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There is a weak relationship between clinical and self-reported speech

perception outcomes in cochlear implant (CI) listeners. Such poor

correspondence may be due to differences in clinical and “real-world”

listening environments and stimuli. Speech in the real world is often

accompanied by visual cues, background environmental noise, and is

generally in a conversational context, all factors that could affect listening

demand. Thus, our objectives were to determine if brain responses to

naturalistic speech could index speech perception and listening demand in

CI users. Accordingly, we recorded high-density electroencephalogram (EEG)

while CI users listened/watched a naturalistic stimulus (i.e., the television

show, “The Office”). We used continuous EEG to quantify “speech neural

tracking” (i.e., TRFs, temporal response functions) to the show’s soundtrack

and 8–12 Hz (alpha) brain rhythms commonly related to listening effort.

Background noise at three different signal-to-noise ratios (SNRs), +5, +10,

and +15 dB were presented to vary the difficulty of following the television

show, mimicking a natural noisy environment. The task also included an

audio-only (no video) condition. After each condition, participants subjectively

rated listening demand and the degree of words and conversations they

felt they understood. Fifteen CI users reported progressively higher degrees

of listening demand and less words and conversation with increasing

background noise. Listening demand and conversation understanding in the

audio-only condition was comparable to that of the highest noise condition

(+5 dB). Increasing background noise affected speech neural tracking at a

group level, in addition to eliciting strong individual differences. Mixed effect

modeling showed that listening demand and conversation understanding

were correlated to early cortical speech tracking, such that high demand

and low conversation understanding occurred with lower amplitude TRFs. In

the high noise condition, greater listening demand was negatively correlated

to parietal alpha power, where higher demand was related to lower alpha

power. No significant correlations were observed between TRF/alpha and
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clinical speech perception scores. These results are similar to previous findings

showing little relationship between clinical speech perception and quality-of-

life in CI users. However, physiological responses to complex natural speech

may provide an objective measure of aspects of quality-of-life measures like

self-perceived listening demand.

KEYWORDS

speech tracking, EEG, listening in noise, attention, temporal response function,
movies, naturalistic stimuli, cochlear implant

Introduction

Cochlear implants (CI) can successfully restore hearing
for many individuals with profound-to-severe sensorineural
hearing loss. Despite increases in post-implantation speech
perception scores and quality-of-life (QoL) for most CI
users (e.g., Dillon et al., 2018; Fabie et al., 2018), not all
individuals achieve a favorable level of speech performance
or QoL (e.g., Holden et al., 2013; Capretta and Moberly,
2016). Studies examining post-implantation outcomes have
focused on etiology of hearing loss, duration of deafness, age
at implantation, the amount of residual hearing, and device
differences (e.g., Blamey et al., 2012; Lazard et al., 2012; James
et al., 2019; Kurz et al., 2019). However, these factors only
account for 10–22% of the outcome variability (Blamey et al.,
2012; Lazard et al., 2012). Furthermore, the correlation between
clinical speech perception test and subjective QoL questionnaire
outcomes appears to be weak to moderate at best, with some
studies reporting no significant relationship (e.g., Ramakers
et al., 2017; McRackan et al., 2018; Thompson et al., 2020).
Accordingly, QoL does not necessarily improve after cochlear
implantation even if a desired level of speech understanding
is reached. These observations motivated the development of
clinical testing procedures that are sensitive to post-implant
changes to QoL.

Clinical speech tests may fail to reliably predict QoL
changes because current clinical testing materials do not fully
capture aspects of real-world listening. Clinical tests take
place with participants centered in a sound-attenuated booth
with minimal reverberation where speech and background
noise stimuli are presented at fixed, equidistant positions
around the azimuth (Dunn et al., 2010; Minimum Speech
Test Battery (MSTB) For Adult Cochlear Implant Users, 2011;
Spahr et al., 2012). Additionally, the properties of speech
and background noise stimuli themselves are often constant
in terms of loudness and content. In contrast, listening in
everyday life often occurs in dynamic complex environments
where speech is often accompanied by fluctuating background
noise, competing speech sources, and with varying access to
visual (speech) input that influences speech comprehension.

CI users often report that visual articulatory cues (i.e., lip,
tongue, and teeth movements that accompany speech) are
missing from clinical testing (Dorman et al., 2016). Visual
articulatory cues are correlated with properties of the auditory
speech signal and provide information that assists CI users in
interpreting ambiguous speech, as demonstrated through the
McGurk effect (Rouger et al., 2008; Stropahl et al., 2017). Results
from neuroimaging studies suggest that visual articulatory cues
increase selective attention, speech intelligibility, and neural
speech tracking (the entrainment of the neural response to the
attended speech stimuli) compared to audio-only speech-in-
noise tasks, especially in individuals with hearing loss (Zion
Golumbic et al., 2013; O’Sullivan et al., 2019; Puschmann et al.,
2019). On the other hand, background noise and reverberation
negatively affects word recognition and listening effort (Picou
et al., 2016). The quality of neural speech tracking has also been
shown to decrease in the presence of noise or competing sound
sources; background noise has been demonstrated to attenuate
the brain response around 100 ms after a change in the speech
envelope amplitude (Ding and Simon, 2012; Fuglsang et al.,
2017; Petersen et al., 2017).

In these instances, the burden of degraded speech and
environmental distractions can increase the overall cognitive
demand required to adequately comprehend speech (Rönnberg
et al., 2010; Picou et al., 2016). Listening to speech in noise
can impose a strong demand on cognitive resources due to
increased engagement of working memory (Rönnberg et al.,
2010, 2013) and attention processes (Shinn-Cunningham and
Best, 2008). In complex listening environments where the sound
quality of speech is reduced, listeners must apportion their
limited cognitive resources toward attending to the targeted
speech source, in addition to processing and storing auditory
information (Rönnberg et al., 2013; Pichora-Fuller et al., 2016;
Peelle, 2018). This is especially concerning for individuals with
hearing loss who on average report significantly increased
listening effort and fatigue as scored through subjective
measures and indirect measures of brain activity (McGarrigle
et al., 2014). Along with the innate loss of spectral resolution due
to the CI processor, the demand of comprehending degraded
speech places additional strain on the cognitive resources of
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CI users and can lead to decreased motivation and effort
in engaging in social situations (Pichora-Fuller et al., 2016;
Castellanos et al., 2018). Perceived cognitive demand and
listening effort has been found to be a primary factor that
is detrimental to QoL amongst individuals with hearing loss,
especially in CI users (Hughes et al., 2018; Holman et al., 2019).

Current understanding of neural processes underlying the
management of cognitive resources when listening in complex
environments is limited. Including neural speech tracking,
various methods have been devised to measure cognitive
demand at a neural level. Alpha power (power of neural
oscillations between 8 and 12 Hz) as a potential neural marker
of effort and demand has been studied extensively (Foxe and
Snyder, 2011; Klimesch, 2012; Obleser et al., 2012; Strauß et al.,
2014; Wostmann et al., 2015; Petersen et al., 2015; Dimitrijevic
et al., 2019; Magosso et al., 2019; Price et al., 2019; Hauswald
et al., 2020; Hjortkjær et al., 2020; Paul et al., 2021). Increased
alpha power in adverse listening conditions is hypothesized to
represent the suppression of neural responses in brain regions
unrelated to the task at hand (Payne and Sekuler, 2014; Strauß
et al., 2014; Wilsch et al., 2015) and may reflect a conscious effort
to ignore task-irrelevant stimuli (Petersen et al., 2015). Indeed,
an increase in parietal alpha power has been observed during
working memory tasks in individuals with hearing loss when
both background noise and task difficulty increases (Petersen
et al., 2015; Paul et al., 2021). A positive relationship between
listening effort and alpha power in the left inferior frontal gyrus
(IFG) was also observed in CI users performing a digits speech-
in-noise task, suggesting that language networks are involved in
self-perceived listening effort (Dimitrijevic et al., 2019). When
combined with visual stimuli, an increase in alpha power is seen
in the parieto-occipital region when individuals attend to audio
that is incongruent to the presented visual cues, suggesting a
suppression of the unrelated incoming visual stimuli (O’Sullivan
et al., 2019). Therefore, alpha power potentially reflects a gating
mechanism toward incoming sensory stimuli in a manner
relevant to task goals and may serve as a marker of cognitive
demand during listening in noisy environments.

While previous literature links alpha power and speech
tracking to cognitive demand, demand appears to affect speech
tracking, cognitive engagement, and alpha power differently,
with speech envelope coherence demonstrating an inverted-U
pattern while alpha power declines overall (Hauswald et al.,
2020). Furthermore, it is unclear whether neural speech tracking
and alpha power reflect self-perceived cognitive demand
compared to current clinical speech perception measures.
Therefore, the current objectives of the study are to first
measure neural speech tracking in CI users using real-world
speech, and then evaluate the effects of increasing background
noise and the addition of visual cues on the quality of
neural speech tracking. Then, we will quantify the relationship
of neural speech tracking to the subjective self-reported
level of cognitive demand, self-perceived word understanding,
and self-perceived conversation understanding. Self-perceived

word understanding and conversation understanding will be
measured separately in the planned analyses, since the number
of perceived words may not always provide enough context
to understand a conversation. Based on previous research
regarding effort-related alpha oscillations, we conducted a
secondary analysis of alpha band power over the superior-
parietal and left IFG regions. We hypothesize that:

1. Self-rated cognitive demand during speech listening will
decrease with the presence of visual cues but increase in
response to background noise levels.

2. The degree of speech tracking will be reduced by increasing
background noise levels and enhanced by the presence of
visual cues. Similarly, the presence of visual cues will result
in a decrease in alpha power.

3. Neural speech tracking and alpha power will be related
to subjective self-reports of cognitive/mental demands and
words/conversation understanding.

Materials and methods

Participants

Participant inclusion criteria consisted of adult CI users
between the ages of 18–80 that have native or bilingual fluency
in English, with at least 1 year of experience with their implants.
As the current objective is to quantify the relationship between
clinical speech perception tests and self-perceived cognitive
demand in a general CI user population, potential participants
were not excluded based on etiology of hearing loss, age of
hearing loss onset, performance on clinical speech perception
tests, or sidedness of implantation (Table 1). Eighteen adult
CI users were recruited from Sunnybrook Health Sciences
Centre Department of Otolaryngology. Three participants were
excluded due to poor electroencephalogram (EEG) recording
quality and unavailable clinical hearing scores, leaving a final
participant sample of fifteen subjects (9 males, 6 females).
The remaining 15 participants were between 36 and 74 years
of age (M = 59.1, SD = 12.0; Table 1). The participant
sample varied in terms of device implantation, and included
three unilateral, six bimodal (hearing aid and CI), and six
bilateral CI users (Table 1). Unilateral and bimodal users
were on average 55.2 years old (SD = 12.4) on the date
of implant activation, while the average age of bilateral CI
users on the implant activation date for the ear they used
for the study was 50.5 years old (SD = 13.5). All methods
and protocols used in the current study were approved by the
Research Ethics Board at Sunnybrook Heath Sciences Centre
(REB #474-2016) in accordance with the Tri-Council Policy
Statement: Ethical Conduct for Research Involving Humans. All
participants provided written informed consent and received
monetary compensation and full reimbursement for parking at
the hospital campus for their time and participation.
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TABLE 1 Demographics of cochlear implant listeners included in the current study.

