We used a general linear model
(GLM) and Bayesian Model Reduction (BMR) to assess the respective contributions of
experimental manipulations and learning mechanisms under probabilistic assumptions.
(ii) To validate and expand on previous findings regarding the effect of changes
in predictability using simultaneous EEG-MEG recordings. Our trial-by-trial analysis
revealed only a few stimulus-responsive sensors but the measured effects appear
to be consistent over subjects in both time and space. In time, they occur at the
typical latency of the MMN (between 100 and 250 ms post-stimulus). In space,
we found a dissociation between time-independent effects in more anterior temporal
locations and time-dependent (learning) effects in more posterior locations. However,
we could not observe any clear and reliable effect of our manipulation of predictability
modulation onto the above learning process. Overall, these findings clearly demonstrate
the potential of trial-to-trial modeling to unravel perceptual learning processes and their
neurophysiological counterparts.

Keywords: single-trial analysis, predictive coding, mismatch negativity, Bayesian learning, general linear model,
Bayesian model reduction
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INTRODUCTION

Recent computational models of perception address sound
processing in oddball paradigms as the learning of regularities
that pertain to the repetition of an acoustic pattern (typically
a single tone in the basic form of oddball sequences, i.e.,
the standard stimuli). The corollary that follows is then to
view mismatch responses elicited by unexpected deviant sounds
as indexing surprise processing. In particular, the Mismatch
Negativity (MMN; Näätänen et al., 1978) has been suggested
to reflect a prediction error (Friston, 2005). This model of the
MMN leverages on complex underlying (Bayesian) computations
that raise the practical question of their neuronal implementation
(Knill and Pouget, 2004). Deciphering these processes is a topic of
intense research, both at the physiological (Garrido et al., 2009b;
Auksztulewicz and Friston, 2016; Carbajal and Malmierca, 2018)
and cognitive (Winkler, 2007; Heilbron and Chait, 2018) levels.

An important aspect that computational models of perception
have put forward is the influence of the acoustic context
onto sound processing in oddball paradigms, that is, as we
shall see, explicitly formalized in popular predictive coding
implementation (Friston, 2005; Spratling, 2016). Interestingly,
this is in line with recent MMN findings which emphasized
the importance of the ordering of experimental conditions
(Fitzgerald and Todd, 2020; Todd et al., 2021), pointing out the
need for refining our understanding of mismatch responses.

Surprise or prediction errors play a key role in perceptual
inference and learning (Friston, 2009). Importantly, they are
thought to drive belief updating in a context dependent manner.
In other words, the context determines the relevance of a
given prediction error, and whether it should be filtered out
or accounted for by promoting some adaptation (Adams et al.,
2013; Mathys et al., 2014). In the Bayesian framework, this
context dependent modulation naturally emerges in the form of
a precision weight. And surprise takes the more refined form of a
precision-weighted prediction error (Bastos et al., 2012). Should
the precision or confidence be low (e.g., in a noisy environment),
the learning triggered by a new sound should be lessened to
avoid irrelevant updates of the internal model. On the contrary,
a high precision will amplify the prediction error, and yield a
larger belief update.

The precision weighting account of contextual influences
has led to manipulations of the statistical structure of oddball
sequences to test specific predictions about the ensuing
modulations of the MMN. In Garrido et al. (2013), auditory
stimulations were sampled from a Gaussian distribution; larger
amplitudes were measured at the MMN latency in response
to outlier sounds when the distribution variance was reduced.
This finding speaks to the precision of standard prediction,
an aspect that has also been investigated recently using a
different manipulation (SanMiguel et al., 2021). In this study,
sound sequence comprised multiple tones occurring randomly,
with two of them playing the role of deviants and standards,
respectively. The proportion of standards in the sequence was
manipulated while keeping deviant probability constant and
larger deviant response at the MMN latency was reported
in the more stable condition where standards were more

frequent. Several studies also manipulated the predictability
of sound sequences (Chennu et al., 2013; Recasens et al.,
2014; Auksztulewicz and Friston, 2015; Lecaignard et al., 2015;
Dürschmid et al., 2016; Auksztulewicz et al., 2017, 2018). In short,
predictability has been associated with reduced brain responses,
in line with expected smaller precision-weighted prediction
errors (Lecaignard et al., 2015). However, enhanced brain activity
has also been reported in predictability conditions (Barascud
et al., 2016; Southwell et al., 2017). Together, these reports call
for further investigations to shed light onto the computational
mechanisms at play and their neurophysiological underpinnings.
The current electrocorticographic (ECoG) study was intended to
contribute to this effort.

Specifically, a closer look at the putative effect of predictability
provides a plausible explanation for the above apparent
contradictory findings. Indeed, predictability has a two-fold
and opposite effect on prediction error and its precision,
respectively. It is expected to decrease the former (as an
unsurprising environment contributes to a more accurate
prediction of future sensations) but to increase the latter (as
a structured context provides more reliable prediction errors).
An important aspect is that both computational variables
depend upon the temporal structure of the sensory input
sequence, but precision weight (or inverse variance) pertaining
to second order statistics (in contrast with prediction pertaining
to first-order ones) is expected to be optimized over a
slower timescale (Mathys et al., 2014). As a consequence,
averaging methods like traditional event-related potential (ERP)
approaches will likely be unable to reveal the contribution of
their respective dynamics onto brain activity, even if these
dynamics become separable due to a predictability manipulation.
To circumvent this issue, attempts have been made that consisted
of comparing the mismatch responses obtained in the beginning
and end of oddball sequences (Fitzgerald and Todd, 2018;
Todd et al., 2021).

Alternatively, trial-by-trial analysis, pertaining to the
examination of the single-trial activity elicited by single sounds,
enables the direct examination of such dynamics. In a previous
study using simultaneous EEG and MEG recordings, we
coupled a predictability manipulation of an oddball paradigm
with a single-trial data modeling approach (Lecaignard et al.,
2021b). Trial-by-trial activity was found to be best predicted
by a Bayesian learning model of the deviant probability and
this model revealed a modulation of learning by sequence
predictability, suggesting an automatic adaptation of sensory
processing to the statistical structure of the auditory stream.
This adaptation could be captured by a model parameter that
determines the influence of past experience onto perceptual
inference. The larger value we found under predictability can
be interpreted as a larger memory span that fits well with the
fact that the more structured the sound sequence, the more
past information is integrated to make predictions These
findings and few others speak to the plausibility of perceptual
models engaged in oddball processing and the trial-by-trial
fluctuations they prescribe (Ostwald et al., 2012; Lieder et al.,
2013; Stefanics et al., 2014; Meyniel et al., 2016; Sedley et al.,
2016; Weber et al., 2020).
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We designed the present ECoG study around two objectives:
first, we aimed at testing the reproducibility of the recent EEG-
MEG single-trial findings, considering the youth of this field
of research, and the methodological challenge on which it is
based, i.e., the sensitivity of single-trial data to noise. We here
expect ECoG data to refine the spatio-temporal characterization
of perceptual learning because of its excellent spatial and
temporal resolution. Second, to refine the description of cognitive
process(es) engaged during the passive processing of sound, we
propose a novel approach combining a general linear model
(GLM) with advanced Bayesian methods for model comparison
(Bayesian model reduction, Friston et al., 2016, 2018) to compare
a learning regressor with non-learning ones. Using a GLM
approach, competing cognitive hypotheses are no longer tested
as mutually exclusive (as was the case in our prior EEG-MEG
study) and we could examine where and when their related
regressor each contributes to the observed data in a flexible
way. It is interesting to note that this investigation, because it
involves both dynamic and static models (learning and non-
learning, respectively) also amounts to addressing the potential
of the still little used single-trial modeling. In short, if dynamic
models were found unlikely based on current data, single-trial
modeling would appear too complex to reveal constant effects
for which averaging methods like evoked potential analysis are
perfectly relevant. Analysis of data from four implanted patients
with ECoG electrodes over the temporal lobe provides substantial
evidence for Bayesian learning in the brain and promotes single-
trial modeling to further characterize auditory processing in the
light of perceptual inference and predictive coding. Surprisingly,
no clear evidence for the expected adaptation of learning under
predictability could be disclosed.

MATERIALS AND METHODS

Participants
Six patients (P1, P2, P3, P4, P5, and P6) with pharmacologically
intractable epilepsy participated in this study at Albany Medical
Center (Albany, NY, United States). They underwent pre-surgical
monitoring with temporary placement of electrocorticographic
grids over frontal, parietal, and temporal cortices. Four of
the six patients (P2, P4, P5, and P6) were also assessed with
intracranial depth electrodes located over temporal regions;
analysis of the related data is not included in the present
study. All patients provided informed consent for participating
in the study, which was approved by the Institutional Review
Board of Albany Medical College and the Human Research
Protections Office of the United States Army Medical Research
and Materiel Command. Table 1 summarizes the patients’ clinical
profiles. Cortical views with electrode overlay are provided in
Supplementary Figure S1.

As explained in the experimental procedure section below,
each patient received auditory stimuli divided into four runs
during a single session. Two patients however followed a different
scheme: patient P1 underwent two sessions (day 2 and day 5
after surgery) as well as patient P6 who received two runs in
a first session (day 1) and six runs in a second one (day 2).

TABLE 1 | Clinical profiles of participants.

Subject Age Sex Seizure
focus

#grids #strips #electrodes

P1 69 M Right temporal 1 11 92

P2 33 M Left temporal 1 5 224

P3 51 M Left temporal 1 6 126

P4 36 F Right temporal 1 8 92

P5 27 F Left temporal 2 4 93

P6 31 M Left temporal 2 10 122

The number of electrodes refers to contacts included in the current analysis (distant
from epileptogenic foci, without electrical or mechanical artifacts).

