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Brain activity in the action observation network (AON) is lateralized during action
execution, with greater activation in the contralateral hemisphere to the side of the body
used to perform the task. However, it is unknown whether the AON is also lateralized
when watching another person perform an action. In this study, we use fNIRS to measure
brain activity over the left and right cortex while participants completed actions with
their left and right hands and watched an actor complete action with their left and right
hands. We show that while activation is lateralized when the participants themselves are
moving, brain lateralization is not affected by the side of the body when the participant is
observing another person’s action. In addition, we demonstrate that individual differences
in hand preference and dexterity between the right and left hands are related to brain
lateralization patterns.
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INTRODUCTION

The action observation network (AON) is comprised of brain regions that are active when watching
another person execute an action (Lepage and Théoret, 2006; Cross et al., 2009; Condy et al., 2021).
Self-initiated motor actions using one side of the body lead to lateralized activation patterns in the
brain, such that they primarily activate contralateral motor cortex with more limited activation
in ipsilateral cortical regions (Colebatch et al., 1991; Rao et al., 1993; Pulvermüller et al., 1995).
However, lateralization patterns in the AON when watching another person act and their relation
to lateralization for self-executed actions, are unknown. Lateralization patterns of brain activation
during observation of others’ actions and self-executed actions are important because they provide
clues regarding the development and function of the AON. Specifically, brain lateralization patterns
while watching another person’s actions may clarify neural mechanisms of imitation, an important
developmental task that influences play, social development, and learning throughout the lifespan
(Acharya and Shukla, 2012; Kilner and Lemon, 2013).

Lateralization patterns in the AON during action observation could vary in the brain for
imitation depending on the individual’s perception. Specifically, imitation of others’ motor
behaviors can be characterized as either ‘‘mirror’’ imitation or ‘‘anatomical’’ imitation,
depending on how the imitator maps their own body to the person they are imitating
(Franz et al., 2007). Mirror imitation occurs when the imitator matches the side of the
shared space with the other, as if they were looking in a mirror (e.g., mapping the
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other’s right hand to their left, see Figure 1). On the other hand,
anatomical imitations occur when the imitator matches the side
of their body as if they were mapping their body onto the other’s
(e.g., mapping their right hand with the other’s right hand).

Likewise, activity in the AON can be either ‘‘mirror’’
oriented or ‘‘anatomically’’ oriented. Specifically, if the observed
actor, who is sitting across from the observer, moves their
right hand, it would lead to greater activation in the right
relative to the left motor cortex for mirror representation
(i.e., as if the observer were using their left hand). For
anatomical representation in the brain, the same observed
movement would lead to greater left relative to right motor
cortex activation. Although electroencephalography (EEG) and
functional magnetic resonance imaging (fMRI) are the primary
methods used to study the AON, brain lateralization of the
AON is challenging to study using EEG due to limited spatial
resolution or using fMRI due to effects of motion artifact on the
MR signal (Condy et al., 2021).

Functional near infrared spectroscopy (fNIRS) is an ideal
methodology for studying lateralization of the AON for several
reasons (Fukuda and Mikuni, 2012). First, compared to other
neuroimaging methods, it is relatively unperturbed by motion
artifacts that are intrinsic to action-observation paradigms.
That is, removal of trials with motion artifact and removal
of motion artifact are less likely to influence results in fNIRS
(Cooper et al., 2012; Brigadoi et al., 2014; Brigadoi and Cooper,
2015). In addition, while fNIRS does not have the spatial
resolution of fMRI or MEG, it relies on localizable changes
in oxygenated and deoxygenated hemoglobin on the cortical
surface, and thus has the resolution to detect lateralization
differences and to probe the primarymotor cortex. Finally, fNIRS
is highly tolerated, portable, and poses minimal risk, making it
ideal for use in developmental science, including studies with
children in imitation or within the AON. fNIRS uses near
infrared (NIR) light to measure the diffusion of photons in
human tissue or cortical tissue in the case of brain imaging.
Hemodynamic fluctuations in the cortex are calculated as the
difference in light absorbance of oxygenated hemoglobin (HbO)
and deoxygenated hemoglobin (HbR) (Sassaroli et al., 2006;
Yu et al., 2006). Thus, while fMRI is the gold standard for
in vivo imaging of the human brain, fNIRS has exceptional
portability and robustness to noise along with a higher temporal
resolution (Strangman et al., 2002; Cutini et al., 2012; Gagnon
et al., 2012; Wilcox and Biondi, 2015; Herold et al., 2017;
Pinti et al., 2018).