ID Age Sex Implant side Ear used CI use (year) CI brand Processor Strategy Etiology

CI01 62 F Right Right 5 Advanced Bionics Harmony HiRes Optima S Unknown

CI02 36 M Bilateral Right 6 MED-EL SONNET FS4 Cogan’s Syndrome

CI03* 53 F Right* Right 8 MED-EL OPUS 2 FS4-P Unknown

CI04* 62 M Left* Left 2 Advanced Bionics Naída Q90 HiRes Optima S Hereditary

CI05* 74 F Right* Right 5 MED-EL OPUS 2 FS4-P Hereditary

CI06 63 M Bilateral Left 4 Advanced Bionics Naída Q90 HiRes Optima S Meniere’s disease

CI07 62 M Bilateral Left 2 MED-EL SONNET FS4-P Unknown

CI08 60 M Bilateral Left 16 Advanced Bionics Naída Q70 Unknown Hereditary

CI09* 44 F Left* Left 1 MED-EL SONNET FS4-P Unknown

CI10 71 M Bilateral Right 5 MED-EL OPUS 2 FS4-P Unknown

CI11 60 F Bilateral Right 11 Cochlear Freedom ACE Congenital

CI12 38 F Left Left 1 MED-EL SONNET FS4-P Meningitis

CI13 73 M Left Left 8 MED-EL RONDO FSP Meniere’s disease

CI14* 72 M Left* Left 1 MED-EL SONNET FS4-P Unknown

CI15* 56 M Right* Right 6 MED-EL SONNET Unknown Unknown

*Participant used a hearing aid on the non-implanted side in daily life.

Clinical speech perception scores

Clinical speech perception was evaluated using the AzBio
Sentence Test (Spahr et al., 2012). During testing, the 20-
sentence lists were presented in quiet, and in noise at an
SNR of +5 dB. Testing took place during clinical visits and
were administered by audiologists as needed. During testing,
participants were seated in a sound-isolated room with minimal
reverberation, 1 m away from a loudspeaker positioned directly
in front of the participant at approximately the level of a typical
listener’s head (Minimum Speech Test Battery (MSTB) For
Adult Cochlear Implant Users, 2011). Participants were required
to repeat back the sentence heard, and each sentence was scored
as the number of words correctly reported. Percent scores are
calculated for each sentence based on the percentage of words
correct within the presented sentence. Sentence scores were
averaged and used as the estimate of speech perception ability
within the listening situation. For the current study, the most
recent post-implantation test scores relative to the study date for
the tested ear of participant (or both ears if individual ear scores
were unavailable) were collected (Table 2). The average AzBio
scores were 86.9 for listening in quiet (SD = 8.51), and 60.2 for
listening in noise (SD= 26.6).

Experimental setup

Listening environment
The continuous listening paradigm took place in a sound-

attenuated and electrically shielded booth with minimal
reverberation. Participants were seated at the center of the
booth, surrounded by a circular ring array of eight speakers

located at 0◦, ± 45◦, ± 90◦, ± 135◦, and 180◦. The speaker ring
array was raised 1 m from the ground, with each speaker cone
located 0.80 m away from the center of the ring. A computer
monitor was placed 0.80 m directly in front of the listener’s head,
under the speaker located at 0◦ azimuth. Audio stimuli were
played from the loudspeaker at 0◦ azimuth located directly in
front of the listener, while multi-talker background noise was
played from surrounding speakers.

Audiovisual stimuli
The stimuli used for the paradigm were 15-min audio and

video segments of episodes one to four from the first season of
The Office television show. The show was chosen as it features
naturalistic dialogue with little to no music, as well as its use in
previous neuroimaging studies (e.g., Byrge et al., 2015; Pantelis
et al., 2015). In addition, the opening sequence containing the
theme song of the show was removed to minimize non-speech
sounds. To investigate cognitive demand in complex listening
conditions, segments of the show were presented in conditions
that varied in multi-talker babble noise levels. The babble noise
soundtrack used for the current study was adapted from the
four-talker babble noise used in the Quick Speech in Noise
(QuickSIN) test (Killion et al., 2004).

Prior to the start of the paradigm, bilateral and bimodal
CI participants were asked to remove the cochlear implant or
hearing aid that was contralateral to the ear chosen for testing.
In the case of bilateral participants, the ear chosen for testing
was the ear that was first implanted with a CI. Participants
were asked to pay attention to the television show, attending
to the audio and video stimuli presented from the speaker
and monitor located directly in front of the participant at the
0◦ azimuth. While participants attended to the target stimuli,
babble noise was simultaneously presented from the seven
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TABLE 2 AzBio performance of CI listeners in quiet and in noise
(SNR + 5 dB) for the ear used during listening task.

ID Listening
side

Tested
ear

Score in
quiet (%)

Score in
noise (%)

CI01 Right Right 88 22

CI02 Right Right 97 95

CI03* Right Right 74 29

CI04* Left Left 71 20

CI05* Right Both 92 50

CI06 Left Left 95 56

CI07 Left Both 80 31

CI08 Left Left 90 69

CI09* Left Left 79 60

CI10 Right Right 95 95

CI11 Right Right 83 70

CI12 Left Left 93 94

CI13 Left Left 79 49

CI14* Left Left 91 74

CI15* Right Right 96 89

*Participant used a hearing aid on the non-implanted side in daily life. The side used
during the study is listed as Listening Side. Listening scores for both ears are reported for
two participants as their scores for individual ears were not available.

speakers located at ± 45◦, ± 90◦, ± 135◦, and 180◦ azimuth.
Each episode was presented in blocks of 5-min segments, with
each segment varying in background noise level. Audio-video
segments were presented at 65 dB SPL, while the babble noise
was varied to achieve the desired signal-to-noise ratio (SNR). In
the Low-Noise condition, the SNR of the audio-video segment
to the background babble noise was + 15 dB. Audio-video
segments were presented in the Moderate-Noise and High-
Noise conditions at +10 and +5 dB SNR, respectively. Finally,
to account for the benefits of visual cues for speech tracking,
segments of only audio were presented in the Audio-Only
condition at SNR +15 dB, with the video being replaced by a
visual crosshair that served as a visual fixation point. Three runs
for each condition were performed for a total of 15-min per
condition, with the order of runs and conditions randomized
for each participant to avoid bias. The presentation of video
and audio segments were processed in MATLAB 2009b (The
MathWorks, Natick, MA, USA) and controlled by a Tucker
Davis Technologies (TDT, Alachua, FL, USA) RX8 Processor.
After each episode, participants were asked to answer nine
simple open-response questions on the events that occurred in
the episode to ensure that they attended to the stimuli, averaging
to 79.63% correct (SD= 19.53%).

Assessment of self-perceived listening effort
In order to measure self-reported listening effort,

participants responded to the first section of the NASA-
Task Load Index (Hart and Staveland, 1988) after each 5-min
run. The NASA-Task Load Index (NASA-TLX) is a multi-scale
self-report that rates an individual’s perceived workload for
a task (Hart and Staveland, 1988). The dimensions consist

of six ordinal subscales: Mental Demand, Physical Demand,
Temporal Demand, Performance, Effort, and Frustration. For
the current study, the scales for Physical Demand and Temporal
demand were removed. The Effort subscale was merged with
the Mental Demand subscale in order to align with the concept
of listening effort as defined as the mental energy an individual
perceives they need to meet external demands (Pichora-Fuller
et al., 2016; Peelle, 2018). Specifically, participants responded
to the question “How mentally demanding was the task?” on a
21-point scale to gauge cognitive demand, with the endpoints
on the left and right being “Low” and “Very High,” respectively.
Additionally, subscales assessing the perceived percentage
of words understood and the percentage of conversation
understood were added.

Electrophysiological recording

Electroencephalogram data were recorded using a 64-
channel antiCHamp Brain Products recording system (Brain
Products GmbH, Inc., Munich, Germany) at a sampling rate of
2,000 Hz. EEG caps were fitted onto the participants so that the
electrode corresponding to the typical Cz location according to
the 10–20 international system was at the vertex of the skull, as
determined using the point of intersection between nasion-to-
inion and tragus-to-tragus midpoints. The EEG online reference
was a separate reference electrode located slightly anterior to the
vertex on the midline, while the ground electrode was located on
the midline at the midpoint between the nasion and the vertex.
Electrodes in proximity to or overlapping the CI magnet and coil
on the side of the tested ear were not used; this ranged from 1 to
3 electrodes across all participants.

Electroencephalogram preprocessing
Electroencephalogram recordings were imported into

EEGLAB (Delorme and Makeig, 2004) for MATLAB 2019a
(The MathWorks, Natick, MA, USA) before being filtered
with a Finite Impulse Response bandpass filter from 0.3 to
40 Hz. Stimuli audio segments were simultaneously recorded
along with the EEG in an auxiliary channel to maximize the
temporal alignment of the audio stimuli to the EEG data. The
audio soundtrack was then aligned offline to the recorded
audio stream by calculating the cross-covariance to find the
corresponding starting time point of the soundtrack itself.
Speech envelopes were extracted by calculating the absolute
value of the Hilbert transformation of the aligned audio
soundtrack. The extracted envelope was then downsampled
to the EEG recording sampling rate and appended to the EEG
data for later analyses. After alignment, the EEG and audio
data were both downsampled to 250 Hz and concatenated
together across runs and conditions for each participant. Noisy
channels and durations of extremely noisy data were removed
prior to artifact removal. Independent Component Analysis
(ICA) was conducted on the concatenated data to identify
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stereotypical physiological artifacts (e.g., eye blinks, oculomotor
movements, and cardiac activity) and technical artifacts (e.g.,
electrode pop and line noise). Components containing these
artifacts were manually removed based on the visual inspection
of component topographies. An average of 6.53 (10.36%;
SD = 1.13) components were removed across all participants.
The recordings were then separated based on study condition
for each participant, and the previously removed channels were
interpolated using the spherical splines of neighboring channels
(Perrin et al., 1989).

Cochlear implant artifact suppression
In the presence of auditory stimuli, the electrical stimulation

and radio-frequency signals of CIs impart electrical stimulation
artifacts into the EEG recording (Wagner et al., 2018). While
ICA has been previously used to identify CI artifacts in EEG
recordings involving auditory evoked potentials (Gilley et al.,
2006; Miller and Zhang, 2014), the nature of CI artifacts makes
their reduction more challenging, especially for continuous
tasks. In general, ICA separates statistically independent
components from the mixed signal. In the case of artifact
reduction in MEG and EEG data, temporal ICA separates signal
components based on their temporal independence. Artifacts
that are not temporally aligned to the stimulus onset (e.g., eye
blinks), are therefore separated from sources that are temporally
aligned (e.g., event-related potentials). CI artifacts, however, are
temporally aligned to the sound onset in a continuous EEG
recording, and have a similar morphology to the sound envelope
(Mc Laughlin et al., 2013).

Second-order blind identification (SOBI) was applied
(Belouchrani et al., 1997) to reduce CI-related artifacts as we
have used previously (Paul et al., 2020, 2021). As the name
suggests, SOBI is a blind source separation technique that
uses second-order statistics in order to separate temporally
correlated sources (Belouchrani et al., 1997). SOBI was
performed on the continuous EEG data for each participant, and
components of suspected CI artifacts were visually identified
based on the topographical centroid and implant side used
during the listening paradigm. Between 0 and 2 (∼2.51%)
components corresponding to the artifact centroids were
removed for each participant (M = 1.58, SD = 0.62). After CI
artifact suppression, the cleaned EEG and aligned audio stimuli
were subsequently imported into Fieldtrip (Oostenveld et al.,
2011) and re-referenced to an average reference before further
processing to prepare for temporal response function (TRF) and
alpha power analysis.