Given that they did not report having noticed the statistical
manipulation of the sound sequences (see below), and in order
to take advantage of most of these data, we included them all
in our subsequent analyses (we hereafter refer to these datasets
by P1a, P1b, P6a and P6b, respectively). However, no data from
patient P1 or from P6a survived our selection criterion (see
below). Hence, only session P6b was included for subsequent
analysis. For full transparency, we included the analysis of P6a as
Supplementary Material (Supplementary Figure S2). Regarding
patient P3, our analyses identified only one responsive location;
we decided not to include the data in the study, and provide
the related findings in Supplementary Material (Supplementary
Figure S3). In summary, the present work relies on four datasets:
P2, P4, P5, and P6b.

Recordings
Implanted subdural grids (from PMT Corp., Chanhassen, MN,
United States) were approved for human use and consisted of
platinum-iridium electrodes (4 mm diameter, 2.4 mm exposed)
that were embedded in silicone and spaced 6–10 mm from each
other in five patients (P1, P3, P4, P5, and P6) and 3 mm in subject
P2. Reference and ground were subdural electrodes distant from
the epileptogenic area. Grid placement and duration of ECoG
monitoring were determined to meet the requirements of the
clinical evaluation.

Recordings were conducted at the patient bedside using
BCI2000 (Schalk et al., 2004; Schalk and Mellinger, 20101).
Electrocorticographic signals were amplified using a 256-channel
g.HIamp biosignal acquisition device (g.tec, Graz, Austria) and
digitized at a sampling rate of 1200 Hz.

Sensor co-registration with cortical anatomy involved pre-
operative magnetic resonance imaging (MRI) scans and post-
operative computed tomography images (CT; Kubanek and
Schalk, 2015), and was achieved using SPM82. Supplementary
Figure S1 shows for each patient the resulting estimates of 3D
stereotactic coordinates overlaying cortical brain mesh extracted
from individual MRI scans using FreeSurfer3.

Experimental Procedure
Each patient underwent one recording session with four runs,
except for patients P1 and P6 who received two sessions

1https://www.bci2000.org
2https://www.fil.ion.ucl.ac.uk/spm/
3http://surfer.nmr.mgh.harvard.edu
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FIGURE 1 | (A) Experimental Design. Schematic view of the predictability manipulation (chunk level) applying to typical oddball sound sequences (tone level).
Predictable context (left, green) involves cycles of ordered transitions between segments of repeating standards (chunks), which become shuffled in the
Unpredictable context (right, red). Average deviant probability remains the same in both contexts (p = 1/6). Gray rectangles delineate an exemplary cycle for both
sequences. S: Standard, D: Deviant. (B) Examples of regressors for the static (top), exponential (middle), and dynamic (bottom) categories. Each trajectory was
simulated with the first 100 tones of one subject in context UC, depicted in the upper panel following the standard/deviant representation in panel (A). In the static
category, deviant regressor is shown in blue (standard regressor is not displayed for convenience, as it mirrors deviant regressor). Exponential rank and chunk size
regressors are presented in pink and purple, respectively. Regarding the learning regressor, three examples of Bayesian Surprise trajectories are provided, and were
generated from different time constant values (parameter τ in (Eq. 3); 10,20 and 50: from dark to light gray).

separated by 3 days (four runs each) and 1 day (two and six
runs), respectively.

Brain activity was recorded during an auditory oddball
paradigm originally developed by our group (Lecaignard et al.,
2015) and slightly modified here (see Figure 1A). Participants
were instructed to ignore the sounds and watch a silent movie of
their choice with subtitles. Each session lasted∼50 min, including
short breaks between runs. In the previous EEG-MEG study
(Lecaignard et al., 2015), subjects were asked at the end of the
experiment, to report to which extent they had been following the
instruction to ignore the sounds and whether they had noticed
the different sound attributes. Here, given the constraints related
to the patients’ condition and the acquisitions conducted in

a clinical context, these verifications were validated orally but
we could not have an precise description of the participants’
sensory experience.

Auditory sequence in every run consisted of sounds (70 ms
duration, 500 ms interstimulus interval) with repeating standard
(500 Hz or 550 Hz) and unexpected frequency deviants
(550 Hz or 500 Hz, occurrence probability p = 1/6). As
shown in Figure 1A, in the predictable context (PC), deviants
were delivered according to an incrementing-decrementing rule
applied to the size of repeating standard segments (or chunks)
while they were pseudo-randomly distributed among standards
in the unpredictable context (UC). We considered specific
controls for the number of standards between two deviants
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in context UC to ensure that despite their differing statistical
structure, both sequence types (UC, PC) had the same deviant
probability and the same distribution of chunk size (varying
from 2 to 8 standards). Each context (UC, PC) was delivered
in two runs to enable reversing the role of the two sounds
(500 Hz/550 Hz; standard/deviant). Further details about stimuli
and sequences can be found in Lecaignard et al. (2015). We
used BCI2000 to deliver the acoustic stimuli that were presented
binaurally through headphones.

Data Processing
We used the MNE software for electrophysiological analysis
(Gramfort et al., 2013) for raw data conversion to BIDS format4

and data preprocessing. Continuous recordings were band-pass
filtered using a zero-phase finite impulse response (FIR) filter
with Hann window in the 0.5–100 Hz band, notch-filtered at
60 Hz, 120 Hz, 180 Hz, and 240 Hz using a zero-phase FIR
notch filter (stop band width at each frequency = 6 Hz) to
remove the power line harmonics artifacts, and downsampled to
400 Hz. We excluded electrodes close to epileptogenic zones or
electrodes whose ECoG signals were clearly artifactual based on
visual inspection of the power spectral density. Time segments
with obvious noise from electrical, mechanical or muscular
origin were also rejected. Electrocorticographic recordings were
referenced to the common averaged reference (CAR). We then
extracted 600-ms-long epochs around the onset of the auditory
stimuli (-100 to 500 ms around stimulus onset). Trial rejection
was based on a peak-to-peak (maximum–minimum amplitude
within epochs) threshold procedure applied to ECoG data: for
each subject (except P2, see below), we first calculated for each
location the distribution of peak-to-peak amplitudes over epochs.
Next, at the level of the group of locations, we calculated the
global distribution of mean values as well as that of outliers
(two standard deviations from the mean). We rejected locations
if their mean was found outlying the global mean (we call
them as bad sensors). For the remaining locations, we used
the outlier amplitude of the global outlier distribution as the
threshold above which data segments were next rejected. The
overall approach yielded the following threshold and rejection
percentage: (364 uV; 26%), (330 uV; 19%), and (722 uV; 21%)
for patients P4, P5, and P6b, respectively. In patient P2, data were
contaminated by a lot of spikes; hence, we applied a threshold
of 500 uV and obtained 39% of trial rejection. Regarding
the datasets that were excluded, we obtained (586 uV; 16%),
(461 uV; 16%), (742 uV; 13%), and (552 uV; 18%) in P1a,
P1b, P3 and P6b, respectively. CAR referencing applied to the
resulting sensor set.

We next applied a 2–20 Hz pass-band filter (zero-phase FIR)
to continuous data, downsampled to 200 Hz for data reduction
purpose and extracted the 600-ms epochs around the accepted
trials resulting from the above-mentioned procedure. Finally,
artifact-free and baseline-corrected epochs ([–100 +500] ms
corresponding to Ns = 120 time samples) were exported into
SPM122.

4https://bids.neuroimaging.io/

Rationale of the Modeling Approach
In order to test Bayesian learning as the perceptual model the
brain would use when exposed to oddball sounds, as well as its
automatic modulation under predictability (as we found using
EEG-MEG), we considered a modeling framework based on
advanced Bayesian methods and applying to single-trial activity.
We here introduce to the overall procedure, which is depicted
in Figure 2.

Single-trial activity here corresponds to the signals measured
at ECoG sensors and induced by the presentation of a single
stimulus. Single-trial signals are naturally relevant to investigate
the functional interpretation of trial-by-trial fluctuations, that
should reflect the updates of computational (learning) quantities
if the brain was to entertain such learning. In this paper, the
notion of dynamics refers to the temporal dependencies that
take place over the time-course of the experiment (meaning that
trial order matters). Considering that time-dependent influence
is also critical for learning, we refer to dynamic or learning
process equivalently. Dynamic processes differ from static ones
where in this case past experience is not accounted for in
stimulus processing. It should be noticed that the dynamic-based
examination of brain activity is not possible using typical evoked
responses, as the averaging of single-trial content is precisely
meant to get rid of the dynamic information. In the following,
we will refer to trial-by-trial dynamics (or trajectory) as the time
series extracted over one or multiple experimental run(s) at a
particular sensor and a particular peri-stimulus sample. And
we will call data point the spatio-temporal location where it is
measured (one sensor, one peri-stimulus sample). An example
is illustrated in Figure 2 (panel “Single-trial responses”). In the
present work, there were Nt = 672 single trials per run, that
each involves a 600 ms temporal window (Ns = 120 peri-stimulus
samples). In total, for each participant, Nc × Ns trial-by-trial time
series contributed to the present findings, with Nc the number of
good channels (retained after artifact rejection).

The above-cited trial-by-trial modeling studies that have been
conducted using oddball paradigms confronted brain signals
(single-trial dynamics) with several model predictions that each
reflected a possible account of sound processing (Ostwald et al.,
2012; Lieder et al., 2013; Stefanics et al., 2014; Meyniel et al., 2016;
Sedley et al., 2016; Weber et al., 2020; Lecaignard et al., 2021b).
Typically, each model was treated separately and Bayesian model
comparison (Penny et al., 2010) was then employed to select
which one was more likely to have generate the observed data.
Here, we considered a different approach based on a GLM in
order to evaluate the contribution of each cognitive account
to the data, in a way that does not preclude a mixture of
several ones (thanks to the linear combination). We expected
this scheme, because it is more flexible, to provide a finer spatio-
temporal description of the mechanisms underlying oddball
sound processing.