Although there have been several fNIRS studies of the AON,
most measured activation only in the contralateral hemisphere
(Condy et al., 2021) and thus could not be used for the
investigation of lateralization patterns. Those fNIRS studies that
did measure activation across both hemispheres either did not
have action and observation conditions across both the left and
right hand (Bhat et al., 2017; Crivelli et al., 2018), did not use a live
person as the ‘‘actor’’ (Holper et al., 2010), focused on atypical
populations (Kajiume et al., 2013), or used a non-lateralized
action (i.e., walking; Zhang et al., 2019).

The present study therefore uses fNIRS to measure
lateralization patterns in brain activity while participants:

(1) complete both left- and right-handed motor actions
themselves; and (2) observe both right- and left-handed motor
actions of an individual sitting across from them. Observation
and self-action were completed across both the left and
right hand while changes in blood oxygenation levels were
measured across the left and right motor cortices. In addition,
we also measured hand preference and manual dexterity. We
hypothesized that: (1) for the self-action condition, participants
would show stronger activation in the contralateral vs. ipsilateral
cortex for use of both the left and right hands; (2) laterality of
brain activations for observing the actor using their left vs. right
hands would vary. Specifically, activation of left and right motor
cortex would show opposite lateralization patterns reflecting
either mirror representation (e.g., greater left vs. right activation
when the actor sitting across from them used the left hand) or
anatomical representation (i.e., greater right vs. left activation
when actor sitting across from them used the left hand); and
(3) we expected the strength of these patterns to be positively
correlated with degree of handedness. Our alternative hypothesis
was that activation while observing an actor move would
either: (1) activate both left and right motor cortices similarly
(indicating non-lateralization of the AON for this specific task)
or (2) activate the brain as if the dominant hand were being
used, independent of whether the actor was using their right
or left hand (indicating a handedness or experience-driven
lateralization of the AON).

METHODS

This study was approved by the Institutional Review Board at
the University of Maryland. All participants provided written
informed consent before start of procedures.

Participants and Measures. Participants were
41 undergraduate students (66% female) who were recruited
through undergraduate psychology courses via SONA
(20 ± 1.6 yrs.). Six subjects were Hispanic or Latino, 11 African
American, 10 white, 11 Asian, 1 white/Asian, two more than
one race, and two subjects did not report their race. Thirty-eight
subjects were self-reported right-handers and three were left-
handed. Left-handers were excluded from these analyses since
there were not enough in the left-handed group for group-based
analyses. Instead, continuous measures of hand preference
and differential dexterity were used to determine effects of
handedness. Handedness was evaluated through use of the
Edinburgh handedness inventory (Oldfield, 1971; Jin et al., 2020)
while manual dexterity was evaluated with the Purdue pegboard
task (Tiffin and Asher, 1948; Hannanu et al., 2020). The EHI is a
dimensional hand preference score—scores range from 0 to 50,
with 0 indicating the highest possible preference for the left hand
and 50 indicating the highest preference for the right hand. The
Purdue Pegboard (Buddenberg and Davis, 2000) task involves
placing as many pegs as possible within a standardized pegboard
using either the right or left hand within 30 s. Two trials of 30 s
were completed per hand across two different orders to reduce
practice effects across the sample.