Data analysis

Temporal response function calculation
Temporal response functions (TRFs) were estimated from

EEG data and the speech envelope of the audio signal using

the mTRF Toolbox 2.0 (Crosse et al., 2016) in MATLAB. The
processed audio signal and the EEG signal were filtered by a
1–20 Hz bandpass, 2nd order, zero-phase filter. The filtered
EEG and audio signals were subsequently z-scored for each
participant before TRF calculations. Integration window of time
lags between −100 and 500 ms were chosen for analysis. The
mTRFcrossval function was used to optimize the regularization
parameter that reduces the overfitting of the speech envelope to
the EEG data. The mTRFcrossval function performs a leave-one
out N-fold cross-validation, where for each participant TRFs
are estimated for all trials except one. The estimated encoding
model is then used to predict the EEG signal for the trial that was
omitted, and the Pearson’s correlation coefficient is calculated
to assess the correlation between the predicted and actual EEG
signals. This process was repeated for regularization parameters
ranging from 2−5 to 215.

While some studies suggest the use of uniquely optimized
regularization parameters for each participant dataset to
maximize the TRF estimation (Crosse et al., 2021), this can
potentially overfit the TRFs to remnant CI artifacts in CI
user recordings. Thus, the correlation coefficients were then
averaged across all subjects, channels, and conditions for each
regularization parameter, and the value associated with the
highest correlation value was chosen as the optimal parameter
to use. The continuous EEG data was therefore epoched into
60-s trials prior to TRF calculation, and 211 was selected as
the regularization parameter. TRF epochs were averaged within
each condition for every participant, generating four sets of
TRFs per participant for each listening condition.

Neural speech tracking analysis
Prior to analysis, TRFs for each channel were baseline

corrected by subtracting the mean of the values between the
baseline period (−100 to −8 ms) from each point in the
TRF waveform using Brainstorm (Tadel et al., 2011). Previous
literature has identified that speech tracking component
amplitudes reaching their maximum magnitudes within the
frontocentral region (e.g., Ding and Simon, 2012; Fiedler et al.,
2019). Thus, we focused on the frontocentral scalp region as the
region of interest (ROI) at the sensor level. Specifically, the TRFs
for seven frontocentral EEG sensors within the chosen ROI were
averaged for each participant per condition to generate a mean
TRF for further analysis (Figure 1A).

To identify the time windows of interest containing the
relevant speech components, the babble noise audio was used
to create a comparison standard with similar spectral but
a temporally different speech envelope. As with the stimuli
soundtrack, the absolute value of the Hilbert transformation
was calculated for the babble comparison soundtrack to extract
the amplitude envelope. The comparison soundtrack was
then scaled to the root-mean-squared amplitude of attended
soundtrack amplitude before being subjected to the same TRF
estimation procedure. TRF differences between the stimuli TRF
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FIGURE 1

Regions of interest for TRF and frequency analysis. The seven frontocentral channels, EEG channels (A) chosen for TRF analysis are within the
region shaded in red. Relative alpha power was extracted at the (B) left inferior-frontal gyrus and the (C) superior-parietal regions for both
hemispheres (left in blue, right in red).

and the babble noise TRF at each time lag were first compared
using two-tailed paired t-tests. T-test values were then corrected
using the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995). TRF differences at time lags were considered
significantly different if the adjusted p-values were less than the
alpha criterion of 0.05. Component TRF peak amplitudes and
peak latencies were then extracted by finding the point of the
local maxima/minima of the component within the identified
time lag windows.

Alpha power
The involvement of the IFG in effortful speech listening has

been examined in various studies (e.g., Alain et al., 2018; Price
et al., 2019). We have previously shown that neural tracking and
alpha power within the left IFG has been observed to predict
successful trials for speech perception and be correlated with
listening effort (Dimitrijevic et al., 2019). Additionally, previous
literature has indicated that parietal alpha oscillations may
reflect cross-modal attentional modulation (e.g., Misselhorn
et al., 2019). Relative alpha power was extracted from EEG
data using Brainstorm following the methods outlined in Niso
et al. (2019). The preprocessed spontaneous EEG recordings
were first imported into Brainstorm, and source activations were
calculated using standardized low-resolution electromagnetic
tomography (sLORETA) modeling (Pascual-Marqui, 2002).
sLORETA models provide estimates of the power and location
of the neural generators that underlie electrophysiological
processes. Boundary element model (BEM) head models were
created using the OpenMEEG plugin prior to sLORETA
modeling. sLORETA models were z-scored, and alpha power
was computed using the Brainstorm resting-state pipeline as
outlined in Niso et al. (2019).

The power spectral densities (PSDs) of each voxel of the
sLORETA models were estimated from 0 to 125 Hz by applying
Welch’s method using a window of 1 s at 50% overlap to obtain a
1.0 Hz frequency resolution. Spectrum normalization was then

applied by dividing the PSDs by the total power. PSDs were
then averaged across all participants and sides for each condition
to identify ROIs for alpha analysis. Alpha power was extracted
over the left IFG ROI, a 38.74 cm2 region encompassing
the pars triangularis and the pars opercularis (Figure 1B) as
defined by the Desikan-Killiany Atlas (Desikan et al., 2006).
Additionally, ROIs encompassing the superior-parietal cortices
(Desikan et al., 2006) were also defined as a 57.32 cm2 area
within the left posterior parietal region and a 57.45 cm2 area
within the right posterior parietal region (Figure 1C). Mean
relative alpha power was calculated by averaging alpha power
values between 8 and 12 Hz and then dividing by the total power.
The relative alpha power was then extracted over all ROIs for
each participant per condition.

Statistical analysis

All statistical analyses were performed in R (R Core Team,
2021) and MATLAB 2019a (MATLAB, 2019). One-way repeated
measures analysis of variance (RM-ANOVA) with the main
effect of Condition (Low-Noise, Moderate-Noise, High-Noise,
Audio-Only) were used to compare behavioral scores. Two-
way factorial RM-ANOVAs with the main effect of Condition
and TRF Component (TRF100, TRF200, TRF350) were performed
to compare the effect of background noise and visual cues
on TRF component amplitudes. Two-way RM-ANOVAs with
the main effects of Condition and Listening Side (Ipsilateral
to implant, Contralateral to implant) and a paired t-test were
performed to compare relative alpha power for the superior-
parietal and IFG ROIs, respectively. In cases where sphericity
is violated, Greenhouse-Geisser corrections were applied to
p-values (pGG). For all tests, the alpha criterion was set at 0.05,
and p-values (padj) were adjusted for multiple comparisons
using the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995). Generalized eta squared (η2

G) values are
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also reported alongside ANOVA test statistics to indicate
effect size.

Linear mixed models were applied to predict listening
demand, perceived percentage of words understood, and
perceived percentage of the conversation understood from
the fixed effects of TRF component or relative alpha power,
listening condition, and subject age using the R package lme4()
v1.1.29 (Bates et al., 2015). The relationship between listening
demand and neural variables were analyzed separately for
TRF components and relative alpha power. TRF component
amplitudes, alpha power values, and age were treated as
continuous variables and z-scored prior to modeling. Although
by-subject random effects and condition were included as
random intercepts and random slopes respectively to account
for the variability explained by the aforementioned factors,
random effects are not interpreted due to being jointly
unidentifiable as each subject was statistically measured once
per condition. Additionally, the by-subject random slope for
condition was removed from the perceived percentage of
words models due to non-convergence. The correlation between
the random intercept for subject and the by-subject random
slope for condition was removed for the perceived percentage
of conversation models due to convergence issues as well.
Fixed effects were subsequently analyzed using ANOVAs with
degrees of freedom adjusted by the Satterthwaite method
(Luke, 2017), and all post-hoc analyses were performed
through pairwise comparisons of the estimated marginal means.
As there were no AzBio score matching the SNR + 15
and + 10 dB conditions, two-tailed partial Pearson correlations
while controlling for age were used to correlate neural
measures and AzBio scores. Correlations were controlled for
age due to the effects of aging on hearing thresholds. The
relationship between perceived percentage of conversation
understood and AzBio scores were also explored using
a two-tailed partial Spearman correlation while controlling
for age. For the partial correlations, the alpha criterion
was set at 0.05 and p-values (padj) were adjusted for
multiple comparisons using the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995).

Results

Self-reported listening demand,
percentage of words, and conversation
understood

Average self-reported mental demand ratings during
listening in the audiovisual conditions were 6.78 (SD = 2.58)
for the Low-Noise (LN) condition, 11.21 (SD = 3.20) for the
Moderate-Noise (MN) condition, and 15.44 (SD= 2.61) for the
High-Noise (HN) condition. The average mental demand rating
for the Audio-Only (AO) condition was 14.62 (SD = 2.63).

The ANOVA model returned an effect of condition on mental
demand ratings [F(3,42) = 40.83, p < 0.001, η2

G = 0.620].
As expected, self-reported mental demand ratings increased

as background babble noise levels increased during the
audiovisual listening paradigm (Figure 2A). Post-hoc analysis
using paired t-tests revealed that the average demand rating was
significantly higher in the HN condition compared to the MN
condition (padj < 0.001), and the LN condition (padj < 0.001).
Additionally, the MN condition demand rating was also
statistically significantly higher than for LN (padj = 0.007).
To compare the effects of visual cues on listening effort, the
background babble noise level for the LN and AO conditions
were both set at SNR +15 dB. Post-hoc analysis indicates that the
average demand rating for AO was significantly higher than LN
(padj < 0.001) despite taking place in the same background noise
level. Interestingly, while the AO demand rating was statistically
significantly higher compared to the MN rating (padj = 0.009)
as well, it was not significantly different compared to the HN
demand rating (padj= 0.322) despite the 10 dB difference in SNR
between the two listening conditions.

The average percentage of words understood followed
the same trends (Figure 2B); participants reported 79.1%
(SD= 12.0%) of words understood for the LN condition, 63.5%
(SD = 14.1%) for the MN condition, 35.8% (SD = 14.1%)
for the HN condition, and 54.0% (SD = 18.5%) for the
AO condition. There was a significant effect of condition
[F(3,42) = 36.67, pGG < 0.001, η2

G = 0.543], with all conditions
significantly differing as shown by post-hoc pairwise analysis.
The percentage of words understood in the LN condition
was significantly higher compared to the MN (padj = 0.004).
HN (padj < 0.001), and AO (padj < 0.001) condition. The
MN percentage rating was significantly higher than the HN
(padj < 0.001) and AO (padj = 0.037) ratings as well. The
percentage of words understood in the HN condition was
significantly lower compared to the percentage understood in
the AO condition (padj = 0.002).