As can be seen in Figure 2 and as will be described in
Section “Statistical Model,” we first considered a GLM comprising
six different regressors (each detailed below) and that we call
the “full model.” For each participant (P2, P4, P5 and P6b),
it was fitted to the trial-by-trial activity extracted at each data
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FIGURE 2 | Overview of the trial-by-trial modeling approach. From left to right. Stimulus sequences: Four illustrative runs of an experimental session are
represented vertically with standard and deviant indicated by gray and white squares, respectively, and UC and PC contexts delineated by red and green rectangles,
respectively. Electrocorticographic sensor overlay on a brain cortical surface (from participant P5) indicates the sensors classified as bad (red) and those retained for
the modeling (black). Single-trial responses: 2D map of single-trial activity (uV) measured at the highlighted sensor on the brain surface (large black dot). Each row
represents the 600 ms epoch of signal elicited by a stimulus of the oddball sequence (first and last trials are shown with dotted arrows). Bad trials (orange lines) are
included in the modeling as trial order matters in dynamic processes (the related noisy signal is not accounted for). Full model (GLM): an example of design matrix
(X) is provided (right) showing typical regressor trajectories (columns) over trials (rows). Data to be fitted (y) pertains to the trial-by-trial time series extracted at a
particular latency (vertical black line overlaying the 2D single-activity map). Step 1, Full model fitting and selection of data points: data point is found responsive
to the full model if goodness of fit is larger than 5%. In this case, the model comparison procedure (steps 2 to 4) is performed. Step 2, Bayesian model reduction:
left panel (model space): each model (row) corresponds to a nested version of the full model obtained by switching ON (black) and OFF (white) the different
regressors. Bottom row represents the full model (all regressors are ON). Right panel: BMR is applied to each nested model to derive the free energy and posterior
estimates of model parameters. Step 3, Model comparison: for each regressor, two families are compared using family-level inference (Penny et al., 2010). The ON
family (indicated here for the dynamic regressor, with BS denoting the Bayesian Surprise) includes all the ON models (black) with associated free energies as
indicated with the dotted red lines. The OFF family is defined similarly based on the OFF models (white). Step 4, Posterior probability map: Posterior probability of
the ON family is then computed at each responsive data point to derive a spatio-temporal map of the regressor’s relevance. At each sensor (y-axis) and each
peri-stimulus latency (x-axis), color intensity (from blue to pink) reflect the posterior probability (in [0, 1]). White points corresponds to untested data points due to an
unreliable fitting of the full model (unresponsive data point). All maps in this figure are shown with arbitrary color scales.

point (defined in space and time at all good sensors and all
peri-stimulus samples). If the resulting goodness of fit was
acceptable (according to a criterion described in Section “Data
Point Selection”), the data point was considered as model
responsive and included for subsequent analysis. The latter aims
at identifying the regressor(s) responsible for such responsiveness
and rests on steps 2 to 4 of our methodological framework
depicted in Figure 2 (right panel). In step 2, we considered
alternative models of the full one, obtained by switching ON
and OFF the contributions of all regressors; we employed
Bayesian Model Reduction (BMR; Friston et al., 2016) to derive
efficiently specific Bayesian quantities that are necessary for the
model comparison that comes next. Precisely, model comparison
(step 3) was then conducted for each regressor independently
at the level of families of models, grouping models where the
regressor of interest is present (we will refer to the ON family)

and models where it is not (the OFF family). Using family-
level inference (Penny et al., 2010), we obtained the posterior
probability of the ON family which quantifies how likely the
regressor is to have contributed to the data (note that the sum
of the ON and OFF family posterior probabilities is equal to
1). Applying this scheme (step 1 to step 3) to all data points
(step 4) yields a spatio-temporal description of the regressor’s
relevance. Such posterior probability map (referring to the ON
family) could be computed for each regressor. For sake of
clarity, the notion of model will now refer to the GLMs (the
full or nested variants) and we will use the term “regressor” to
mention the different accounts of sensory processing that we test
(some of them were tested as separate “models” in the above-
mentioned trial-by-trial studies). This terminology emphasizes
the fact that current alternative accounts are not tested as
competing in this work.
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This modeling approach was first applied to data in both
contexts (UC and PC, four runs) to examine sensory processing
and test it as Bayesian learning. This analysis is called GLM
analysis and is described in Section “Assessing Dynamic, Static,
and Exponential Contributions (GLM Analysis).” We then
addressed the adaptation of sensory processing (of Bayesian
learning in particular) under predictability in a second analysis
(Predictability analysis) described in Section “Automatic Context
Adaptation of Sound Processing (Predictability Analysis).” In
this case, we first inverted data in context UC (two runs)
to derive estimates of model parameters and these were
next used as priors for model inversion in context PC (two
runs). In this way, the ON family for one regressor gathers
models where its related coefficient could depart from UC
prior. The resulting posterior probability map (step 4) thus
smartly indicates where and when the cognitive account
of sensory processing associated to the regressor is shaped
by predictability.

Statistical Model
We considered a general linear model (GLM) of the form:

y = h0X0 + hBSdynX
BS
dyn +

∑
i∈{std,dev}

histaticX
i
static

+

∑
i∈{rnk,cs}

hiexpX
i
exp + ε (1)

Where y is the trial-by-trial time series measured at a given
ECoG location and a particular peristimulus time sample across
all trials (for each subject, for each sensor, for each run and
for each of the Ns = 120 samples spanning the [–100 +500] ms
epoch, y is a vector of size Nt = 672 trials). All parameters of the
linear combination (denoted h∗∗) are defined as Gaussian random
variables and ε is a Gaussian measurement noise. Regressors (X∗∗)
all consist in trial-wise trajectories, each representing a candidate
explanatory factor (Figure 1B). First term in equation (Eq. 1)
corresponds to the mean factor, with X0 being a unit vector.
Below, we present the five regressors that we aimed to assess, and
that we grouped in three categories:
• Dynamic regressor (XBS

dyn)
This category involves a learning regressor deriving from an

internal generative model that assumes that the brain learns
from each stimulus presentation the probability µ to have a
deviant to predict the next stimulus category U (with Uk = 1
in the case of trial k corresponding to a deviant and Uk =

0 in the case of a standard). We define U ∼ Bern (µ) with
Bern the Bernoulli distribution, and µ ∼ Beta (α, β) with α

and β the parameters of the Beta distribution corresponding
to deviant and standard counts at trial k, respectively (Eq. 3).
Regressor reflects a precision-weighted prediction error at every
sound of the oddball sequence, which expresses as a Bayesian
Surprise (BS; Ostwald et al., 2012). In short, BS quantifies the
belief updating on µ as it corresponds to the Kullback-Leibler
divergence between the prior and the posterior Beta distributions
over µ. At trial k, following the observation of sound input Uk, it

writes:

BS (Uk) = log

(
0
(
αk−1 + βk−1

)
0 (αk + βk)

)
+ log

(
0 (αk)

0
(
αk−1

))

+ log

(
0 (βk)

0
(
βk−1

))+ (αk−1 − αk
) [

ψ
(
αk−1

)
− ψ

(
αk−1 + βk−1

)]
+ (βk−1 − βk)

[
ψ(βk−1)

− ψ(αk−1 + βk−1)
]

(2)

Where 0 and ψ are the Gamma and Digamma Euler
functions, respectively. Internal states α, β are updated as well as
XBS

dyn is augmented as follows:
αk+1 = Uk + e−

1
τ αk

βk+1 = (1− Uk)+ e−
1
τ βk

Xdyn,k+1 = BS
(
Uk,αk, βk, τ

) (3)

Full description of the model is provided in our previous EEG-
MEG work (Lecaignard et al., 2021b). As can be seen from
equation (Eq. 3) and in Figure 1B (lower panel), standard and
deviant counts vary with model parameter τ, a time constant that
enables controlling the relative influence of past events in belief
updating. It can be viewed as the size of the temporal integration
window (or memory span). In our previous EEG-MEG study,
a more predictable sequence was found to yield an increase in
τ, which is consistent with the idea that the more regular or
structured the sensory environment, the more one should rely on
past events to form predictions. In the following, since regressor
XBS

dyn is the only one to be both dynamic and the output of a
generative learning model, it will be called the dynamic or the
learning regressor equivalently.
• Static regressors (Xstd

static, Xdev
static)

We here include two regressors to classify trials according
to the actual sensory input (a standard or a deviant sound).
Xstd

static equals 1 at every occurrence of a standard stimulus,
and 0 at every occurrence of a deviant stimulus. Xdev

static is the
complementary of Xstd

static (it is equal to 1-Xstd
static). Although their

respective trajectory is not constant (Figure 1B, upper panel), we
consider these two regressors as static in the sense that they do not
incorporate any time dependency but simply capture stimulus
category. They are similar to the ‘change detection’ regressors
defined in previous MMN modeling studies (Lieder et al., 2013;
Stefanics et al., 2018; Lecaignard et al., 2021b). They indeed get
close to the actual definition of the MMN and the way (averaged)
oddball responses are traditionally computed, although typical
studies usually discard the first standard following a deviant or
even sometimes all standards but the one just preceding a deviant,
precisely to get rid of time-dependent (dynamic) effects.
• Exponential regressors (Xrank

exp ,Xcs
exp)

Introducing this additional category was motivated by well-
established MMN findings, namely that standard responses
decrease over stimulus repetitions (Grill-Spector et al., 2006) and
that the MMN amplitude increases as the number of standards
preceding a deviant (chunk size) increases (Sams et al., 1983).