Self-action Task. Participants completed simple fine motor
tasks across ‘‘left’’ and ‘‘right’’ conditions while seated at a
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FIGURE 1 | Depictions of anatomical and behavioral imitation (top) and anatomical and behavioral neural activity during observation (bottom).

small table with a research assistant sitting opposite from them.
These tasks were designed for downward expansion with young
children and are similar to basic fine motor tasks that are
challenging but achievable in the preschool years. The five fine
motor tasks included: (1) putting plastic pennies in a bank;
(2) moving small pom poms from one bowl to another with large
plastic tweezers; (3) putting plastic pegs in a pegboard; (4) putting
large wooden beads on a rod; and (5) turning large wooden bolts
on a wooden screw. Each of these five tasks was completed across
left and right hands (10 times total) for 15 s each time. Five
tasks were used to maintain interest in extensions to younger age
groups and to increase ecological validity. Tasks were randomly
distributed across five blocks, and prior to each block the task
objects (e.g., pennies and bank) were placed on the table in front
of the participant and they were told whether they would be
using their right or left hand. After an auditory trigger from the
fNIRS interface subjects began performing the finemotor activity
continuously for 15 s per trial. This resulted in five blocks of eight
trials for both right and left hand.

Observation Task. Participants observed a trained research
assistant who was sitting across from them complete the same
five fine motor tasks described above with either their left or right
hand. Participants were told to count the number of repetitions
of each act to ensure their attention to the actor. Whereas for the
Self-action task, participants were told which hand to use prior
to the start of the block; for the Observation Task, the participant
did not know which hand the research assistant would use but
did see the task objects placed on the table in front of the research
assistant. As in the self-action task, there were five trials in which
the research assistant used their right hand and five trials in

which they used their left, determined ahead of time through
five semi-random orders. Self-action and observation trials were
interleaved, as were 20 trials across two other conditions (observe
next-to left and observe next-to right) which were not analyzed
here. Between trials, there was a random jitter of 12–15 s of rest
presented.

fNIRS System and Probe. Changes in oxyhemoglobin
were measured using the Hitachi ETG 4000 fNIRS system
with 24 channels (10 sources, eight detectors) distributed
bilaterally (12 channels per side), with the most medial and
anterior channels centered at CZ based on the international
10–20 electrode placement system (see Figure 2). The sampling
rate was 10 Hz and source-detector separation distance was 3 cm
for all the channels.

FIGURE 2 | Cap array, with red circles representing light sources, blue
circles represent detectors, and gray ellipses representing channels.
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FIGURE 3 | Hemodynamic response, HbO (Red) and HbR (Blue), across four conditions (RS, right self; LS, left self; RA, right across; LA, left across) across the
significant channel 6.

fNIRS data Processing. Raw Hitachi fNIRS data were
processed using HOMER2 (Huppert et al., 2009) using the
intensity data collected at two wavelengths (695 and 830 nm).
Noisy channels (i.e., those from optodes with little to no scalp
contact) were detected and removed using the HOMER2 Prune
Channel function. Data were then transformed from intensity to
optical density. Motion artifacts were removed using a wavelet
motion correction filter of order 6. Biological (e.g., heartrate) and
technical (e.g., motion) artifacts were removed using a low pass
filter with a cutoff frequency of 0.1 Hz, while linear and nonlinear
trends in the signals were removed by fitting a low order (an

order of 3) polynomial to the fNIRS signals and subtracting it
from the original signal (Huppert et al., 2009; Cooper et al., 2012;
Dashtestani et al., 2019).

The processed optical density signals were then converted
to oxyhemoglobin, deoxyhemoglobin, and total hemoglobin
using the modified Beer-Lambert Law (mBLL). A single
differential pathlength factor (DPF) of 6 was used for both
wavelengths of 695 nm and 830 nm in the analysis based
on the value found from previous NIRS studies on human
brain (Pierro et al., 2012). We examined the NIRS signal
with respect to the baseline for each subject to minimize
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the effects of extra-cerebral layer contamination. The source-
detector distance (3 cm) was sufficient to ensure that the
cerebral cortex was sampled. Additionally, previous NIRS studies
have shown that the task-related effects on extra-cerebral layer
hemoglobin concentration is negligible (Brigadoi and Cooper,
2015). Traces were segmented into 20-s epochs around the
trigger stimulus for each trial with each epoch starting 5 s
prior to each stimulus. Baseline correction corresponded to the
mean HbO/HbR values from −5 to 0 s. The hemodynamic
response function was then generated for each channel
during each condition for each participant by averaging the
response curves from all trials within a condition into a
single hemodynamic curve. For each channel, the maximum
change in HbO (increase in chromophore concentration)
and HbR (decrease in chromophore concentration) between
5 and 20 s in response to each experimental condition
(observation and execution) were computed to be used as
the dependent variable in subsequent analyses. Due to a
greater signal-to-noise ratio, and consistent with previous
fNIRS studies, we only used the HbO signal in the remaining
analyses (Yamamoto and Kato, 2002; Rahimpour et al.,
2020).