Perceived percentage of conversation understood also
decreased parametrically as background noise increased
(Figure 2C). Participants reported that they understood an
estimated 82.2% (SD = 13.1%) of the conversation for the LN
condition, 72.6% (SD = 15.2%) for the MN condition, 43.2%
(SD = 18.7%) for the HN condition, and 54.6% (SD = 23.1%)
for the AO condition. The ANOVA model revealed a significant
effect of condition [F(2.10,29.36) = 27.65, pGG < 0.001,
η2

G = 0.435]. Post-hoc analysis revealed that the perceived
percentage of the conversation understood differed across all
conditions. The percentage rating in the LN condition was
significantly higher compared to the MN (padj = 0.009), HN
(padj < 0.001), and AO conditions (padj = 0.007). The rating in
the MN condition was also higher than the HN (padj < 0.001)
and AO condition (padj = 0.079). Similar to mental demand
ratings, the percentage of conversation understood also did
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FIGURE 2

Average self-reported behavioural ratings for (A) mental demand, (B) perceived percentage of words understood, and (C) perceived percentage
of the conversation understood. Black horizontal bars indicate the mean score of each condition. Only significant comparisons are displayed.

not significantly differ between the HN and AO conditions
(padj = 0.051).

Effect of increasing background noise
on neural measures

Effect of background noise on
audiovisual-driven TRF components

Comparison of audiovisual-driven stimuli and babble noise
TRFs revealed two significant time lag windows containing
negative TRF components for the LN and MN conditions as
indicated by the shaded regions in Figure 3B, where stimuli
TRFs differed from babble noise TRFs around the 100 ms
time lag and the 350 ms time lag (herein referred to as
TRF100 and TRF350 respectively). Visual inspection of the TRF
at frontocentral sensors also suggested a TRF component at
the 200 ms time lag (TRF200; Figures 3A,C), but this did
not significantly differ from the babble noise TRFs in each
condition. Nonetheless, the TRF200 was submitted to statistical
analysis to compare across latencies. Based on these responses,
an 8 ms time window surrounding the grand mean component
peaks were chosen for analysis for the TRF100 and TRF200.
A 48 ms time window surrounding the TRF350 component

peaks was chosen due to the previously observed wider time
lag window width. The average component peak amplitudes
were subsequently calculated by averaging the mean stimuli
TRF values within the chosen time lag intervals for each
participant, and compared between conditions using a two-way
RM-ANOVA with the main effect of Condition (Low-Noise,
Moderate-Noise, High-Noise) and TRF Component (TRF100,
TRF200, TRF350).

Initially, mean TRF waveforms of the audiovisual conditions
appear to differ in average amplitude for all three speech
tracking components (Figures 3A,D). TRF100 amplitude
seemed to decrease with increasing SNR, with mean amplitudes
being−0.104 (SD= 0.106) for LN,−0.102 (SD= 0.116) for MN,
and −0.087 (SD = 0.107) for the High-Noise condition. While
the mean TRF200 component was not significantly different
from the babble TRF, TRF200 amplitude initially appeared to
increase as SNR decreased. The TRF200 peak amplitudes were
as follows: −0.007 (SD = 0.099) for LN, 0.014 (SD = 0.108) for
MN, and 0.035 (SD = 0.090) for HN. TRF350 peak amplitudes
followed a similar trend to the TRF100 component, in that
amplitudes decreased as listening condition SNR increased:
TRF350 peak amplitudes were −0.052 (SD = 0.046) for LN,
−0.058 (SD = 0.051) for MN, and −0.040 (SD = 0.032)
for HN. While the ANOVA model revealed no significant
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FIGURE 3

Effect of increasing background noise on sensor-level TRF peaks. (A) Mean condition TRFs compared between the audiovisual Low-Noise (LN),
Moderate-Noise (MN), and High-Noise (HN) conditions. (B) Mean stimuli (solid-line) and background noise (dotted-line) TRFs are compared for
each condition (LN—top; MN—middle; HN—bottom) using paired t-tests. Shaded regions indicate time intervals where the TRFs were
significantly different after correcting for multiple comparisons. (C) Topographies of the mean condition stimuli TRFs at the 100, 200, and
350 ms time lags. (D) TRF peaks were compared between the LN, MN, and HN conditions. Black horizontal bars indicate the mean TRF weight
of each condition. No statistically significant differences between TRF amplitude averages were detected.

FIGURE 4

Comparison of relative alpha power between audiovisual Low-Noise (LN), Moderate-Noise (MN), and High-Noise (HN) conditions for the (A)
ipsilateral and contralateral superior-parietal region and (B) left inferior-frontal gyrus (IFG) ROIs. No statistically significant differences were
detected.
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interaction effect between condition and TRF component
[F(2.91,40.75) = 0.468, pGG = 0.701, η2

G = 0.003], the main effect
of Condition was statistically significant [F(1.78,24.95) = 3.58,
pGG = 0.048, η2

G = 0.027]. Post-hoc analysis however revealed
no significant differences in general TRF component amplitude
between conditions (all padj > 0.05).

Beyond the results of the previous analysis, the large
variance in TRF amplitudes between participants and the
inclusion of the TRF200 component (despite the non-significant
difference between stimuli and babble-noise TRF200 amplitudes)
into the omnibus analysis may have lowered its statistical
power. Thus, exploratory one-way RM-ANOVAs with the main
effect of Condition were conducted separately for each TRF
component. The ANOVAs revealed non-significant main effects
for the TRF100 [F(2,28) = 0.347, p = 0.710, η2

G = 0.005] and
TRF200 components [F(2,28) = 3.03, p = 0.064, η2

G = 0.031].
TRF350 component amplitude was found to significantly differ
between listening conditions [F(1.84,25.82) = 5.47, pGG = 0.012,
η2

G = 0.193]. Post-hoc analysis revealed that HN TRF350

amplitude was significantly lower than in LN (padj = 0.032), but
MN TRF350 did not significantly differ from LN (padj = 0.234)
and HN (padj = 0.051).

Effect of background noise on relative alpha
power

The power spectral densities for each participant were
estimated from the sLORETA models of the spontaneous
EEG recordings. Subsequently, the relative alpha power
over superior-parietal cortices (Figure 1A) and the left IFG
(Figure 1B) were compared between conditions. Relative alpha
power at the superior-parietal cortices was analyzed with a
two-way RM-ANOVA with the main effects of Condition
(Low-Noise, Moderate-Noise, High-Noise) and Listening Side
(Ipsilateral, Contralateral), while one-way RM-ANOVA with the
main effect of Condition (Low-Noise, Moderate-Noise, High-
Noise) was performed for the left IFG. Initially, there appeared
to be a parametric increase in relative alpha power at the left IFG
as listening condition demand increased. Subsequent analysis,
however, revealed no statistically significant interaction effect
between Condition and Listening Side for relative alpha power
for all ROIs (all p > 0.078; Figure 4). Furthermore, the main
effect of Condition and Listening Side were also not statistically
significant (all p > 0.230).

Effects of the presence of visual cues
on neural measures

Effect of visual cues on TRF components
Like audiovisual-driven TRFs, the audio-only TRF at the

frontocentral censors also contained two significant time lag
windows around the 100 and 250 ms time lag (Figures 5B,C).
As with the movie TRFs, an 8 ms time window was chosen for

analysis for the TRF100 and TRF200 and a 48 ms time window
was chosen for TRF350.

Average component peak amplitudes were compared
between LN and AO conditions using paired t-tests. Like the
audiovisual conditions, TRF component amplitudes appeared
to change parametrically in the more demanding AO condition
(Figure 5D). Compared to LN, which had component
amplitudes of −0.104 (SD = 0.106) for TRF100, −0.007
(SD = 0.099) for TRF200, and −0.052 (SD = 0.046) for TRF350,
AO TRF components amplitudes were slightly greater. The
AO TRF100, TRF200, and TRF350 amplitudes were −0.113
(SD = 0.132), 0.002 (SD = 0.102), and −0.059 (SD = 0.053)
respectively. Similar to the analysis for background noise,
no significant interaction effect between condition and TRF
component was observed [F(2,28) = 0.573, p = 0.570,
η2

G = 0.002]. The main effect of Condition was also not
significant [F(1,14) = 0.022, p= 0.885, η2

G = 0.0001].

Effect of visual cues on relative alpha power
Relative alpha power was analyzed with a two-way RM-

ANOVA with the main effects of Condition (Low-Noise, Audio-
Only) and Listening Side (Ipsilateral, Contralateral) for the
superior-parietal cortices. A paired t-test was performed for
the left IFG. As with the audiovisual condition comparisons,
analyses revealed no statistically significant interaction effect
between Condition and Listening Side for relative alpha
power the superior-parietal ROI [F(1,14) = 1.39, p = 0.258,
η2

G= 0.003; Figure 6A] and no significant effect of Condition at
the left IFG [t(14) = −0.674, p = 0.512; Figure 6B], despite the
apparent parametric change in alpha with condition demand.
Furthermore, the main effects of Condition and Listening Side
were also not statistically significant for the superior-parietal
region (all p > 0.218).

Relationship between neural measures,
subjective listening demand, perceived
percentage of conversation
understood, and AzBio scores

Across all linear mixed models involving TRFs, the Audio-
Only condition was set as the reference category to investigate
the relationship between changes speech tracking components
and behavioral measures as an effect of adding visual cues and
increasing background noise levels. The fixed effect of condition
was significant across all models (all p < 0.001), supporting
the previous analysis on differences in subjective behavioral
scores between listening conditions. Thus, the fixed effect of
condition was not analyzed further owning to the previous
analyses performed.

Mixed effects modeling was performed on self-reported
listening demand, speech perception during listening, and
TRF component amplitude while controlling for participant

Frontiers in Human Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1043499
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-1043499 November 1, 2022 Time: 15:2 # 12

Xiu et al. 10.3389/fnhum.2022.1043499

FIGURE 5

Effect of visual cues on sensor-level TRF peaks. (A) Mean condition TRFs compared between the audiovisual Low-Noise (LN) and Audio-Only
(AO) conditions. (B) Mean stimuli (solid-line) and background noise (dotted-line) TRFs are compared for each condition (LN—top; AO—bottom)
using paired t-tests. Shaded regions indicate time intervals where the TRFs were significantly different after correcting for multiple comparisons.
(C) Topographies of the mean condition stimuli TRFs at the 100, 200, and 350 ms time lags. (D) TRF peaks were compared between the LN and
AO conditions. Black horizontal bars indicate the mean TRF weight of each condition. No significant differences were observed.

FIGURE 6

Comparison of relative alpha power between audiovisual Low-Noise (LN) and the Audio-Only (AO) conditions (bottom row) for the (A) ipsilateral
and contralateral superior-parietal region and (B) left inferior-frontal gyrus (IFG) ROIs. No statistically significant differences were detected.

age. Modeling indicates that demand scores increase as
negative-going TRF component magnitudes attenuate and
age increases. The analysis reported significant fixed effects
of TRF100 amplitude [standardized β = 1.961, SE = 0.419,

F(1,31.4) = 5.461, p < 0.001] and age [standardized β = 0.646,
SE = 0.267, F(1,7.7719) = 5.847, p = 0.043]. No other fixed
effects aside from condition reached significance (all p > 0.110).
Regarding the percentage of words understood, no significant
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fixed effects other than condition was detected (all p > 0.069). In
contrast, analysis of the mixed model on perceived percentage
of conversations understood and TRF component amplitudes
while accounting for age also indicates a significant fixed effect
of TRF100 amplitude [standardized β = −1.418, SE = 1.058,
F(1,19.797) = 11.361, p < 0.001] as well as an interaction effect
between condition and TRF200 amplitude [F(3,13.071) = 3.428,
p = 0.049]. However, there was no specific interaction effects
between TRF components and condition on listening demand
(all p > 0.090).