Frontiers in Human Neuroscience | www.frontiersin.org 7 February 2022 | Volume 15 | Article 794654

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-794654 February 5, 2022 Time: 14:55 # 8

Lecaignard et al. Trial-by-Trial Modeling of Mismatch Responses

Note that these inter-trial modulations cannot be predicted by
the above static regressors (Xstd

static, Xdev
static), but could coincide

with the predictions from the above dynamic (learning) factor,
as was found in Lecaignard et al. (2021b). However, for a fair
examination of brain signal dynamics in relation to these MMN
findings, we considered two additional regressors accounting
for standard repetition effects and deviant history, while not
reflecting some output from a specific cognitive process. They
concern the rank of stimulus repetition, where at trial k,
rank (Uk) is defined as the within-chunk number of presentation
of current stimulus Uk, and chunk size, where cs (Uk) is the
size of the current chunk. Both rank and chunk size can take n
values in the 2–8 range (they are defined ad-hoc as no generative
model is involved here). We used exponential rather than linear
factors because of recent EEG findings in the visual modality that
showed that these regressors clearly best explain the repetition-
suppression effect and its modulation by the number of standard
repetitions (Stefanics et al., 2020). Thus, we defined regressors
Xrank

exp and Xcs
exp as the normalized mean-centered exponential

function of trial rank and trial chunk size, respectively. At trial
k, we have:

Xrank
exp (Uk) =

exp
(
rank (Uk)

)
− 1/n

∑n
i=1 exp(rank (i))

exp(max(rank (U)))

Xcs
exp (Uk) =

exp (cs (Uk))− 1/n
∑n

i=1 exp(cs (i))
exp(max(cs (U)))

(4)
It should be noticed that since deviant is of rank 1, the only way
to account for different brain responses to deviant and standard
following a deviant is to involve a mixture of the rank regressor
with either the chunk size or the static regressors (our modeling
procedure is precisely equipped to test such hypothesis). As can
be seen in Figure 1B, the rank regressor (middle panel, pink
trace) shows a possible dynamics for the expected standard-to-
standard variations (as amplitude increases over repetitions, we
would expect a negative posterior estimate for coefficient hrankexp )
that differs from the BS one (lower panel). Similarly, chunk
size regressor (purple) assigns different amplitude to deviants
depending on local past experience. The two exponential factors
thus enable testing a conservative approach as the learning factor
will now be proved explanatory only if it captures trial-wise
fluctuations that are not captured by these more traditional
factors (May and Tiitinen, 2010).

In sum, our model (that we denote as the full model) enables
mixing competing trial-based covariates to refine the spatio-
temporal description of cognitive processes engaged during the
current oddball sequence exposure. The static category contrasts
with the other two as related regressors Xstd

static and Xdev
static are

not equipped to capture time-dependent or trial order effects.
Besides, the dynamic and exponential categories differ in their
predictions of inter-trial fluctuations: dynamic regressor XBS

dyn is
computed as the output of a generative model implementing
the learning of stimulus regularities whereas the exponential
regressors are not directly computationally interpretable (Xrank

exp
and Xcs

exp do not map onto cognitive mechanism). In the
following, we provide in detail the modeling approach that we

used to assess the contribution of each regressor over space and
time to the ECoG data.

Assessing Dynamic, Static, and
Exponential Contributions (GLM
Analysis)
This first analysis aims at characterizing sensory processing
during an oddball sequence (whatever the predictability
manipulation, considering both contexts UC and PC), and
testing in particular the Bayesian learning of deviant probability
that we could evidence previously using EEG and MEG
(Lecaignard et al., 2021b). We evaluate the relevance of each
linear regressor (n = 6; XBS

dyn, Xstd
static, Xdev

static, Xrank
exp , Xcs

exp and
X0 = 1) to account for trial-to-trial fluctuations. Each evaluation
involves nested versions of the full model, that we compare
using Bayesian model comparison and family-level inference
(Penny et al., 2010).

First, we here describe the model space for this GLM analysis,
followed by a description of model inversion. Next, we present
the family-level inference procedure performed for each regressor
to assess its contribution to the observed data. Finally, we provide
the details of two additional studies that were conducted to
refine our analysis. The first one is based on simulated data
and aims at controlling the ability of our approach to separate
models (to infer the true generative model). The second consists
in replicating the GLM analysis without including the learning
regressor to test the specificity of its trial-by-trial dynamics
compared to those of exponential regressors.

Model Space
Recently, a novel approach proved efficient to test the relevance
of GLM factors, that frames this question in terms of model
comparison (Friston et al., 2016, 2018). Precisely, for each
regressor, we consider two GLM: one where the regressor is
present (or switched ON) and one where it is absent (or switched
OFF), using non-null and null coefficient h∗∗ in equation (Eq. 1),
respectively. Applying the ON/OFF scheme to all regressors,
we could build a model space with all possible combinations
(Nm = 26

= 64 models), depicted in Figure 2 (right panel). As
we shall see, evaluating the relevance of one regressor amounts
to comparing in a Bayesian model comparison fashion the 32
models where it is ON with the 32 other ones where it is OFF
(Figure 2, panel “Model Comparison”).

Model Inversion
First, we fitted the full model to the ECoG signals in both
contexts PC and UC, for each retained data point (that is, for
each of the Ns = 120 peri-stimulus time sample of each accepted
sensor). We used a Variational Bayes (VB) scheme implemented
in the VBA toolbox (Daunizeau et al., 2014). Gaussian prior
distributions were employed for every coefficient parameter, all
with zero mean and non-null variance (h∗∗ ∼ N (0,5)). We use
a similar Gaussian prior for the learning parameter (log(τ) ∼
N (2,5)). Data involved UC and PC runs (two runs per condition)
and inversion was achieved in the following fashion: each run
(Nt = 672 trials) was treated independently (model fit always
starts with the above-mentioned priors) but posterior estimate
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of each regressor coefficient accounts for the entire set (the four
runs). Bad trials were ignored to avoid contaminating model fit
with noisy signals but corresponding stimuli still entered model
dynamics as they were observed by the brain. At convergence
of the VB scheme, model inversion provides the Free Energy
approximation of the log-model evidence (Friston et al., 2007),
the percentage of explained variance afforded by the model
(denoted R2) and the posterior distributions of model parameters
(τ, h0, hBSdyn, hstdstatic, hdevstatic,hrankexp , hcsexp). Data point selection was
based on full model responsiveness, defined using a threshold
on R2 (5%; more details about data selection is provided in
Section “Data Point Selection”). Next, regarding the 63 nested
models, we employed Bayesian Model Reduction (BMR; Friston
et al., 2016) to derive analytically the (reduced) free energy and
posterior estimates for each model from those obtained with
the full model inversion. BMR affords a great gain in terms of
computational resource (only the full model is to be inverted)
and has been shown to provide better results than VB nested
model inversions that involve iterative optimization procedure,
with possibly the undesirable issue of local minima convergence
(Friston et al., 2018). In practice, for each switched-OFF regressor,
prior distribution of the corresponding regression coefficient was
set to h∗∗ ∼ N (0,0) with the null variance forcing posterior
estimate to stick to the null prior mean. Prior distribution for the
switched-ON regressors was equal to (h∗∗ ∼N (0,5)).

Family-Level Inference
For each regressor, model comparison relied on family-level
inference to compare the ON and OFF families of models,
defined by grouping the 32 ON models and the 32 OFF models,
respectively (Figure 2, panel “Model comparison”). Family
comparison was based on the Nm = 26 free energies described
above (full and reduced values). Applying the softmax function
to these free energies enables computing the posterior probability
of the ON family. The larger the ON posterior probability,
the more likely the corresponding regressor contributes to the
observed data. We performed ON/OFF family comparison for
each regressor to derive the 6 ON posterior probabilities. They
enabled us to examine the relevance of each corresponding
hypothesis for sensory processing. Importantly, this scheme (6
ON/OFF family comparisons) was performed independently at
every responsive peri-stimulus time point at every good electrode,
in the aim to finely describe spatio-temporally oddball processing
on a single-trial basis. For sake of clarity, the notation “family
X∗∗ = ON” will be used in what follows to differentiate between
families when necessary.

Finally, Bayesian model averaging (BMA; Penny et al., 2006)
provides the posterior estimates of model parameters averaged
across model space (with model-evidence weighting based on the
full and reduced free energies).

Model Separability (Simulation Study)
We investigated the ability of the above-mentioned procedure
to recognize the respective contribution of each regressor, in
particular with the present case of single-trial signals (as will be
seen, the full model inversion yields rather low goodness-of-fit).
To do so, we considered BMA posterior estimates of regressor

coefficients measured at a particular time point on one electrode
in a given participant. The full model was used with these values
to generate 100 datasets, each made of two runs per context (UC
and PC) using the exact stimulus sequences delivered to that
patient. Critically, Gaussian noise was added to the synthetic data
and its variance was adjusted so that the percentage of variance
explained by the full model when inverting this synthetic set was
of the same order of magnitude as the one measured with the real
data. Values of R2 (from observed and synthetic data inversion)
as well as measurement noise precision are provided in Table 2.
We refer to these simulated data as the full data with regard to
their generative model. We then generated another 100 datasets
using only a dynamic contribution (τ, h0,hBSdyn were equal to the

BMA values while hstdstatic, hdevstatic, h
rank
exp and hcsexp were set to 0); we

refer to them as the learning data. Last, we generated 100 datasets
using only static and exponential contributions (hstdstatic, hdevstatic,

hrankexp and hcsexp were equal to the BMA values while hBSdyn was set
to 0); we refer to them as the non-learning data. Each of the 300
datasets was confronted to our procedure (full model inversion,
BMR and family-level inference). Within each generative model
case (full, learning, non-learning), we conducted family model
comparison for each regressor. We used a random-effect (RFX)
model (Penny et al., 2010) to treat independently each of the
100 simulations.

We applied this scheme to three data points in particular
(Figure 3A) at which we found strong evidence for both
standard and learning (case 1, a posterior temporal electrode
in P5 at 130 ms), for learning only (case 2, posterior temporal
electrode in P5 at 180 ms), and for standard only (case 3,
posterior temporal electrode in P4 at 150 ms). Values of R2 and
BMA estimates of τ, hBSdyn and hstdstatic obtained from real data
fitting are provided in Table 2. Applying the above-described
modeling procedure to the resulting synthetic datasets, we
would conclude in favor of model separability afforded by our
modeling approach if for each case we could select the true
regressor(s) and reject the null ones in the full, learning and
non-learning RFX analyses.