Statistical Analysis. Statistical analysis was performed using
SAS (Statistical Analysis Software) 9.4v. For each channel,
the maximum change in HbO was first assessed relative
to the baseline using paired t-tests. Reported p values are
Bonferroni adjusted for this analysis. Following this initial
analysis, a mixed model was computed using channels that
showed an increase in HbO hemodynamic activity relative
to baseline to examine the contrasts between conditions.
Furthermore, paired t-test were conducted between the average
hemodynamic response of channels in left hemisphere (channels
1–12) and channels on the right hemisphere (channels
12–24), to determine lateralized responses per condition.
To test the relation between hemodynamic response and
handedness, we computed Pearson correlation coefficients
between hemodynamic response ratio and handedness scores.
+. Handedness scores included the Edinburgh score (0–50, with
50 indicating the highest preference for right-handed activity;
Ransil and Schachter, 1994) as well as the differential dexterity
ratio as determined by (Mean number of pegs placed with
right hand/ Number of pegs placed with left hand; Figure 4).
Values above 1 indicate better dexterity with the right hand,
while values below one indicates better dexterity with the
left hand.

RESULTS

Contrasts between conditions. The mixed model examining
contrasts between conditions revealed a significant effect
for channels 5, F(3,91) = 2.67, p = 0.005 and 6 F(3,91) = 2.67,
p = 0.005. In both channels right-self resulted in greater
hemodynamic response (M = 0.016, SE = 0.003 and
M = 0.011, SE = 0.001) than left-self (M = 0.01,
SE = 0.003 and M = 0.005, SE = 0.0012), right across
(M = 0.01 SE = 0.025 and M = 0.006 SE = 0.001) and left
across (M = 0.013 SE = 0.003 and M = 0.006 SE = 0.001),

FIGURE 4 | Correlation between handedness measures (Pegboard ratio and
Edinburgh score).

respectively. Channel 6 hemodynamic response is shown
in Figure 3. The statistical significance of maximum
oxyhemoglobin activation was determined against baseline
using a t-test.

Lateralization of brain activity. Paired t-tests revealed a
greater hemodynamic response in the left hemisphere for the
right-self condition (t(32) = 2.40, p = 0.022). No significant results
were found for left-self, right-across, and left-across.

Effect of handedness. The results from Pearson correlations
indicated that there was a significant negative correlation
between the L/R ratio for the left-self condition and handedness.
Specifically, the correlation was significant when handedness was
measured using Purdue pegboard (rs(X) = −0.484, p = 0.0040;
Figure 5), and Edinburgh handedness inventory (rs(X) = −0.388,
p = 0.019; Figure 6). No significant results were found for right-
self, right-across and left-across.

Role of Handedness vs. Hand Used in
Brain Lateralization
GLM with hand used predicting lateralization ratio was
significant (t(35) = 2.28, p = 0.029). Specifically, in the self-
condition, using the right hand was associated with a higher
left, over right ratio than using the left hand. However, in the
observer condition, the hand used by the other did not predict
brain lateralization (t(35) = 0.861, p = 0.395).

We also used GLM to determine if hand preference
predicts brain lateralization in the self-condition above and
beyond what is predicted by whether the participant uses
their right or left hand. Hand preference did not predict
brain lateralization above and beyond the side used in the
self-condition (t(35) = −1.16, p = 0.25). Differential dexterity
also did not predict brain lateralization above and beyond side
in self condition (t(35) = −0.031, p = 0.976). Hand preference
also does not predict brain lateralization in the observe
condition (t(35) = −0.691, p = 0.494). However, differential
dexterity did predict brain lateralization in the other condition
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FIGURE 5 | Correlation between ratio of hemodynamic response function and handedness measured by the Purdue Pegboard test.