Similar models were fitted for relative alpha power at
the superior-parietal and left IFG ROIs. Since there was
no significant main effect of Listening Side, the superior-
parietal relative alpha power at the ipsilateral and contralateral
hemispheres were first averaged for each participant to create
a composite measure. ANOVA on the fixed effects revealed a
significant interaction between superior-parietal relative alpha
power and condition [F(3,13.364) = 3.457, p= 0.047], specifically
in the High-Noise condition (standardized β = −1.992,
SE = 0.701, p = 0.014). As with the TRF model, the fixed effect
of age was also significant [standardized β= 0.6460, SE= 0.267,
F(1,7.7719) = 5.846, p= 0.043]. For the left IFG, ANOVA on the
model fixed effects reported no significant terms (all p > 0.056).
The regression lines and the 95% confidence intervals of
z-scored TRF100 amplitude against the respective self-report
scores are plotted in Figures 7A,B. Weaker TRF100 components
displaying increasingly positive amplitudes (as TRF100 is a
negative component) are correlated with higher demand scores
(Figure 7A). In tandem, weaker TRF100 components are also
correlated with a lower perceived percentage of the conversation
understood (Figure 7B). Figure 7C shows the mean superior-
parietal alpha power is plotted against demand for the High-
Noise condition along with the regression line and the 95%
confidence interval to show the association between increasing
alpha power in the superior-parietal region and decreasing
demand ratings.

Two-tailed partial Pearson correlations between TRF
component amplitudes and AzBio In-Quiet and In-Noise scores
revealed no significant correlations (all padj > 0.160). Similarly,
no significant correlations were found between relative alpha
power and AzBio scores across all ROIs (all padj > 0.246).
Correlations between AzBio In-Quiet and In-Noise scores and
perceived percentage of conversation understood also revealed
that while the percentage rating correlated with AzBio In-Quiet
and In-Noise scores in the AO condition prior to correcting for
multiple comparisons, no correlations survived corrections for
multiple comparisons (all padj > 0.075).

In summary, TRF100 amplitude was correlated to listening
demand and proportion of the movie conversation understood
and superior-parietal alpha power in the high-noise condition
was related to listening demand. No significant correlations were
observed for TRF component amplitude and alpha power with
clinical AzBio speech perception scores.

Discussion

The current study investigated neural speech tracking and
alpha power and the degree to which these neural measures
are reflected in the self-reported mental demand of listening in
CI users when attending to naturalistic stimuli. We found: (1)
On average, subjects reported higher demand ratings and lower
word/conversation understanding as the noise levels increased.
Compared to the audiovisual condition, participants presented
with audio-only stimuli reported demand and conversation
understanding scores that were comparable to the high noise
condition, even though the babble noise levels were the same
as the low noise condition. (2) Neural tracking/alpha power
differences: The neural tracking data showed no significant
parametric change in TRF components with increasing babble
noise. No differences in neural tracking were observed when
the movie visuals were removed. Alpha power did not show
parametric changes with noise masker level or with access
to visual cues. (3) Relationships to behavior: Neural tracking
TRF100 was related to self-reported demand and conversations
understood, while superior parietal alpha power was only related
to self-reported demand.

Self-reported behavioral scores
change concurrently with background
babble noise levels, and is offset by the
presence of visual cues

In the current study, the Effort subscale of the NASA-
TLX was subsumed under the Mental Demand subscale to
coincide with the definition of mental effort as “the deliberate
allocation of mental resources to overcome obstacles in goal
pursuit when carrying out a task” according to the Framework
for Understanding Effortful Listening (Pichora-Fuller et al.,
2016). In line with previous literature on listening effort and
speech intelligibility, self-reported mental demand ratings of
CI users attending to audiovisual speech stimuli significantly
increased concurrently with background noise levels, supported
by similar decreases in perceived percentage of words and
conversation understood. Increasing background noise has
been shown to require more self-perceived listening effort as
indicated by significantly increasing mean NASA-TLX scores of
NH listeners attending to conversations and monologs (Peng
and Wang, 2019). Accordingly, mean NASA-TLX scores of
NH listeners also increases as the spectral resolution of speech
(and thereby speech intelligibility) decreased in CI simulations
(Pals et al., 2013).

Interestingly, mental demand ratings in the Audio-Only
condition with low background noise levels (SNR + 15 dB)
were comparable to the demand ratings when attending to
audiovisual stimuli in the High-Noise condition (SNR + 5 dB).
Additionally, while the perceived percentage of words
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FIGURE 7

Plots of the function between (A) z-scored TRF100 amplitude and listening demand ratings, (B) z-scored TRF100 amplitude and the perceived
percentage of conversation understood. The black line indicates the regression line, bounded by the 95% confidence intervals indicated in the
shaded gray region, both for visualization purposes. (C) Plots z-scored relative alpha power and listening demand ratings in the High-Noise
condition. The green line indicates the regression line of the High-Noise condition bounded by the 95% confidence intervals indicated in the
shaded gray region for visualization purposes. The plus symbols indicate relative alpha power in the High-Noise condition.

understood significantly differed between the HN and AO
conditions, the percentage of conversation understood did
not. When looking specifically at the percentage of words and
conversation understood, participants on average reported
a ∼20% decrease in understood words in the High-Noise
condition compared to the Audio-Only condition. These results
indicate that although CI users may perceive fewer words in a
SNR + 5 dB listening condition with visual cues, their speech
perception and comprehension ability is at a similar level to that
of listening without visuals in a lower noise condition. Visual
speech cues have been shown to improve the ability of CI users
to recognize speech (Dorman et al., 2016). The benefit of visual
speech cues on speech intelligibility therefore possibly reduces
the mental demand required for CI users to attend to speech
in noise. However, prior research on the effect of visual speech
cues on subjective listening demand are divergent. For instance,
NH individuals reported more difficulty in understanding
audiovisual speech stimuli in which the talker wore a non-
transparent face mask, compared to when no face mask was
worn (Yi et al., 2021). Fraser et al. (2010) observed that NH
listeners were more accurate and reported less subjective effort
during the audiovisual speech recognition task compared to the
audio-only task in equally noisy conditions. In contrast, Brown
and Strand (2019) reported that listening effort toward speech
in NH listeners did not differ due to the presence of visual facial
cues during a dual-task paradigm in hard listening conditions
(SNR + 5 dB). Reaction time was instead significantly slower in
the audiovisual condition compared to the audio-only condition
in easy listening conditions at SNR + 10 dB, indicating that a
greater listening effort was required (Brown and Strand, 2019).

The increase in subjective demand in the Audio-Only
condition may be due to the degree to which visual speech
cues influences speech perception for CI users, compared to
NH listeners. CI users have been shown to gravitate toward
and rely more on visual speech cues, especially in situations
with poor speech intelligibility (e.g., Mastrantuono et al., 2017;
Wang et al., 2020). In fact, individuals with hearing loss have
been previously observed to be innately biased toward visual
speech cues compared to NH listeners (Stropahl et al., 2017).
Furthermore, individuals with hearing loss and CI users display
cross-modal recruitment of auditory regions by visual stimuli
(e.g., Nishimura et al., 1999; Winn et al., 2013; Anderson et al.,
2017). Anderson et al. (2017) has shown that the post-operative
increase in cross-modal superior temporal cortex activation due
to visual speech cues was positively correlated with increases in
speech understanding. Thus, while CI users demonstrate greater
listening effort compared to NH listeners during everyday
listening, it is possible that they also receive greater benefit from
visual speech cues in the reduction of listening demand.

Influence of background noise and
visual cues on TRF components

The current study produced speech tracking waveforms
with components that have a similar morphology to potentials
commonly identified as part of the cortical auditory
evoked potential (i.e., N1, P2, N2). Audiovisual-driven
TRFs at frontocentral sensors in conditions of increasing
background noise resembling N1-P2 cortical auditory evoked
potentials (Figure 3A) has been observed in past studies
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(Hjortkjær et al., 2020; Verschueren et al., 2020). The audio-
driven TRF also resemble an N1-P2 cortical auditory evoked
potential (Figure 5A). Despite the similarities between the
polarity and latencies of the TRF100, TRF200, and TRF350

components to the N100, P200, and N200 event-related
potentials respectively, we will not refer to these responses
as the classic event-related-potentials due to differences in
response characteristics as described in previous literature
(Broderick et al., 2018; Reetzke et al., 2021). Recent evidence
suggests that TRFs are sensitive to stimulus properties, and are
more representative of low-level speech encoding (Broderick
et al., 2022; Prinsloo and Lalor, 2022). Accordingly, weaker
speech tracking would be indicative of either a deficit in
the basic neural processing of speech acoustics, or poor
encoding of low-level speech features (Broderick et al., 2022;
Prinsloo and Lalor, 2022).

General effect of increasing background noise
levels on TRF components during audiovisual
listening in cochlear implant users

Previous work with NH listeners has shown that background
noise and attention both modulate neural speech tracking
(Ding and Simon, 2012; Petersen et al., 2017; Verschueren
et al., 2020). The magnitude of TRF components were found
to decrease as background noise levels increase/SNR decrease
(Petersen et al., 2017; Verschueren et al., 2020), even if
speech intelligibility remained comparable (Verschueren et al.,
2020). Increasing background noise has also been shown to
also increase the magnitude of a positive speech tracking
component around 200 ms time lag in individuals with
hearing loss (Petersen et al., 2017). Concerning the attentional
modulation of speech tracking, hearing loss has been shown
to negatively affect attentional modulation. Greater degrees of
hearing loss were associated with changes in the tracking of the
ignored speech stream, leading to smaller differences between
the neural tracking of attended and ignored speech streams
(Petersen et al., 2017).

Although a general effect of background noise on TRFs
was detected, the difference in specific component amplitudes
between listening conditions was non-significant. Individual
differences between CI users may explain the lack of difference
in group-level TRF component amplitudes despite the main
effect of increasing background noise, reflecting the large
variability in CI outcomes reported in past studies (Blamey
et al., 2012; Lazard et al., 2012). Some factors to be considered
are the type of CI user (i.e., unilateral, bilateral, bimodal),
CI device limitations, and individual differences in effort
and attention. The present study contains unilateral, bimodal,
and bilateral CI users who may have different subjective
listening experiences, and thus different effort and demand
requirements. For instance, bilateral CI users have reported
a lower degree of listening effort compared to unilateral
CI users (Hughes and Galvin, 2013; Schnabl et al., 2015;

Kocak Erdem and Ciprut, 2019). The neural response of CI
users may also have been limited by individual differences
related to the user device, such as CI distortions to the speech
envelope, and thus leading to no detectable changes in TRF
amplitude at a group level that corresponded with listening
effort and attention. Interestingly, TRF200 components were not
significantly different from the babble noise TRF waveform in
all listening conditions in contrast to the TRF100 and TRF350

components compared to previous studies with NH listeners
(e.g., Ding and Simon, 2012; Broderick et al., 2018). This perhaps
is another indicator that TRF components represent different
aspects of low-level speech encoding, and that specific encoding
processes reflected in the TRF200 component are impaired in
CI users.