The selected values for noise precision yielded R2 values
that were found on average over simulations close to the
observed data value, suggesting that we succeeded in generating
similar conditions of data fitting between predicted and observed
conditions (Table 2). For each case, RFX family inference
(Figure 3D) indicated that contributions from dynamic and
standard regressors could be retrieved when present in the true
model (posterior exceedance probability = 1.0). In all three
cases however, the different posterior probabilities for family
XBS

dyn = ON obtained over simulations showed values between
0.4 and 1.0 (Figure 3C and Table 2). It is important to
acknowledge this variability and keep in mind that real data
inversion could well yield a posterior probability value within
that range. Regarding the learning data, very poor goodness-
of-fit was found over simulations (mean R2 = 0.2%) in case
3. This was expected as these data were generated with no
contribution from the dynamic regressor. We obtained similar
results with the non-learning data in case 2 (mean R2 = 0.2%).
Importantly, as can be seen in Figure 3, learning and non-learning
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TABLE 2 | Parameters and results obtained in the simulation study.

ECoG inversion Simulations Full Learning Non-learning

Noise precision 0.004 0.004 0.004

Case 1 R2 14.7 R2 (mean) 13.0 6.9 2.0

Pp XBS
dyn / Xstd

static > 0.99 / 0.86 XBS
dyn Pp range 0.4–1.0 0.4–1.0 0.0–0.1

BMA log(τ) 3.853 RFX 1.0 1.0 0.0

hBS
dyn –0.128 Xstd

static Pp range 0.3–0.7 0.0–0.0 0.0–1.0

hstd
static 0.006 RFX 1.0 0.0 1.0

Noise precision 0.003 0.003 0.003

Case 2 R2 12.6 R2 (mean) 12.2 12.1 0.2

Pp XBS
dyn / Xstd

static > 0.99 / 0.002 XBS
dyn Pp range 0.4–1.0 0.4–1.0 0.0–0.0

BMA log(τ) 2.870 RFX 1.0 1.0 0.0

hBS
dyn –0.094 Xstd

static Pp range 0.0–0.0 0.0–0.0 0.0–0.0

hstd
static 0.000 RFX 0.0 0.0 0.0

Noise precision 0.002 0.002 0.002

Case 3 R2 15.9 R2 (mean) 16.1 0.2 16.4

Pp XBS
dyn / Xstd

static 0.15 / > 0.99 XBS
dyn Pp range 0.0–0.1 0.0–0.1 0.0–0.1

BMA log(τ) 2.761 RFX 0.0 0.0 0.0

hBS
dyn 0.000 Xstd

static Pp range 0.0–1.0 0.0–0.0 0.0–1.0

hstd
static 0.026 RFX 1.0 0.0 1.0

Three simulation analyses (Case 1, Case 2 and Case 3) were performed using different model parameter values inferred from ECoG data (see Figure 3A). For each case
(rows), specific findings from ECoG inversion are provided (left): explained variance of full model fitting (R2) expressed as percentage, family ON posterior probability (Pp)
for the learning and standard regressors, and BMA estimates of model time constant (τ), learning and standard regressor coefficients. Simulation results obtained from
fitting the synthetic datasets generated with the full, learning, and non-learning GLM are provided (right). Measurement noise precision corresponds to the inverse variance
of the Gaussian noise added to the synthetic data. R2 corresponds to the average over the 100 simulations. Pp range: minimum and maximum posterior probability
values of family ON observed over the 100 simulations. RFX: posterior exceedance probability of family ON resulting from model comparison performed over the 100
simulations. XBS

dyn, Xstd
static, hBS

dyn, hstd
static and τ correspond to GLM parameters described in the main text.

data inversions yielded RFX family comparison that always
indicated strong evidence for the true contributing regressor
and poor evidence for the non-contributing ones. Overall,
these findings demonstrate the reliability of this scheme (full
model inversion, BMR and family-level inference) for single
trial data analysis.

Specificity of the Bayesian Surprise Dynamics
The learning regressor was found necessary to account for trial-
by-trial data in a spatially restricted but robust fashion (posterior
probability of ON family ≥ 0.9), while the exponential ones
could be clearly rejected. To better understand this effect, we
next examined the specificity of the BS time course over trials
in comparison to the exponential ones (Figure 1B). In other
words, we assessed whether the exponential contributions could
provide a better fit when taking the learning factor out of the
model (in this way, we derive a model space comparable to
the one used in the study by Stefanics et al. (2020), where the
exponential model was found winning). We thus ran another
time the ON/OFF family comparison (Figure 2, step 3) for each
regressor and at each responsive data point, over the subset

of model space where XBS
dyn was absent (Nm = 32). Increased

evidence for the Xrank
exp = ON and Xcs

exp = ON families would
indicate the relevance of a dynamic trajectory, be it exponential or
learning-based. On the contrary, similar rejection of exponential
regressors as when learning is present would point to the BS
specificity and strengthen the finding of a contribution of the
learning regressor.

Automatic Context Adaptation of Sound
Processing (Predictability Analysis)
This second analysis pertains to the modulatory effect of
predictability on learning, an effect measured at the group-
level using EEG-MEG recordings. In this previous work, we
considered a learning model that expresses as the present GLM
(Eq. 1) reduced to the X0 and the XBS

dyn contributions. Each
context (UC, PC) was treated separately and we tested for a
difference in the resulting posterior estimates using an ANOVA.
Such a predictability effect could be observed at the group-level as
a difference in the posterior estimates of the learning parameter τ

between contexts (we found τPC > τUC).
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FIGURE 3 | Simulation findings. (A) Simulations were based on parameter values inferred from ECoG data fitting. Three cases were considered. Case 1 and Case 2
concern one sensor in P5, highlighted on the cortical surface (same display as in Figure 5A). Corresponding evoked responses at this sensor (average response
across contexts UC and PC), for standard (green), deviant (purple) stimuli, and their difference (red), and posterior probabilities at peri-stimulus samples for the
learning (brown), standard (orange) and deviant (yellow) regressors suppress (color code provided on the figure). Case 3 derived from one sensor in P4 (right). Cases
are presented in columns in panels (B–D). (B) Percentage of explained variance when fitting the full model to 100 simulated data (x-axis) generated from the full
(blue), learning (red) and non-learning (yellow) models. (C) Posterior probability of each regressor (following the legend provided) for each simulated data with the full
model. (D) Posterior exceedance probability for each regressor (y-axis) computed from family-level inference (RFX) performed over the 100 simulations generated
from the full, learning and non-learning models (x-axis).

Here, to assess the difference in auditory processing between
the two contexts, we adopt a different procedure inspired
from typical analysis using dynamic causal models, where
one experimental condition is defined as the basic process
performed by the brain while the other condition is treated
as perturbing this basic state (Garrido et al., 2009a; Kiebel
et al., 2009). The strength of such approach lies in the fact
the identification of specific model parameter(s) that capture(s)
the difference between conditions is itself informative about
the mechanisms behind such different processing. Not only
this approach accounts very well for the expected predictability
effect that we seek (an automatic adaptation of typical oddball
processing through the modulation of the learning process) but

also, from a methodological perspective, testing it can be handled
very nicely with the ON/OFF family-level inference procedure
deployed in the GLM analysis.

Precisely, we here started fitting only the UC data using
the same priors as defined in the previous section, and the
resulting estimates of model parameters (regressor coefficients
and learning parameter τ) enabled to characterize a baseline for
oddball processing. These values were next used as priors to fit
the GLM with the PC data; here again the full model was inverted
using a variational approach and the nested ON/OFF models
were treated using BMR. The ON/OFF family comparison
scheme was applied to model parameters (this time including
τ) in context PC. Importantly, since priors were no longer null
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(depending on UC data), the ON/OFF family comparison now
enables testing the conformity/departure from priors resulting
from the posterior estimates after fitting UC data, which speaks
to the absence/presence of predictability effect. In sum, we
here assess whether model parameters (the regressor coefficients,
and the learning rate τ) in context PC should depart from
baseline (UC) value in order to account for learning in a
predictable context.

In more detail, we restricted the analysis to data points where
evidence for learning was supported in the previous analysis.
We chose a threshold of 0.75 on family XBS

dyn = ON posterior
probability to that aim. For a fair examination of all predictability
effects, we also included data points showing evidence for other
contributing regressors (using the same threshold on posterior
probability). In sum, all data points showing at least one regressor
(except mean regressor X0) for which posterior probability of
the ON family was larger than threshold was included in the
present analysis.

Starting with context UC, we applied the procedure described
in Figure 2 (step 1 to step 3) to derive BMA posterior
estimates for every regressor coefficient. To obtain a fine estimate
of the learning parameter in that context, we used those
posterior estimates as priors over corresponding parameters in
a dedicated inference where (h∗ ∼ N (µh∗,BMA,5)) while keeping
an uninformative log-normal prior over the learning parameter
itself (log(τ) ∼ N (2, 5)). The resulting posterior mean estimates
were then used as prior means for subsequent inversions in
context PC. Regarding prior variance, an important distinction
was made between the learning and static investigations. For the
former, we expected predictability to affect learning parameter
but not the regressor coefficient. This is because τ is an evolution
parameter involved in the learning process (it shapes the effect of
learning over trials) while hBSdyn is an observation parameter used
to map hidden activity (here the BS) onto actual measurements
(at the sensor level). Contrary to the evolution parameter, this
observation one is meant to capture biophysical properties of
the data generative process that are unrelated to the cognitive
processes at play. This led us to set the following prior variance
(for convenience, notation hBSdyn has been reduced to dyn in
subscripts):

στ =

{
5 if XBS

dyn = ON
0 otherwise

σdyn = 0
(5)

For regressors Xstd
static, Xdev

static, Xrank
exp andXcs

exp, which do not
include any evolution parameter but a single observation one
(h∗∗), prior variances were set as follows:

σ∗ =

{
5 if X∗∗ = ON
0 otherwise

Similarly, we did not allow for offset parameter h0 to
vary between contexts, considering the prior distribution h0 ∼

N (µ 0,BMA, 0).

Following full model inversion in PC using these adjusted
prior distribution, the BMR and family-level inference procedure
(Figure 2, steps 2, 3) was performed to assess the relevance of the
evolution (τ) and observation (h∗∗) parameters. This procedure
was run separately for each parameter category. For the evolution
parameter τ, at every data point that showed a significant learning
effect in the previous GLM analysis (p(XBS

dyn = ON) ≥ 0.75),
family-level inference was run over a model space with 2 models
(τ being ON/OFF). Regarding the observation parameters,
similarly we selected data points that showed at least a significant
contribution of the static or the exponential models in the
previous GLM analysis. As the number of these effects varies from
one data point to another, the model space was therefore specific
to each of them (it comprises 2n models with n the number of
free parameters or, equivalently, the number of significant effects
at that particular data point).