(t(35) = −2.167, p = 0.0375). Specifically, individuals who were
more dexterous with their right hand showed less left lateralized
brain activity when watching the actor use both their left and
right hands.

DISCUSSION

In this article, we showed that lateralization of activity in
the action observation network varies for self-initiated actions
and for observed actions. Specifically, using your right vs. left
hand led to increased leftward lateralization of brain activity
in the self-condition, whereas lateralization of brain activity
did not vary when observing the other use their right vs.
left hands. We demonstrated that channels placed in the
left motor cortex (approximately) are specifically activated
by use of the right hand during self-actions (vs. all other
conditions). We also show that hand preference and differential
dexterity are related to lateralization of the AON across both
self and observe conditions. Specifically, we show that while
hand used by the person being observed does not drive
lateralization of brain activity in the observer, brain lateralization
patterns are related to the patterns of hand preference and
dexterity. Specifically, preferring the right hand and being
better with the right hand were both associated with decreased
leftward lateralization when acting with the left hand. Also,

having higher dexterity with the right vs. left hand was
associated with decreased leftward lateralization during the
observe condition independent of which hand the actor was
using.

Although mirror vs. anatomical representation have not
been directly studied in the AON, multiple studies have
shown differential lateralization patterns in the brain for action
execution vs. observation. One pattern that has been seen
across multiple studies is that when using right-handed subjects,
there is greater left hemisphere activation in motor regions
regardless of whether the observed action is with the left
or right hand (Koski et al., 2002). This is very much in
line with our findings, and suggests that once handedness
has emerged, brain lateralization patterns associated with
handedness are an important determinant of neural mirroring
patterns. Extrapolated to mapping others’ actions, this supports
the possibility that observers activate brain regions ‘‘as if’’
they were doing the task with their dominant hand. It is
unclear how these patterns would present in younger children
with less lateralized motor behaviors and completing this
research in young children would clarify how handedness
may drive development of neural mirroring and/or imitation
abilities.

Importantly, individuals’ handedness is also known to affect
brain lateralization. Specifically, the ratio of contralateral to
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FIGURE 6 | Correlation between ratio of hemodynamic response function and handedness measured by the Edinburgh handedness inventory.

ipsilateral activation when using the dominant hand has shown
a linear association with degree of handedness (Dassonville
et al., 1998). The present study replicates that pattern and
extends it beyond hand preference to differential dexterity
as well. In addition, we show that handedness is related
not only to brain lateralization for the individual during
their own actions but also to brain lateralization when
observing others. This provides further support to the idea
that activation in the action observation network is tied to
an individual’s own experiences and expertise (Condy et al.,
2021).

While this study is the first to examine brain lateralization
across both self and other conditions and with the left
and right hand, several limitations should be noted. First,
we did not include left handers in this study due to low
numbers recruited. While only 10% of humans are left-
handed, their brain lateralization in the AON is still meaningful
and needs to be studied. For example, we found here that
individual handedness was related to AON activity even when
observing others, but it is possible that this would not be
true in left handers, which could alter the interpretation
of these results. Second, while we placed the optode array
in relation to the 10–20 international classification system,
individuals’ heads can vary and therefore we cannot clearly
determine exact neuroanatomical locations of hemodynamic

activity. Future studies should include digitizing methods to
determine the precise location of each channel would allow
for determination of activity in primary motor regions vs.
somatosensory cortex. In addition, we used a newly designed
motor task that was designed to be interesting enough for
toddlers and preschoolers to tolerate. Since infant tasks and
adult tasks typically rely on very repetitive actions, we included
five different tasks that were of sufficient difficulty to be
interesting to a toddler or preschooler. While our task clearly
elicited lateralized activity during the self-action condition, it is
possible that lack of lateralization during observation was task
specific, which indicates the need for replication. Finally, the
observe condition for the present study involved having the
participant sit across from the person that they were observing.
However, it is possible that lateralization of brain response
(and thus, mirror vs. anatomical activation) would vary if the
participant were sitting next to the actor. Therefore, future
studies should clarify the role of actor orientation in lateralization
of AON activity.
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