It is possible that the effect of background noise on speech
tracking is driven by the TRF350 component, as exploratory
analysis suggested that the late component magnitude was
lower in the High-Noise condition compared to the Low-
Noise condition. Recently, Paul et al. (2020) reported that
bilateral CI users demonstrate stronger speech separation as
reflected in later speech tracking differences around 250 ms
between attended and ignored speech in a concurrent digit-
stream task, while speech tracking toward the attended speech
stream was stronger in the early component around 150 ms
for NH listeners. Although CI users’ TRFs in the current
study demonstrated differentiation of speech from background
noise, the later negative component initially appeared to be
enhanced for stimuli TRFs, contrary to the stronger late cortical
representation of the ignored speech stream described by Paul
et al. (2020). Furthermore, the mean late negative component
seen in the present study peaked 100 ms later at ∼350 ms,
possibly as a result of using continuous speech stimuli instead
of number sequences since TRF latency has been linked to
speech prosody (Verschueren et al., 2020). Additionally, both
TRF100 and TRF350 were significantly different from the babble
TRF for the High-Noise listening condition, suggesting that
cortical speech differentiation was intact for low and moderate
noise conditions. Speech envelope TRFs have also been
shown to remain relatively stable in quiet conditions, despite
modulations of speech comprehension via the scrambling the
words presented in the speech narrative stimuli (Broderick et al.,
2022). Late cortical differentiation of speech may therefore be
more sensitive to background noise levels in specific regard to
low-level speech encoding, as the TRF350 component was not
statistically significantly different from the babble noise TRF in
the High-Noise condition.

Speech tracking components did not differ for
audiovisual manipulations in low background
noise scenarios

Despite the reported benefits of visual speech cues for speech
perception in noise, speech tracking component amplitudes did
not differ between the Low-Noise and Audio-Only conditions.
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The lack of difference is potentially explained by a ceiling effect
regarding speech tracking. As the SNR in both audiovisual Low-
Noise and Audio-Only condition was relatively high (+15 dB),
participants may have been able to track the attended speech
stream at the same level of performance for both conditions,
despite the increased subjective listening demand in the Audio-
Only condition. The benefits of visual cues then present
itself in listening situations with lower SNRs, when CI users
cannot adequately rely on acoustic speech cues to identify and
maintain separate speech streams. However, previous research
also suggest that in audiovisual conditions, CI users favor a
top-down attentional modulation process when confronted with
incongruent visual information, compared to NH listeners that
adopt a more bottom-up process (Song et al., 2015). Since the CI
users of the current study were not instructed to close their eyes,
the irrelevant visual environment in the Audio-Only condition
could influence the attentional modulation process by serving as
a distractor.

Early speech tracking component
amplitudes are correlated with
self-reported demand and percentage
of conversation understood, but not
the percentage of words understood

The current study found that the strength of early TRF
components explained mental demand ratings; more positive
(i.e., weaker) TRF100 amplitudes are associated with increased
perceived listening demand, regardless of background and
audiovisual manipulations. Weaker TRF100 amplitudes are
also correlated with a decreased perceived percentage of
conversation understood, but not the perceived percentage of
words understood, reflecting recent findings by Broderick et al.
(2022) where word recognition remained high in participants
despite the scrambling of the speech narrative stimuli. The
non-significant relationship observed for TRF200 and TRF350

components has also been reported in previous literature.
Müller et al. (2019) found no significant correlations between
listening effort and later component amplitudes in NH listeners
after measuring listening effort subjectively through self-reports
and objectively using cross-correlations between the speech
envelope and EEG signals.

These results suggest that differences in speech encoding
between CI users may be strongly reflected in TRF100 amplitude.
Despite the large variance in CI user characteristics that
may have masked the effects of background noise and visual
cues on speech tracking at a group level, the relationships
between TRF100 amplitude, mental demand, and conversation
understanding remained statistically significant. TRFs being a
visual representative of the quality of low-level speech encoding
(Broderick et al., 2022; Prinsloo and Lalor, 2022), can serve as
an indicator of deficits related to upstream processes in auditory

processing, that is, the relaying of acoustic information from
the periphery auditory system to the central auditory system
(i.e., downstream) in CI users. Poor encoding of the speech
stimuli, whether due to poor encoding of low-level acoustics
or deficits in basic auditory processing, would thereby lead
to an increase in mental demand when interpreting speech
signals, in turn resulting in poor comprehension. Increasing
listening demand may also force CI users to compensate by
relying on visual speech cues, which may not fully recoup the
effects of degradation in auditory information. Alternatively,
the concurrent increase in TRF100 and demand ratings may
represent a potential ceiling effect related to speech intelligibility
(e.g., Drennan and Lalor, 2019; Verschueren et al., 2020).
Whether due to low background noise or information from
visual cues, participants may not have had significant issues
understanding the stimuli for the neuromodulatory effects on
speech tracking to significantly presents itself in the SNR + 15 dB
listening conditions, despite their perception of increased
demand and decreased understanding.

The non-significant correlation between AzBio scores and
self-perceived percentage of conversation understood is similar
to the weak correlation between clinical speech perception
tests and subjective QoL outcomes seen in previous studies
(e.g., Ramakers et al., 2017; McRackan et al., 2018; Thompson
et al., 2020). For instance, Ramakers et al. (2017) reported
weak to moderate correlations between Utrecht Sentence Test
with Adaptive Randomized Roving sentences performance and
the Speech, Spatial, and Qualities of Hearing Scale (SSQ)
(Gatehouse and Noble, 2004) Speech scale (r = −0.36,
p = 0.0429) and Nijmegen Cochlear Implant Questionnaire
(NCIQ) (Hinderink et al., 2000) Advanced Sound Perception
Domain (r = −0.47, p = 0.0214). Similarly, Thompson et al.
(2020) reported that AzBio in noise (SNR 0 dB) scores do not
correlate with the Speech-in-Speech Context subscale within
the SSQ Speech scale. In turn, a meta-analysis by McRackan
et al. (2018) pooled correlation values from studies utilizing tests
such as the SSQ and the NCIQ. The pooled correlation values
ranged from negligible to low for sentence recognition in quiet
(r = 0.219 [0.118–0.316]) and in noise (r = 0.238 [−0.054 to
0.493]) (McRackan et al., 2018). These results again highlight the
complex role of visual cues during listening, as clinical hearing
tests are strictly auditory in nature.

Influence of background noise and
visual cues on alpha power

Alpha power is theorized to increase in neural regions
involved in processing information irrelevant to the task at hand
(Strauß et al., 2014), possibly as a reflection of the inhibition
of distracting cortical networks (Jensen and Mazaheri, 2010;
Petersen et al., 2015). Changes in alpha power during listening
differ depending on cortical regions of interest as well as
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how the sounds are presented analyzed (i.e., long continuous
speech sentences or short duration sounds in event-related
paradigms, e.g., see Hauswald et al., 2020). Previous studies
have demonstrated that alpha power increases concurrently with
task difficulty (Wöstmann et al., 2017), with increases in alpha
power at the IFG in tandem with increases in listening effort
(Dimitrijevic et al., 2019). Parietal alpha power was also found
to increase as listening difficulty and attention increases due to
increasing background noise or vocoded speech (Dimitrijevic
et al., 2017; Wöstmann et al., 2017). In direct contrast, parietal
and frontal alpha power has been shown to decrease as the
difficulty of the listening condition increases, whether due to
increasing background noise (Seifi Ala et al., 2020), decreasing
target stimuli intelligibility (Fiedler et al., 2021), or vocoded
speech (Hauswald et al., 2020).

Our results partially conflict with previous research, as alpha
power itself at the superior-parietal and left IFG ROIs did not
significantly change as an effect of increasing background noise
or the presence of visual cues. One interpretation is that the
effects of increasing background noise are potentially attenuated
by the benefit that visual cues confer for attending to speech,
reducing the required resources needed to suppress irrelevant
background information. The modulation of parietal alpha
power by SNR has been demonstrated for purely auditory tasks
(e.g., Dimitrijevic et al., 2017; Wöstmann et al., 2017; Seifi Ala
et al., 2020; Paul et al., 2021). The lack of difference in alpha
power for the audiovisual listening conditions may therefore
be an indicator of audiovisual advantage during sustained
listening. At low noise levels in the Audio-Only and Low-
Noise condition, background noise affects subjective listening
demand, but possibly not enough to warrant neural differences
in the suppression of background noise. Superior-parietal alpha
power also did not differ between the side ipsilateral and
contralateral to the CI side used during the listening task.
Increased alpha power has also been reported for the brain
hemisphere ipsilateral to the attended stimuli for listening tasks
involving spatial attention and suppression of irrelevant stimuli
located on the contralateral side (e.g., Foxe and Snyder, 2011;
Thorpe et al., 2012; Paul et al., 2020). The target stimuli for the
current study were located directly in front of the participants
and did not change location. Thus, no lateralization of alpha
power was expected. Stimulus material may also influence how
alpha power changes as a result of degrading speech clarity.
Hauswald et al. (2020) found that when using continuous stimuli
parietal alpha power decreased as speech degradation increased,
in contrast to studies that used short stimuli such as words
or digits (Obleser and Weisz, 2012; Wostmann et al., 2015;
Dimitrijevic et al., 2019). The combination of stimulus choice,
the benefit of visual cues, and low background noise in some
conditions may then have contributed to masking the effect of
decreasing alpha power due to decreased speech comprehension
across all listening conditions. Alternatively, alpha power as

measured in this study may not relate to the conditions of our
task design.

Regarding listening demand, a decrease in superior-parietal
alpha power was associated with an increase in demand scores,
but only in the audiovisual High-Noise condition. Continuous
listening in an environment with high background noise would
be especially difficult for individuals with hearing difficulty,
perhaps to a point where CI users begin to favor visual speech
cues over auditory cues to compensates for decreased speech
intelligibility. Here, alpha power may represent a release from
inhibition (Jensen and Mazaheri, 2010) regarding multisensory
integration processes that occur in the parietal region (e.g.,
Rouger et al., 2008; Misselhorn et al., 2019), similar to the
inverted-U pattern displayed for alpha power in high effort
listening scenarios (Hauswald et al., 2020; Paul et al., 2021;
Ryan et al., 2022). Any association between alpha power and
demand scores for conditions with lower background noise may
be complicated by CI users’ bias toward visual cues (Stropahl
et al., 2017), in that CI users overestimate the benefit that visual
cues confer on speech intelligibility, and thereby inherently
rely more on visual cues despite the audibility of the speech
stimuli. However, it is difficult to determine if this bias is purely
subjective based on alpha power alone, due to the cross-modal
plasticity observed in individuals with hearing loss (Lazard et al.,
2010; Anderson et al., 2017) as well as the aforementioned
multisensory integration. Since no visual speech cues were
present in the Audio-Only condition, audiovisual integration of
visual and auditory speech cues was not necessary, which would
lead to the suppression of parietal multisensory integration.

Differences between the effort required for a task (i.e.,
listening effort) and the difficulty of the task itself (i.e.,
mental demand) may be reflected in the objective and
subjective measures respectively, and thus influencing both TRF
components and alpha power. If CI users did not attempt to
change their listening effort to match the difficulty/demand of
the task throughout all listening conditions, then the differences
in both TRF amplitude and alpha power related to listening
demand between conditions would be minimized, and thus not
detected due to having a small effect size. As the participants
were only briefly assessed on stimuli content to gauge attention,
passive listening may also have taken place during the task
if lapses in attention occurred. Factors beyond attention also
influence both speech tracking and listening effort. Even though
attentional processes affect listening effort, motivation and
fatigue are also confounding factors for both concepts of
listening effort and listening demand. Motivation has been
found to generally increase subjective listening effort and fatigue
when attending to speech in noise, in addition to influencing
strategies for coping with effortful tasks (Picou and Ricketts,
2014). Cognitive overload due to task difficulty may also result in
participants disengaging from the task itself, thereby producing
behavior that is similar to “low effort” (Wu et al., 2016). In
addition, familiarity with the stimuli may also play a role in
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attention, in that familiarity with a voice in a complex listening
environment can assist listeners to either attend to or ignore
said voice (Johnsrude et al., 2013). When sentences is spoken
concurrently by two voices during a word identification task,
error rates were found to be higher if both voices were novel,
compared to when a familiar voice was the target stimuli or the
informational masker (Johnsrude et al., 2013).