We also considered testing the predictability effect on the
MMN component, as a significant reduction under context PC
was measured at the group-level using each EEG and MEG
modality separately (Lecaignard et al., 2015, 2021b). To that
aim, at the individual level, we focused on post-stimulus time
points in 100 and 200 ms where the MMN could be identified
in all participants (Figure 5B). For each sensor that exhibited a
learning effect in the GLM analysis (posterior probability larger
than 0.75) at least in one of these time points, we averaged
the [100 200] ms data for each accepted single trials. The
resulting values were then examined using an unbalanced two-
way ANOVA with a factor of stimulus type (standard, deviant)
and a factor of context (UC, PC) in MATLAB (R2017b, The
MathWorks Inc.).

Data Point Selection
Electrocorticographic grids provide a large number of electrodes,
in particular high-density grids such as the one used with
P2. For the sake of tractable computations as well as not to
draw conclusions out of very poor model fits, we restricted
the above analysis to ECoG electrodes with a fair amount of
explained variance. Indeed, single-trial modeling approaches
are quite recent, with no established standard regarding the
expected explained variance contrary to more conventional
ERP analysis. In a recent ECoG study (Sedley et al., 2016), a
linear model composed of learning-based regressors (surprise,
prediction error and precision trajectories) was applied to
time-frequency data and resulted in an explained variance
of the order of 2% or less, across subjects and electrodes.
Here we selected data points based on the percentage of
explained variance when fitting the full model to the pooled
UC and PC data. Inspection of R2 values obtained at each
sample, each sensor (Figure 4A) shows that R2 reached values
up to 37.2%.

We further computed the individual evoked responses to
standard and deviant sounds, and their difference exhibiting the
MMN. Overlaying R2 time series on these responses (resulting
from model inversions at each peri-stimulus time sample)
revealed that maximum R2 values did coincide with electrodes
and latencies showing the MMN (Figure 4B). Based on this
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FIGURE 4 | Data selection based on goodness-of-fit in the full model inversion. (A) For each patient, explained variance (R2 percentage value) measured at each
sensor (x-axis) for each peri-stimulus sample inversion (Ns = 120 black dots covering the [–100, 500] ms epoch per sensor). (B) Evoked responses elicited by
standard (green), deviant (purple) and their difference (red) for two unresponsive (in P1b, upper plot) and responsive (in P4, lower plot) sensors. These two sensors
are highlighted (red shaded areas) in panel (A). Black trace indicates the R2 time-course. Red horizontal lines indicate the 5% threshold. (C) Cortical surface with
sensor overlay in the four patients included in the present work. Selected sensors based on R2 thresholding are depicted in red, unresponsive and bad (rejected)
sensors are in black and white, respectively. The present findings were measured in the anterior (blue) and posterior (purple) temporal regions.

qualitative investigation, we decided to apply an R2 threshold of
5% for data selection. This value resulted in the rejection of all
data from P1a and P1b. In patient P3, only one electrode proved
above-threshold (5.8%; over 4 consecutive time samples from 180
to 195 ms, see Supplementary Material). Finally, 10, 28, 11, 18,
and 7 sensors fulfilled the selection criterion for patients P2, P4,
P5, P6a, and P6b, respectively.

The above-described simulation study could confirm the
validity of this data selection procedure with a 5% threshold for
explained variance to separate models reliably.

All selected electrodes were found distributed over
temporal regions (except for one parietal sensor in P4).
In the following, for convenience, we present the results
on those electrodes, which we split into two groups:
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FIGURE 5 | Mismatch evoked responses (2–20Hz). (A) Projection of difference responses (deviant–standard) around the MMN peak onto cortical surface (linear
projection based on sensor-to-mesh distance), for each patient (columns). Latency and amplitude range are provided for each patient. Sensor overlay: black and
white dots represent good and bad sensors, respectively. For each cortical map, black arrow points to a relevant electrode (green dot) showing an MMN, whose
evoked activity is provided in lower panel. (B) Average evoked activity across contexts (UC and PC) for standard (all of them including those of rank 1), deviant
stimuli, and their difference for each patient (column), at a particular electrode (highlighted in panel A). (C) Evoked standard and deviant responses at the same
electrode in context UC and PC. Panels (B,C): traces are baseline corrected (–100 to 0 ms) and follow the color code provided.

the anterior and the posterior part of the temporal lobe,
respectively (Figure 4C).

RESULTS

We report findings measured in four patients (P2, P4, P5, and
P6b), first identifying the relevant explanatory variables and
their spatio-temporal mapping (GLM analysis), and then testing
for the effect of our experimental manipulation (Predictability
analysis). Typical evoked responses to standard (occurring at any
position within a chunk) and deviant stimuli as well as their
differences are shown in Figure 5B, along with standard and
deviant waveforms measured in each context separately (UC, PC)
in Figure 5C.

Results in both sections below were obtained from selected
data points (see “Materials and Methods” section). We do not
report findings regarding the constant regressor (coefficient
h0 in Eq. 1); they are provided as Supplementary Material
(Supplementary Figure S4).

GLM Analysis
Responsive data points (R2 ≥ 5%) were all found in the
post-stimulus interval, at samples exhibiting the MMN in the
following time windows: 145–325 ms in P2, 100–335 ms in P4
(one anterior temporal sensor showed also later responsiveness
in 405–470 ms), 115–290 ms in P5, and 90-215 ms in P6b. We
start by presenting the family-level inference results obtained
with the ECoG data (UC and PC contexts) in the aim to assess the
presence of each regressor in the GLM. We next show the effect of
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switching off the contribution of the dynamic regressor onto the
estimated contribution of the static and exponential covariates in
order to test if the latter could compensate for the BS absence due
to the alternative dynamics they entail (Figure 1B).

GLM Analysis (Fitting UC and PC Data)
Figure 6 shows the posterior probability of families XBS

dyn =

ON, Xstd
static = ON, and Xdev

static = ON measured at responsive
time points in the anterior and posterior temporal clusters.
In the anterior region, there were 4, 11, 2, and 5 responsive
sensors (showing at least one sample with full model inversion
R2 ≥ 5%) in P2, P4, P5, and P6b, respectively. Across the four
subjects, the learning regressor (XBS

dyn) was not found relevant
at most responsive data points (median value of posterior
probability: 0.09), with only three data points showing posterior
probability larger than 0.5 (one sensor in P2, from 230 to
235 ms, p > 0.78; one sensor in P6b at 130 ms, p = 0.81).
In contrast, strong evidence for the standard regressor (Xstd

static)
was measured predominantly (median value = 0.72). Posterior
probability was found larger than 0.9 over at least one time point
in 2/4, 7/11, and 2/5 sensors in P2, P4, and P6b, respectively
(depicted in blue in Figure 6A). Regarding the deviant regressor
(Xdev

static), posterior probability median was found equal to 0.26;
data points showing values exceeding 0.9 could be found in P4
(one sensor at 425 ms), P5 (one sensor from 135 to 150 ms)
and P6b (2 electrodes, from 210 to 215 ms, and from 190
to 205 ms, respectively) (depicted in green in Figure 6A).
Concerning the exponential covariates (Xrank

exp , Xcs
exp), they both

showed low posterior probabilities across patients. Regarding
Xrank

exp , maximum posterior probability did not exceed 0.29 in all
patients, but P6b (0.87 at 170 ms). Similarly, maximum posterior
probability of Xcs

exp was smaller than 0.39 in all patients, but P2
(0.85 at one sensor, from 265 to 270 ms).

In the posterior temporal clusters, we report 4, 15, 9, and 2
responsive electrodes in P2, P4, P5, and P6b, respectively. No
clear evidence supporting family XBS

dyn = ON was found in P2
(maximum value of 0.83, at one sensor from 200 to 215 ms)
but in P4, P5, and P6b (each with maximum value of 1.0; 5/15,
8/9, and 2/2 electrodes above 0.9, respectively; depicted in red
in Figure 6B). Across subjects, this learning effect was spanning
from 85 to 215 ms (one sensor in P4 also showed posterior
probability larger than 0.9 from 140 to 270 ms). For the static
category, P4 showed 7/15 sensors with posterior probability
larger than 0.9 over at least one time point but this effect was
not found in the other three patients: maximum probability for
Xstd

static = ON was equal to 0.72, 0.86, and 0.72 in P2, P5 and P6b,
respectively. Regarding the deviant regressor, its contribution
was found relevant in 1/4 sensor in P2 (p > 0.92 from 155
to 185 ms) and 3/15 sensors in P4 (p > 0.91 from 125 to
135 ms; p = 0.95 at 130 ms; p > 0.98 from 150 to 155 ms)
but not in P5 and P6b (maximum posterior probability of 0.72
in both cases). In patient P4, 3 electrodes revealed learning
and static effects (depicted in purple and cyan in Figure 6B)
but not occurring at the same latency. For the exponential
models, two patients disclosed an effect for Xrank

exp = ON: in
P2, posterior probability was larger than 0.94 in 3/4 sensors

from 165 to 185 ms, and in P5, it was larger than 0.91 in 1/9
sensor from 150 to 170 ms. No evidence could be suggested in
P4 and P6b as maximum values were equal to 0.19 and 0.02,
respectively. For family Xcs

exp = ON, posterior probabilities were
all measured below 0.64, 0.06, 0.37 and 0.01 in P2, P4, P5 and
P6b, respectively.

Specificity of Bayesian Surprise Dynamics
As the above findings supported the learning of the deviant
probability (hence a dynamic process) in the posterior temporal
region, we next examined if the exponential regressors (Xrank

exp and
Xcs

exp) would be sufficient to capture this dynamics or whether
the proposed learning dynamics would still be required to better
explain the data.

Results are shown in Figure 7. First, it should be noticed
that in P2, family-level inference for each regressor (except
XBS

dyn) revealed similar results as the full model space analysis

(this can be seen for Xstd
static and Xdev

static by comparing posterior
probability maps between Figures 6, 7). This is because data in
this patient did not support the learning model (poor evidence
for XBS

dyn = ON). Based on findings in P4, P5 and P6b where it
was found relevant, we see that the exponential hypothesis could
be rejected: across these patients, median posterior probability
was equal to 0.005 and 0.004 for families Xrank

exp = ON, and
Xcs

exp = ON, respectively. On the contrary, the absence of learning
contribution tend to increase the estimated contribution of the
static family, as median posterior probability increases from 0.26
to 0.61, and from 0.14 to 0.55 for the standard and deviant
regressor, respectively (over P4, P5, and P6b). However, this
increase remains limited as when focusing on data points with
strong learning evidence (p(XBS

dyn = ON) ≥ 0.9), these median
values were found to change from 0.07 to 0.33 and from 0.03 to
0.40 for the standard and the deviant regressor, respectively.

Predictability Effect
In this second analysis, we test the hypothesis of an automatic
adaptation of sound processing in the predictable context. We
first report the analysis of the MMN component, followed by a
presentation of the single-trial modeling findings.

In the [100 200] ms window, there was 1, 6, 9, and 3 sensors
in participants P2, P4, P5 and P6b, respectively, that showed
a posterior probability of family XBS

dyn = ON larger than 0.75
over at least one time point. The ANOVA revealed a significant
main effect of stimulus type (standard, deviant) in all sensors
in all participants (p < 0.0001). Without correcting p-values for
multiple tests performed over sensors, no significant main effect
of the factor context (UC, PC) could be observed in P2, P5 and
P6b (P2: F(1,1638) = 0.99, p = 0.34; P5 (larger effect across the 9
sensors): F(1,2163) = 3.39, p = 0.07; P6b (larger effect across the
3 sensors): F(1,3195) = 4.96, p = 0.03). In P4, there were 5 out
6 sensors that disclosed a significant reduction of amplitude in
context PC (smaller effect across the 5 sensors: F(1,1987) = 8.42,
p<0.004; non-significant sensor: F(1,1987) = 0.49, p = 0.48). The
stimulus type by context interaction, which corresponds to the
predictability effect on the MMN, was not supported by any
sensors in all participants (P2: F(1,1638) = 0.94, p = 0.32; P4
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FIGURE 6 | GLM findings at temporal electrodes (across contexts, UC and PC). (A) Anterior overlay. Top row: for each subject (columns), zoomed view of cortical
mesh with anterior temporal electrodes (following the clustering depicted in blue in Figure 4C). Electrodes exhibiting a posterior probability larger than 0.9 in the
50–250 ms time window (at least one sample) for one or multiple regressors are colored following the code provided at the bottom right of the figure. Rows 2 to 4:
family-level inference for regressor XBS

dyn, Xstd
static, and Xdev

static, respectively. Each graph represents the posterior probability of family X∗∗ = ON, measured at each
peri-stimulus sample. (B) Posterior overlay. Same display, with electrodes in posterior clusters (purple cluster in Figure 4C).

(larger effect across the 6 sensors): F(1,1987) = 2.42, p = 0.12; P5
(larger effect across the 9 sensors): F(1,2163) = 2.23, p = 0.14; P6b
(larger effect across the 3 sensors): F(1,3195) = 3.35, p = 0.07).

The latter finding fits well with the similar difference (deviant-
standard) traces obtained in contexts UC and PC represented in
Figure 5C.
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FIGURE 7 | Family-level inference in posterior temporal region when learning is removed from the GLM (UC and PC). Following the display in Figure 6, each
individual map shows the posterior probability at posterior temporal sensors and at each peri-stimulus time point for families Xstd

static = ON (top row), Xdev
static = ON

(upper central), Xrank
exp = ON (lower central) and Xcs

exp = ON (bottom).

TABLE 3 | Selection of data points for the Predictability analysis.

Subjects Selected data points Sensors Time windows Learning Standard Deviant Rank Chunk size

P2 48 7 155–320 5 22 7 21 2

P4 186 19 85–455 67 117 15 0 0

P5 81 11 115–200 69 6 6 6 0

P6b 33 7 100–215 19 8 6 1 0

Selection was based on findings in the GLM analysis shown in Figure 6: all data points that disclosed a posterior probability larger than 0.75 in at least one regressor
(except mean regressor X0) was included in the Predictability analysis. For each participant (rows), columns 2 to 4 provides the number of selected data points, their
spatial extent (number of sensors involved) and their temporal extent (in ms). Columns 5 to 9 specify the number of selected data points that involved the corresponding
regressor (multiple regressor effects could occur at the same peri-stimulus latency).

The single-trial modeling analysis is based on the GLM
and ON/OFF family-level inference scheme employed in the
GLM analysis. Here it was adjusted at the level of prior
definition to test if model parameters depart from the values
inferred in the UC context when the GLM (and nested variants)
is fitted to the PC data. We restricted this analysis to the
significant covariate contributions identified by the above GLM
analysis (based on a threshold of 0.75 on posterior probability).
Table 3 summarizes the resulting data point selection for
each participant.

Results are presented in Figure 8.
First, regarding the predictability effect on learning, there was

no data point to be tested in the anterior region, except one
sensor in P2 from 230 to 235ms that here shows poor evidence
for a predictability effect on τ (posterior probability lower than
0.5). Unexpectedly, in the posterior region where learning was
previously found in P4, P5 and P6b, no clear evidence was
observed in favor of a contextual modulation of parameter τ.
Precisely, as can be seen in Figure 8B, maximum posterior

probability of family τ = ON was equal to 0.5 in P2, 0.6 in P4,
0.9 in P5 (one electrode from 155 to 160 ms) and 0.5 in P6b.

For the static and exponential regressors, over the tested
data points (columns 6 to 9, Table 3) we found low
evidence supporting the modulation of their respective coefficient
(h∗∗) by predictability. Indeed, family-level inference yielded
posterior probabilities with median value over data points
equal to 0.001 and 0.01 in the anterior and posterior
region, respectively.

In sum, these results indicate that we here failed to reveal a
predictability modulation of the MMN component and of the
related perceptual learning as was evidenced at the group-level
using EEG and MEG recordings (Lecaignard et al., 2021b).

DISCUSSION

We here presented results from single-trial ECoG data measured
during the passive listening of oddball sequences with two
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FIGURE 8 | Predictability findings (family-level inference in context PC). Following the display in Figure 6, each individual map shows the posterior probability
measured at each peri-stimulus time point over anterior (panel A) and posterior (panel B) temporal electrodes. In each panel, top row (learning) shows results for
family τ = ON: posterior probability here indicates how likely parameter τ differs across contexts PC and UC. Bottom row (non-learning) present similar results
applied to the non-learning regressor coefficients (hstd

static, hdev
static,hrank

exp and hcs
exp). Family-level inference for each parameter was conducted only at data points for

which an effect for this parameter was found in the GLM analysis (posterior probability threshold of 0.75). For the non-learning maps, in the specific case where
multiple effects could occur at the same data point in the GLM analysis, we present the largest posterior probability across these effects.

different levels of predictability. This study had two purposes.
First, to test and refine the effects that we reported in a
previous study using EEG-MEG recordings. In that respect, we
do reproduce an important finding by showing that a cross-
trial Bayesian learning model does predict some of the inter-
trial fluctuations of temporal cortex activity, at the typical
latency of the scalp MMN. However, we did not observe any
difference in the learning parameter between the predictable
and unpredictable contexts. The second related objective was
methodological and concerned the relevance of single-trial
analysis for the investigation of mismatch responses. We
addressed this question by evaluating the respective explanatory
power of dynamic and static predictors, respectively. Therefore
we combined a GLM approach with a BMR strategy. Simulations
indicated a sufficient model separability given our experimental
design and validated this approach. When next applied to the
ECoG data, it suggested a spatial dissociation whereby the
dynamic account (Bayesian learning) could be measured mostly
over the posterior part of the temporal lobe and the static one over
anterior electrodes. Moreover, this analysis clearly concluded in
favor of a Bayesian learning explanation over an exponential one.
This demonstrates the sensitivity of single-trial model fitting and

strengthens the computational view of trial-by-trial fluctuations
as reflecting a trajectory of precision-weighted prediction errors.

Strengthened Evidence for Bayesian Learning During
Oddball Processing
In this study, we pursued our investigation initiated with EEG-
MEG recordings to shed light on perceptual learning processes
and neurophysiological mechanisms during auditory oddball
processing. In Stefanics et al. (2020), a similar GLM approach
was employed and fitted to single-trial scalp EEG data, in the
aim of investigating the repetition-suppression effect in the visual
modality. Competing hypotheses were each framed as a separate
GLM, that were all confronted to the data and next compared to
each other using Bayesian model comparison. Here we appeal to a
different methodology with a single GLM that enables mixing all
hypotheses but whose respective contributions are then assessed
using BMR and family-level inference. The strength of this
approach is twofold. It is computationally very efficient and
enables to compare many nested models. Furthermore, using a
GLM approach alternative hypotheses are not strictly competing
against each other in the sense that the putative most likely
combination of models can be inferred given the data.

Frontiers in Human Neuroscience | www.frontiersin.org 18 February 2022 | Volume 15 | Article 794654

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-794654 February 5, 2022 Time: 14:55 # 19

Lecaignard et al. Trial-by-Trial Modeling of Mismatch Responses

Our findings in 3 out of 4 patients present compelling
evidence for Bayesian learning in posterior temporal sensors that
also best show the classical MMN, between around 100 and
250 ms. Based on a posterior probability threshold of 0.9, it
was measured in 5/15, 8/9, and 2/2 responsive sensors in P4,
P5 and P6b, respectively. We thus succeeded in reproducing
previous EEG-MEG findings, which support the view of auditory
oddball processing as automatic perceptual learning (both studies
involved passive listening). These results add to an emerging
literature providing converging evidence from single-trial data
analysis in similar experimental settings (Ostwald et al., 2012;
Lieder et al., 2013; Stefanics et al., 2018; Weber et al., 2020) and
more generally during sensory processing (Iglesias et al., 2013;
Meyniel, 2020) where regularity learning in a context-dependent
fashion is involved.