Conclusion

Increasing background noise increased subjective mental
demand when listening in noise, while visual speech cues
appeared to decrease listening demand in low background noise
levels. Stimuli TRF component amplitudes were significantly
different from babble noise TRFs (TRF100 and TRF350 in
the low and medium noise conditions) implicating potential
difficulties in separating speech from the background for high
noise. The significant relationship between early speech tracking
components, alpha power, and subjective listening demand
suggests that perhaps visual cues play a more complex role for CI
users in higher-noise conditions. Relative alpha power however
did not appear to change accordingly with background noise
in contrast to previous literature. Nevertheless, factors such as
study design, motivation, and fatigue may confound the results
of neural measures for individuals with CIs compared to NH
listeners, and thus warrant further investigation.

Overall, the results of this study suggest that naturalistic
multi-talker scenarios such as everyday movie stimuli, can be
used to study listening demand in CI users. Neural tracking
of continuous naturalistic speech in noise was successfully
measured in CI users using TRFs. Meaningful information
about the CI user listening experience and the influence
of auditory environmental factors can be extracted from
brain responses using continuous “ecological” stimuli such
as a normal conversation. These findings contribute to the
development of naturalistic objective measures of listening
effort that may provide more insight into the mental effort
and fatigue of CI users in everyday listening. The method of
speech tracking estimation used in the current study also does
not require an active response from participants, and thus has
the potential to be integrated in assessments for individuals
that cannot respond to conventional task-based measures. This
approach may be especially useful in pediatric populations
where behavioral measures of demand and long EEG recordings
are difficult to perform.

Data availability statement

The original contributions presented in this study are
included in the article/supplementary material, further inquiries
can be directed to the corresponding author.

Ethics statement

The studies involving human participants were reviewed
and approved by the Research Ethics Board at Sunnybrook
Health Sciences Centre (REB #474-2016) in accordance with
the Tri-Council Policy Statement: Ethical Conduct for Research
Involving Humans. The patients/participants provided their
written informed consent to participate in this study.

Author contributions

BX performed data analyses, interpretation, and wrote
the manuscript as part of a Master of Science degree thesis
that was subsequently adapted for publication. BP and AD
contributed to the conceptualization of the work, provided
supervision, data analysis, and revised the manuscript before
publication. All authors contributed to the article and approved
the submitted version.

Funding

This research was supported by the Mason Scientific
Discovery Fund and the Harry Barberian Scholarship. The
funding organizations had no role in the design and conduct of
the study; in the collection, analysis, and interpretation of the
data; or in the decision to submit the article for publication; or
in the preparation, review, or approval of the article.

Acknowledgments

This research article was adapted from a dissertation as part
of a Master of Science degree at the Institute of Medical Science
at University of Toronto (Xiu, 2022).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Frontiers in Human Neuroscience 18 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1043499
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-1043499 November 1, 2022 Time: 15:2 # 19

Xiu et al. 10.3389/fnhum.2022.1043499

References

Alain, C., Du, Y., Bernstein, L. J., Barten, T., and Banai, K. (2018). Listening
under difficult conditions: an activation likelihood estimation meta-analysis. Hum.
Brain Mapp. 39, 2695–2709. doi: 10.1002/hbm.24031

Anderson, C. A., Wiggins, I. M., Kitterick, P. T., and Hartley, D. E. H. (2017).
Adaptive benefit of cross-modal plasticity following cochlear implantation in
deaf adults. Proc. Natl. Acad. Sci. U S A. 114, 10256–10261. doi: 10.1073/pnas.
1704785114

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-
effects models using lme4. J. Stat. Softw. 67, 1–48. doi: 10.18637/jss.v067.i01

Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., and Moulines, E. (1997). A
blind source separation technique using second-order statistics. IEEE Trans. Signal
Process. 45, 434–444. doi: 10.1109/78.554307

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate -
a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57,
289–300. doi: 10.2307/2346101

Blamey, P., Artieres, F., Baskent, D., Bergeron, F., Beynon, A., Burke, E., et al.
(2012). Factors affecting auditory performance of postlinguistically deaf adults
using cochlear implants: an update with 2251 patients. Audiol. Neurotol. 18, 36–47.
doi: 10.1159/000343189

Broderick, M. P., Anderson, A. J., Di Liberto, G. M., Crosse, M. J., and Lalor,
E. C. (2018). Electrophysiological correlates of semantic dissimilarity reflect the
comprehension of natural, narrative speech. Curr. Biol. 28, 803–809.e3. doi: 10.
1016/j.cub.2018.01.080.

Broderick, M. P., Zuk, N. J., Anderson, A. J., and Lalor, E. C. (2022). More
than words: neurophysiological correlates of semantic dissimilarity depend on
comprehension of the speech narrative. Eur. J. Neurosci. 56, 5201–5214. doi:
10.1111/ejn.15805

Brown, V. A., and Strand, J. F. (2019). About face: seeing the talker improves
spoken word recognition but increases listening effort. J. Cogn. 2:44. doi: 10.5334/
joc.89

Byrge, L., Dubois, J., Tyszka, J. M., Adolphs, R., and Kennedy, D. P.
(2015). Idiosyncratic brain activation patterns are associated with poor social
comprehension in Autism. J. Neurosci. 35, 5837–5850. doi: 10.1523/JNEUROSCI.
5182-14.2015

Capretta, N. R., and Moberly, A. C. (2016). Does quality of life depend on
speech recognition performance for adult cochlear implant users? Laryngoscope
126, 699–706. doi: 10.1002/lary.25525

Castellanos, I., Kronenberger, W. G., and Pisoni, D. B. (2018). Psychosocial
outcomes in long-term cochlear implant users. Ear Hear. 39, 527–539. doi: 10.
1097/AUD.0000000000000504

Crosse, M. J., Di Liberto, G. M., Bednar, A., and Lalor, E. C. (2016). The
Multivariate Temporal Response Function (mTRF) toolbox: a MATLAB toolbox
for relating neural signals to continuous stimuli. Front. Hum. Neurosci. 10:604.
doi: 10.3389/fnhum.2016.00604

Crosse, M. J., Zuk, N. J., Di Liberto, G. M., Nidiffer, A. R., Molholm, S., and
Lalor, E. C. (2021). Linear modeling of neurophysiological responses to speech
and other continuous stimuli: methodological considerations for applied research.
Front. Neurosci. 15:705621. doi: 10.3389/fnins.2021.705621

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent component analysis.
J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D.,
et al. (2006). An automated labeling system for subdividing the human cerebral
cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980.
doi: 10.1016/j.neuroimage.2006.01.021

Dillon, M. T., Buss, E., Rooth, M. A., King, E. R., Deres, E. J., Buchman, C. A.,
et al. (2018). Effect of cochlear implantation on quality of life in adults with
unilateral hearing loss. Audiol. Neurotol. 22, 259–271. doi: 10.1159/000484079

Dimitrijevic, A., Smith, M. L., Kadis, D. S., and Moore, D. R. (2017). Cortical
alpha oscillations predict speech intelligibility. Front. Hum. Neurosci. 11:88. doi:
10.3389/fnhum.2017.00088

Dimitrijevic, A., Smith, M. L., Kadis, D. S., and Moore, D. R. (2019). Neural
indices of listening effort in noisy environments. Sci. Rep. 9:11278. doi: 10.1038/
s41598-019-47643-1

Ding, N., and Simon, J. Z. (2012). Emergence of neural encoding of auditory
objects while listening to competing speakers. Proc. Natl. Acad. Sci. U S A. 109,
11854–11859. doi: 10.1073/pnas.1205381109

Dorman, M. F., Liss, J., Wang, S., Berisha, V., Ludwig, C., and Natale, S. C.
(2016). Experiments on auditory-visual perception of sentences by users of

unilateral, bimodal, and bilateral cochlear implants. J. Speech, Lang. Hear. Res. 59,
1505–1519. doi: 10.1044/2016_JSLHR-H-15-0312

Drennan, D. P., and Lalor, E. C. (2019). Cortical tracking of complex
sound envelopes: modeling the changes in response with intensity. eNeuro
6:ENEURO.0082-19.2019.

Dunn, C. C., Noble, W., Tyler, R. S., Kordus, M., Gantz, B. J., and Ji, H. (2010).
Bilateral and unilateral cochlear implant users compared on speech perception in
noise. Ear. Hear. 31, 296–298. doi: 10.1097/AUD.0b013e3181c12383

Fabie, J. E., Keller, R. G., Hatch, J. L., Holcomb, M. A., Camposeo, E. L.,
Lambert, P. R., et al. (2018). Evaluation of outcome variability associated with
lateral wall, mid-scalar, and perimodiolar electrode arrays when controlling for
preoperative patient characteristics. Otol. Neurotol. 39, 1122–1128. doi: 10.1097/
MAO.0000000000001951

Fiedler, L., Seifi Ala, T., Graversen, C., Alickovic, E., Lunner, T., and Wendt, D.
(2021). Hearing aid noise reduction lowers the sustained listening effort during
continuous speech in noise—a combined pupillometry and EEG study. Ear Hear.
42, 1590–1601. doi: 10.1097/AUD.0000000000001050

Fiedler, L., Wöstmann, M., Herbst, S. K., and Obleser, J. (2019). Late cortical
tracking of ignored speech facilitates neural selectivity in acoustically challenging
conditions. Neuroimage 186, 33–42. doi: 10.1016/j.neuroimage.2018.10.057

Foxe, J. J., and Snyder, A. C. (2011). The role of alpha-band brain oscillations as
a sensory suppression mechanism during selective attention. Front. Psychol. 2:154.
doi: 10.3389/fpsyg.2011.00154

Fraser, S., Gagné, J.-P., Alepins, M., and Dubois, P. (2010). Evaluating the
effort expended to understand speech in noise using a dual-task paradigm: the
effects of providing visual speech cues. J. Speech Lang. Hear. Res. 53, 18–33.
doi: 10.1044/1092-4388(2009/08-0140)

Fuglsang, S. A., Dau, T., and Hjortkjær, J. (2017). Noise-robust cortical tracking
of attended speech in real-world acoustic scenes. Neuroimage 156, 435–444. doi:
10.1016/j.neuroimage.2017.04.026

Gatehouse, S., and Noble, W. (2004). The speech, spatial and qualities of hearing
scale (SSQ). Int. J. Audiol. 43, 85–99. doi: 10.1080/14992020400050014

Gilley, P. M., Sharma, A., Dorman, M., Finley, C. C., Panch, A. S., and Martin,
K. (2006). Minimization of cochlear implant stimulus artifact in cortical auditory
evoked potentials. Clin. Neurophysiol. 117, 1772–1782. doi: 10.1016/j.clinph.2006.
04.018

Hart, S. G., and Staveland, L. E. (1988). Development of NASA-TLX (Task Load
Index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183.