An important contribution of our study is that we succeeded
in enriching this interpretation, as we here demonstrate the
reliability of the explanatory power of learning dynamics
(a Bayesian Surprise trajectory). This was achieved in a
straightforward fashion by conducting an additional family-level
inference analysis restricted to models in which the dynamic
(learning) regressor was switched off. Increased evidence for
the exponential regressors in this case was fairly expected,
as these are the only ones that provide a time-dependent,
though somewhat arbitrary, trajectory. In this way, we get
closer to the model comparison performed in the study by
Stefanics et al. (2020), that involved exponential, static and
linear trends, but no learning model. Their study focused on
the repetition-suppression effect that consists in the robust
reduction of brain response amplitudes over stimulus repetition;
a mechanism that is thought to participate to the MMN
(Malmierca and Auksztulewicz, 2020). The authors found the
exponential explanatory variable to outperform the other models.
Several other studies provided similar evidence. At the neuronal
level, using intracellular recordings, it was shown to account for
the attenuation of the evoked discharge of visual cortical neurons
(Sanchez-Vives et al., 2000). Regarding mismatch processing,
plausible MMN modulations could be simulated using an
exponential function, as in an attenuation model of the auditory
N1 component (May and Tiitinen, 2010) or in a generative
model operating at the neuronal level (Wacongne, 2016). None
of these studies included a (Bayesian) learning explanatory
factor. In contrast, the present analysis clearly speaks against
this computational hypothesis as we measured poor evidence
in favor of the rank and chunk size exponential regressors.
Our findings favor such perceptual learning processes over
simpler exponential accounts as the latter alternatives were
clearly rejected by the data. These results fit with previous fMRI
results obtained in a visual cue-association task (Iglesias et al.,
2013) where a Bayesian learning model was selected over a
simpler (Rescorla-Wagner) learning rule. Taken together, these
findings demonstrate the informational value afforded by single-
trial content, long considered as noise.

Spatially Distinct Processes in the Temporal Cortex
Stimulus-responsive electrodes were located predominantly in
the temporal region. Interestingly, the GLM analysis highlighted

the spatial specificity of cognitive processes. Neurophysiological
correlates of perceptual learning were located in posterior
temporal electrodes whereas electrodes best distinguishing
between standard and deviant stimuli, at the latency of the
classical MMN, were located in the anterior part. Note that
the static category was also found to correlate with posterior
electrode signals, but to a far lesser extent than the dynamic one.
These two functional clusters correspond to the electrode subsets
that showed an MMN (Figure 5A).

The mapping of the Bayesian learning process onto posterior
electrodes is in line with previous EEG-MEG findings
(Lecaignard et al., 2021b). The fusion of these non-invasive
observations optimized the reconstruction of the cortical
generators of mismatch responses, including the MMN and an
earlier component peaking at approximately 70 ms after the
deviant onset (Lecaignard et al., 2021a). In the superior temporal
plane, we found a bilateral contribution from the primary
auditory cortex (Heschl’s gyrus), followed by a more anterior
bilateral involvement of the planum polare. Bayesian learning
was associated with both generators after fitting the single-trial
cortical activity reconstructed at these cortical sites.

At the anterior cluster, we found large evidence for the
static family (in 3/4 patients). This effect was more visible
in P4 (7/11 sensors), at a latency (around 135ms) where
the cortical map of the MMN displays lower amplitudes in
anterior regions compared to the posterior ones. This low
signal-to-noise ratio in the anterior regions may explain a
greater sensitivity to the static regressor than to the dynamic
one (assuming that trial-by-trial fluctuations in the case of
noisy data could be well explained by the rather simple static
trajectories but not by the dynamic one which in this case would
be rejected as too complex). However, the fact that P6b also
shows an anterior standard effect while both spatial clusters
(anterior and posterior) have similar (but reverse) amplitude
at the MMN speak against this hypothesis. Nevertheless, this
anterior static effect contrasts with our EEG-MEG findings
where, in the planum polare, Bayesian learning was found to
outperform a simple ‘change detection’ model (Lecaignard et al.,
2021b). Further investigations are needed to reconcile these
two findings.

Lack of Predictability Effect
We could not reproduce here our EEG-MEG findings regarding
the automatic adaptation of Bayesian learning to changes in
the predictability of the acoustic environment. Neither did we
observe the consequence of such an adaptation onto the evoked
responses (the visible tip of the iceberg; no MMN reduction was
measured as reported using EEG and MEG). Furthermore and
somewhat surprisingly, no modeling responsiveness was found
at inferior frontal sites where MMN generators could be located
in several studies (Rinne et al., 2000; Schönwiesner et al., 2007;
Fulham et al., 2014; Auksztulewicz and Friston, 2015; Lecaignard
et al., 2021a).

In the EEG-MEG study, adaptation of Bayesian learning was
found to imply model time constant or memory span (learning
parameter τ). A larger τ value was inferred from single-trial data
in the predictable context. Here, since the GLM analysis provided
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strong evidence for such Bayesian learning, we expected to
measure a comparable predictability modulation. Several possible
explanations are discussed below as to why we did not reproduce
the EEG-MEG findings.

First, the present work relies on individual analysis of data in 4
patients while the previous study relied on a group-level inference
from 20 subjects. It should be noticed that individual statistical
analysis of the predictability effect on the MMN component
(data not shown) yielded 13 out of 20 participants showing a
significantly reduced MMN in context PC (an effect measured
with EEG, MEG or both). The fact that this MMN modulation
was not systematically visible at the individual level (7/20
subjects did not show the effect) suggests a large inter-individual
variability that could arise from the difficulty to learn the subtle
predictability manipulation in passive listening (this difficulty is
here even more stronger with the present paradigm, as discussed
below). In this ECoG study, the implicit learning of the statistical
structure of sound sequences could also be influenced by the
patients’ condition.

Also, in patients P2 and P4, 39% and 26% of the trials
were discarded due to artefacts (spikes and high frequency
bursts of arguably muscle origin). We obtained different results
in the two recording sessions acquired in P6 (P6a and P6b,
separated by 1 day), and they strongly differ in their number
of accepted trials (1097 and 3199, respectively). This likely
speaks to the fact that single-trial data modeling requires highly
informed signals to provide conclusive inference from subtle
variations. This could be achieved in the EEG-MEG work by
collecting a large amount of data by fusing complementary
techniques (EEG, MEG) and also through a large number
of participants. In the present case, although ECoG provides
signals with excellent temporal and spatial resolution, individual
datasets may be insufficient. Again, single-trial data analysis is
a burgeoning methodology as compared to averaging methods
(ERPs, oscillations) and empirical reports are therefore needed
to strengthen and improve this approach.

Another aspect concerns the lack of superior frontal cortical
coverage of ECoG arrays in the four participants. In our EEG-
MEG study, the predictability modulation of the MMN was larger
in space and time in EEG than in MEG (as can be seen in
Figure 1B; Lecaignard et al., 2021b). This aspect led us assume a
superior frontal generator whose radial orientation would poorly
express on gradiometers (MEG is acknowledged to have a very
low sensitivity to radial sources). Few studies have reported
MMN generators in superior frontal cortex (Lappe et al., 2013),
but we could confirm the contribution of this region to the
predictability adaptation (this effect was measured over a fronto-
temporal network). Here, none of the four patients presented
electrodes located in those regions, and it cannot be excluded
that such a predictability effect might have been observed if it
had been the case.

Finally, a plausible explanation for not observing a
predictability effect could be the slight change of paradigm
that we implemented for this study. Indeed, here the predictable
sequence was made of alternating cycles with incrementing and
decrementing chunk sizes, respectively, while in our initial study,
predictable sound sequences were composed of incrementing

cycles only. This change was made to avoid the discontinuity at
the end of each cycle (where a chunk of size 8 is followed by a
chunk of size 2), which consists in a kind of rule violation (at
the chunk level). However, the counterpart of this correction
is a reduction of the saliency of the underlying statistical
structure, making it possibly more difficult for the brain to
learn implicitly and adapts accordingly. Here we are faced
with the challenge inherent in investigating implicit sensory
processing. Experimental manipulations should be salient
enough to be processed, but subtle enough to avoid triggering
explicit processing.

Perspectives
The present analyses were based on single-trial evoked responses
in the 2–20 Hz frequency band, in the aim of testing the
reproducibility of and refine spatio-temporally previous EEG-
MEG findings. The great informational value of ECoG is evident
here, in particular through the spatial functional distinction
at the MMN latency. However, the benefit of ECoG also
lies in its potential to reveal fine cognitive processes from
spectral analysis (Moheimanian et al., 2021; Paraskevopoulou
et al., 2021). Regarding oddball processing, an ECoG study
addressed the computational role of specific bandwidths from
single-trial data analysis in the auditory cortex (Sedley et al.,
2016). Remarkably, they could relate the gamma, beta and
alpha bands to surprise, prediction updates and precision,
respectively. In another study (Dürschmid et al., 2016), a
predictability manipulation of deviant occurrence was also
employed. Significant mismatch evoked responses in the 1–
20 Hz frequency band were found in frontal and temporal
electrodes but were not found to be modulated by predictability.
This predictability effect was only visible in the high gamma
activity, in frontal regions. Putting aside the differences in
the experimental design between the two studies, the absence
of predictability effect on evoked responses fits our own
observations in the present work. An important next step with
our data will be to explore the computational correlates of
spectral responses.

CONCLUSION

The original results presented here and obtained from ECoG
data analysis provide further evidence for the implementation
of implicit Bayesian inference processes dedicated to monitoring
environmental auditory regularities. Such empirical evidence are
essential in the effort to assess the computational underpinnings
of perception, and to reveal the link between neurobiological
mechanisms and cognitive algorithms such as predictive coding.
Importantly, this study illustrates the great potential of single-
trial data analysis to reveal subtle dynamic brain processes.
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