Hauswald, A., Keitel, A., Chen, Y., Rösch, S., and Weisz, N. (2020). Degradation
levels of continuous speech affect neural speech tracking and alpha power
differently. Eur. J. Neurosci. 55, 3288–3302. doi: 10.1111/ejn.14912

Hinderink, J. B., Krabbe, P. F. M., and Van Den Broek, P. (2000). Development
and application of a health-related quality-of-life instrument for adults with
cochlear implants: the Nijmegen Cochlear Implant Questionnaire. Otolaryngol.
Neck Surg. 123, 756–765. doi: 10.1067/mhn.2000.108203

Hjortkjær, J., Märcher-Rørsted, J., Fuglsang, S. A., and Dau, T. (2020). Cortical
oscillations and entrainment in speech processing during working memory load.
Eur. J. Neurosci. 51, 1279–1289. doi: 10.1111/ejn.13855

Holden, L. K., Finley, C. C., Firszt, J. B., Holden, T. A., Brenner, C., Potts, L. G.,
et al. (2013). Factors affecting open-set word recognition in adults with cochlear
implants. Ear Hear. 34, 342–360. doi: 10.1097/AUD.0b013e3182741aa7

Holman, J. A., Drummond, A., Hughes, S. E., and Naylor, G. (2019). Hearing
impairment and daily-life fatigue: a qualitative study. Int. J. Audiol. 58, 408–416.
doi: 10.1080/14992027.2019.1597284

Hughes, K. C., and Galvin, K. L. (2013). Measuring listening effort expended
by adolescents and young adults with unilateral or bilateral cochlear implants or
normal hearing. Cochlear Implants Int. 14, 121–129. doi: 10.1179/1754762812Y.
0000000009

Hughes, S. E., Hutchings, H. A., Rapport, F. L., McMahon, C. M., and
Boisvert, I. (2018). Social connectedness and perceived listening effort in adult
cochlear implant users: a grounded theory to establish content validity for a new
patient-reported outcome measure. Ear Hear. 39, 922–934. doi: 10.1097/AUD.
0000000000000553

James, C. J., Karoui, C., Laborde, M.-L., Lepage, B., Molinier, C. -É, Tartayre, M.,
et al. (2019). Early sentence recognition in adult cochlear implant users. Ear Hear
40, 905–917. doi: 10.1097/AUD.0000000000000670

Jensen, O., and Mazaheri, A. (2010). Shaping functional architecture by
oscillatory alpha activity: gating by inhibition. Front. Hum. Neurosci. 4:186. doi:
10.3389/fnhum.2010.00186

Frontiers in Human Neuroscience 19 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1043499
https://doi.org/10.1002/hbm.24031
https://doi.org/10.1073/pnas.1704785114
https://doi.org/10.1073/pnas.1704785114
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1109/78.554307
https://doi.org/10.2307/2346101
https://doi.org/10.1159/000343189
https://doi.org/10.1016/j.cub.2018.01.080.
https://doi.org/10.1016/j.cub.2018.01.080.
https://doi.org/10.1111/ejn.15805
https://doi.org/10.1111/ejn.15805
https://doi.org/10.5334/joc.89
https://doi.org/10.5334/joc.89
https://doi.org/10.1523/JNEUROSCI.5182-14.2015
https://doi.org/10.1523/JNEUROSCI.5182-14.2015
https://doi.org/10.1002/lary.25525
https://doi.org/10.1097/AUD.0000000000000504
https://doi.org/10.1097/AUD.0000000000000504
https://doi.org/10.3389/fnhum.2016.00604
https://doi.org/10.3389/fnins.2021.705621
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1159/000484079
https://doi.org/10.3389/fnhum.2017.00088
https://doi.org/10.3389/fnhum.2017.00088
https://doi.org/10.1038/s41598-019-47643-1
https://doi.org/10.1038/s41598-019-47643-1
https://doi.org/10.1073/pnas.1205381109
https://doi.org/10.1044/2016_JSLHR-H-15-0312
https://doi.org/10.1097/AUD.0b013e3181c12383
https://doi.org/10.1097/MAO.0000000000001951
https://doi.org/10.1097/MAO.0000000000001951
https://doi.org/10.1097/AUD.0000000000001050
https://doi.org/10.1016/j.neuroimage.2018.10.057
https://doi.org/10.3389/fpsyg.2011.00154
https://doi.org/10.1044/1092-4388(2009/08-0140)
https://doi.org/10.1016/j.neuroimage.2017.04.026
https://doi.org/10.1016/j.neuroimage.2017.04.026
https://doi.org/10.1080/14992020400050014
https://doi.org/10.1016/j.clinph.2006.04.018
https://doi.org/10.1016/j.clinph.2006.04.018
https://doi.org/10.1111/ejn.14912
https://doi.org/10.1067/mhn.2000.108203
https://doi.org/10.1111/ejn.13855
https://doi.org/10.1097/AUD.0b013e3182741aa7
https://doi.org/10.1080/14992027.2019.1597284
https://doi.org/10.1179/1754762812Y.0000000009
https://doi.org/10.1179/1754762812Y.0000000009
https://doi.org/10.1097/AUD.0000000000000553
https://doi.org/10.1097/AUD.0000000000000553
https://doi.org/10.1097/AUD.0000000000000670
https://doi.org/10.3389/fnhum.2010.00186
https://doi.org/10.3389/fnhum.2010.00186
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-1043499 November 1, 2022 Time: 15:2 # 20

Xiu et al. 10.3389/fnhum.2022.1043499

Johnsrude, I. S., Mackey, A., Hakyemez, H., Alexander, E., Trang, H. P., and
Carlyon, R. P. (2013). Swinging at a cocktail party. Psychol. Sci. 24, 1995–2004.
doi: 10.1177/0956797613482467

Killion, M. C., Niquette, P. A., Gudmundsen, G. I., Revit, L. J., and Banerjee,
S. (2004). Development of a quick speech-in-noise test for measuring signal-to-
noise ratio loss in normal-hearing and hearing-impaired listeners. J. Acoust. Soc.
Am. 116, 2395–2405. doi: 10.1121/1.1784440

Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access
to stored information. Trends Cogn. Sci. 16, 606–617. doi: 10.1016/j.tics.2012.
10.007

Kocak Erdem, B., and Ciprut, A. (2019). Evaluation of speech, spatial perception
and hearing quality in unilateral, bimodal and bilateral cochlear implant users.
Turkish Arch. Otorhinolaryngol. 57, 149–153. doi: 10.5152/tao.2019.4105

Kurz, A., Grubenbecher, M., Rak, K., Hagen, R., and Kühn, H. (2019). The
impact of etiology and duration of deafness on speech perception outcomes in SSD
patients. Eur. Arch. Oto-Rhino-Laryngol. 276, 3317–3325. doi: 10.1007/s00405-
019-05644-w

Lazard, D. S., Lee, H. J., Gaebler, M., Kell, C. A., Truy, E., and Giraud, A. L.
(2010). Phonological processing in post-lingual deafness and cochlear implant
outcome. Neuroimage 49, 3443–3451. doi: 10.1016/j.neuroimage.2009.11.013

Lazard, D. S., Vincent, C., Venail, F., Van de Heyning, P., Truy, E., Sterkers,
O., et al. (2012). Pre-, per- and postoperative factors affecting performance of
postlinguistically deaf adults using cochlear implants: a new conceptual model
over time. PLoS One 7:e48739. doi: 10.1371/journal.pone.0048739

Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R.
Behav. Res. Methods 49, 1494–1502. doi: 10.3758/s13428-016-0809-y

Magosso, E., De Crescenzio, F., Ricci, G., Piastra, S., and Ursino, M. (2019).
EEG alpha power is modulated by attentional changes during cognitive tasks and
virtual reality immersion. Comput. Intell. Neurosci. 2019, 1–18. doi: 10.1155/2019/
7051079

Mastrantuono, E., Saldaña, D., and Rodríguez-Ortiz, I. R. (2017). An eye
tracking study on the perception and comprehension of unimodal and bimodal
linguistic inputs by deaf adolescents. Front. Psychol. 8:1044. doi: 10.3389/fpsyg.
2017.01044

MATLAB (2019). version 9.6.0.1072779 (R2019a). Natick, MA: The MathWorks
Inc.

Mc Laughlin, M., Lopez Valdes, A., Reilly, R. B., and Zeng, F.-G. (2013).
Cochlear implant artifact attenuation in late auditory evoked potentials: a
single channel approach. Hear. Res. 302, 84–95. doi: 10.1016/j.heares.2013.
05.006

McGarrigle, R., Munro, K. J., Dawes, P., Stewart, A. J., Moore, D. R.,
Barry, J. G., et al. (2014). Listening effort and fatigue: what exactly are we
measuring? a british society of audiology cognition in hearing special interest
group ‘white paper.’. Int. J. Audiol. 53, 433–445. doi: 10.3109/14992027.2014.8
90296

McRackan, T. R., Bauschard, M., Hatch, J. L., Franko-Tobin, E.,
Droghini, H. R., Nguyen, S. A., et al. (2018). Meta-analysis of quality-
of-life improvement after cochlear implantation and associations with
speech recognition abilities. Laryngoscope 128, 982–990. doi: 10.1002/lary.
26738

Miller, S., and Zhang, Y. (2014). Validation of the cochlear implant artifact
correction tool for auditory electrophysiology. Neurosci. Lett. 577, 51–55. doi:
10.1016/j.neulet.2014.06.007

Minimum Speech Test Battery For Adult Cochlear Implant Users (2011).
Advanced Bionics LLC, Cochlear Americas, MED-EL Corporation. Available at:
http://www.auditorypotential.com/MSTBfiles/MSTBManual2011-06-20%20.pdf
(accessed December 15, 2021).

Misselhorn, J., Friese, U., and Engel, A. K. (2019). Frontal and parietal alpha
oscillations reflect attentional modulation of cross-modal matching. Sci. Rep.
9:5030. doi: 10.1038/s41598-019-41636-w

Müller, J. A., Wendt, D., Kollmeier, B., Debener, S., and Brand, T. (2019).
Effect of speech rate on neural tracking of speech. Front. Psychol. 10:449. doi:
10.3389/fpsyg.2019.00449

Nishimura, H., Hashikawa, K., Doi, K., Iwaki, T., Watanabe, Y., Kusuoka, H.,
et al. (1999). Sign language ‘heard’ in the auditory cortex. Nature 397:116. doi:
10.1038/16376

Niso, G., Tadel, F., Bock, E., Cousineau, M., Santos, A., and Baillet, S. (2019).
Brainstorm pipeline analysis of resting-state data from the open MEG archive.
Front. Neurosci. 13:284. doi: 10.3389/fnins.2019.00284

Obleser, J., and Weisz, N. (2012). Suppressed alpha oscillations predict
intelligibility of speech and its acoustic details. Cereb. Cortex 22, 2466–2477.
doi: 10.1093/cercor/bhr325

Obleser, J., Wostmann, M., Hellbernd, N., Wilsch, A., and Maess, B. (2012).
Adverse listening conditions and memory load drive a common alpha oscillatory
network. J. Neurosci. 32, 12376–12383.

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). FieldTrip:
open source software for advanced analysis of MEG, EEG, and invasive
electrophysiological data. Comput. Intell. Neurosci. 2011:156869. doi: 10.1155/
2011/156869

O’Sullivan, A. E., Lim, C. Y., and Lalor, E. C. (2019). Look at me when I’m
talking to you: selective attention at a multisensory cocktail party can be decoded
using stimulus reconstruction and alpha power modulations. Eur. J. Neurosci. 50,
3282–3295. doi: 10.1111/ejn.14425
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